1
|
Hommel K, Kauth AMA, Kirupakaran A, Theisen S, Hayduk M, Niemeyer FC, Beuck C, Zadmard R, Bayer P, Jan Ravoo B, Voskuhl J, Schrader T, Knauer SK. Functional Linkers Support Targeting of Multivalent Tweezers to Taspase1. Chemistry 2024; 30:e202401542. [PMID: 38958349 DOI: 10.1002/chem.202401542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Taspase 1 is a unique protease not only pivotal for embryonic development but also implicated in leukemias and solid tumors. As such, this enzyme is a promising while still challenging therapeutic target, and with its protein structure featuring a flexible loop preceding the active site a versatile model system for drug development. Supramolecular ligands provide a promising complementary approach to traditional small-molecule inhibitors. Recently, the multivalent arrangement of molecular tweezers allowed the successful targeting of Taspase 1's surface loop. With this study we now want to take the next logic step und utilize functional linker systems that not only allow the implementation of novel properties but also engage in protein surface binding. Consequently, we chose two different linker types differing from the original divalent assembly: