1
|
Berney M, Ferguson S, McGouran JF. Function and inhibition of the DNA repair enzyme SNM1A. Bioorg Chem 2025; 156:108225. [PMID: 39914034 DOI: 10.1016/j.bioorg.2025.108225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/09/2025] [Accepted: 01/28/2025] [Indexed: 03/28/2025]
Abstract
SNM1A is an enzyme involved in several important biological pathways. To date, most investigations have focused on its role in repairing interstrand crosslinks, a highly cytotoxic form of DNA damage. SNM1A acts as a 5'-3' exonuclease, displaying an unusual capability to digest DNA past the site of a crosslink lesion. Recently, additional functions of this enzyme in the repair of DNA double-strand breaks and critically shortened telomeres have been uncovered. Furthermore, SNM1A is involved in two cell cycle checkpoints that arrest cell division in response to DNA damage. Inhibition of both DNA repair enzymes and cell cycle checkpoint proteins are effective strategies for cancer treatment, and SNM1A is therefore of significant interest as a potential therapeutic target. As a member of the metallo-β-lactamase superfamily, SNM1A is postulated to contain two metal ions in the active site that catalyse hydrolysis of the phosphodiester backbone of DNA. Substrate-mimic probes based on a nucleoside or oligonucleotide scaffold appended with a metal-binding group have proven effective in vitro. High-throughput screening campaigns have identified potent inhibitors, some of which were successful in sensitising cells to DNA-damaging cancer drugs. This review discusses the biological role, structure, and mechanism of action of SNM1A, and the development of SNM1A inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Mark Berney
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven Ferguson
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| | - Joanna F McGouran
- School of Chemistry, and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, Ireland.
| |
Collapse
|
2
|
Liu ZQ. Potentiality of Nucleoside as Antioxidant by Analysis on Oxidative Susceptibility, Drug Discovery, and Synthesis. Curr Med Chem 2025; 32:880-906. [PMID: 37933214 DOI: 10.2174/0109298673264900231023050108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/20/2023] [Accepted: 09/22/2023] [Indexed: 11/08/2023]
Abstract
Nucleosides are sensitive sites towards oxidations caused by endogenous and exogenous oxidative resources, and a large number of the produced DNA lesions behave as pathogenesis eventually. We herein analyze oxidative modes of nucleosides and structure- activity relationships of some clinical nucleoside drugs. Together with our previous findings on the inhibitory effects of nucleoside derivatives against DNA oxidation, all these results imply a possibility for nucleoside to be a new member in the family of antioxidants. Then, some novel synthetic routines of nucleoside analogs are collected to reveal the applicability in the construction of nucleoside antioxidants. Therefore, it is reasonable to envision that the nucleoside antioxidant will be a novel topic in the research of both nucleosides and antioxidants.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
3
|
Berney M, Fay EM, Doherty W, Deering JJ, Dürr EM, Ferguson S, McGouran JF. Zinc-Binding Oligonucleotide Backbone Modifications for Targeting a DNA-Processing Metalloenzyme. Chembiochem 2024; 25:e202400528. [PMID: 39023512 DOI: 10.1002/cbic.202400528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
A series of chemically-modified oligonucleotides for targeting the DNA repair nuclease SNM1A have been designed and synthesised. Each oligonucleotide contains a modified internucleotide linkage designed to both mimic the native phosphodiester backbone and chelate to the catalytic zinc ion(s) in the SNM1A active site. Dinucleoside phosphoramidites containing urea, squaramide, sulfanylacetamide, and sulfinylacetamide linkages were prepared and employed successfully in solid-phase oligonucleotide synthesis. All the modified oligonucleotides were found to interact with SNM1A in a gel electrophoresis-based assay, demonstrating the first examples of inhibition of DNA damage repair enzymes for many of these groups in oligonucleotides. One strand containing a sulfinylacetamide-linkage was found to have the strongest interaction with SNM1A and was further tested in a real-time fluorescence assay. This allowed an IC50 value of 231 nM to be determined, significantly lower than previously reported substrate-mimics targeting this enzyme. It is expected that these modified oligonucleotides will serve as a scaffold for the future development of fluorescent or biotin-labelled probes for the in vivo study of DNA repair processes.
Collapse
Affiliation(s)
- Mark Berney
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ellen M Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - William Doherty
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - John J Deering
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Eva-Maria Dürr
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Steven Ferguson
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| | - Joanna F McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| |
Collapse
|
4
|
Bielinski M, Henderson LR, Yosaatmadja Y, Swift LP, Baddock HT, Bowen MJ, Brem J, Jones PS, McElroy SP, Morrison A, Speake M, van Boeckel S, van Doornmalen E, van Groningen J, van den Hurk H, Gileadi O, Newman JA, McHugh PJ, Schofield CJ. Cell-active small molecule inhibitors validate the SNM1A DNA repair nuclease as a cancer target. Chem Sci 2024; 15:8227-8241. [PMID: 38817593 PMCID: PMC11134331 DOI: 10.1039/d4sc00367e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/30/2024] [Indexed: 06/01/2024] Open
Abstract
The three human SNM1 metallo-β-lactamase fold nucleases (SNM1A-C) play key roles in DNA damage repair and in maintaining telomere integrity. Genetic studies indicate that they are attractive targets for cancer treatment and to potentiate chemo- and radiation-therapy. A high-throughput screen for SNM1A inhibitors identified diverse pharmacophores, some of which were shown by crystallography to coordinate to the di-metal ion centre at the SNM1A active site. Structure and turnover assay-guided optimization enabled the identification of potent quinazoline-hydroxamic acid containing inhibitors, which bind in a manner where the hydroxamic acid displaces the hydrolytic water and the quinazoline ring occupies a substrate nucleobase binding site. Cellular assays reveal that SNM1A inhibitors cause sensitisation to, and defects in the resolution of, cisplatin-induced DNA damage, validating the tractability of MBL fold nucleases as cancer drug targets.
Collapse
Affiliation(s)
- Marcin Bielinski
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Lucy R Henderson
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital Oxford OX3 9DS UK
| | - Yuliana Yosaatmadja
- Centre for Medicines Discovery, NDM Research Building, University of Oxford Old Road Campus Research Building, Roosevelt Drive Oxford OX3 7DQ UK
| | - Lonnie P Swift
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital Oxford OX3 9DS UK
| | - Hannah T Baddock
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital Oxford OX3 9DS UK
| | - Matthew J Bowen
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Philip S Jones
- University of Dundee, European Screening Centre Newhouse ML1 5UH UK
| | - Stuart P McElroy
- University of Dundee, European Screening Centre Newhouse ML1 5UH UK
| | - Angus Morrison
- University of Dundee, European Screening Centre Newhouse ML1 5UH UK
| | - Michael Speake
- University of Dundee, European Screening Centre Newhouse ML1 5UH UK
| | | | | | | | | | - Opher Gileadi
- Centre for Medicines Discovery, NDM Research Building, University of Oxford Old Road Campus Research Building, Roosevelt Drive Oxford OX3 7DQ UK
| | - Joseph A Newman
- Centre for Medicines Discovery, NDM Research Building, University of Oxford Old Road Campus Research Building, Roosevelt Drive Oxford OX3 7DQ UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital Oxford OX3 9DS UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
5
|
Arbour CA, Fay EM, McGouran JF, Imperiali B. Deploying solid-phase synthesis to access thymine-containing nucleoside analogs that inhibit DNA repair nuclease SNM1A. Org Biomol Chem 2023; 21:5873-5879. [PMID: 37417819 PMCID: PMC10529636 DOI: 10.1039/d3ob00836c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Nucleoside analogs show useful bioactive properties. A versatile solid-phase synthesis that readily enables the diversification of thymine-containing nucleoside analogs is presented. The utility of the approach is demonstrated with the preparation of a library of compounds for analysis with SNM1A, a DNA damage repair enzyme that contributes to cytotoxicity. This exploration provided the most promising nucleoside-derived inhibitor of SNM1A to date with an IC50 of 12.3 μM.
Collapse
Affiliation(s)
- Christine A Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ellen M Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., Dublin 2, Ireland
| | - Joanna F McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., Dublin 2, Ireland
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Fay EM, Newton A, Berney M, El‐Sagheer AH, Brown T, McGouran JF. Two-Step Validation Approach for Tools To Study the DNA Repair Enzyme SNM1A. Chembiochem 2023; 24:e202200756. [PMID: 36917742 PMCID: PMC10962688 DOI: 10.1002/cbic.202200756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023]
Abstract
We report a two-step validation approach to evaluate the suitability of metal-binding groups for targeting DNA damage-repair metalloenzymes using model enzyme SNM1A. A fragment-based screening approach was first used to identify metal-binding fragments suitable for targeting the enzyme. Effective fragments were then incorporated into oligonucleotides using the copper-catalysed azide-alkyne cycloaddition reaction. These modified oligonucleotides were recognised by SNM1A at >1000-fold lower concentrations than their fragment counterparts. The exonuclease SNM1A is a key enzyme involved in the repair of interstrand crosslinks, a highly cytotoxic form of DNA damage. However, SNM1A and other enzymes of this class are poorly understood, as there is a lack of tools available to facilitate their study. Our novel approach of incorporating functional fragments into oligonucleotides is broadly applicable to generating modified oligonucleotide structures with high affinity for DNA damage-repair enzymes.
Collapse
Affiliation(s)
- Ellen M. Fay
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| | - Ailish Newton
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| | - Mark Berney
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| | - Afaf H. El‐Sagheer
- Department of ChemistryUniversity of OxfordMansfield RoadOX1 3TAOxfordUK
| | - Tom Brown
- Department of ChemistryUniversity of OxfordMansfield RoadOX1 3TAOxfordUK
| | - Joanna F. McGouran
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| |
Collapse
|
7
|
Urrutia KM, Xu W, Zhao L. The 5′-phosphate enhances the DNA-binding and exonuclease activities of human mitochondrial genome maintenance nuclease 1 (MGME1). J Biol Chem 2022; 298:102306. [PMID: 35934053 PMCID: PMC9460513 DOI: 10.1016/j.jbc.2022.102306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022] Open
Abstract
In higher eukaryotes, mitochondria play multiple roles in energy production, signaling, and biosynthesis. Mitochondria possess multiple copies of mitochondrial DNA (mtDNA), which encodes 37 genes that are essential for mitochondrial and cellular function. When mtDNA is challenged by endogenous and exogenous factors, mtDNA undergoes repair, degradation, and compensatory synthesis. mtDNA degradation is an emerging pathway in mtDNA damage response and maintenance. A key factor involved is the human mitochondrial genome maintenance exonuclease 1 (MGME1). Despite previous biochemical and functional studies, controversies exist regarding the polarity of MGME1-mediated DNA cleavage. Also, how DNA sequence may affect the activities of MGME1 remains elusive. Such information is not only fundamental to the understanding of MGME1 but critical for deciphering the mechanism of mtDNA degradation. Herein, we use quantitative assays to examine the effects of substrate structure and sequence on the DNA-binding and enzymatic activities of MGME1. We demonstrate that MGME1 binds to and cleaves from the 5′-end of single-stranded DNA substrates, especially in the presence of 5′-phosphate, which plays an important role in DNA binding and optimal cleavage by MGME1. In addition, MGME1 tolerates certain modifications at the terminal end, such as a 5′-deoxyribosephosphate intermediate formed in base excision repair. We show that MGME1 processes different sequences with varying efficiencies, with dT and dC sequences being the most and least efficiently digested, respectively. Our results provide insights into the enzymatic properties of MGME1 and a rationale for the coordination of MGME1 with the 3′–5′ exonuclease activity of DNA polymerase γ in mtDNA degradation.
Collapse
Affiliation(s)
- Kathleen M Urrutia
- Department of Chemistry, University of California, Riverside, Riverside, California, USA
| | - Wenyan Xu
- Department of Chemistry, University of California, Riverside, Riverside, California, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, California, USA; Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California, USA.
| |
Collapse
|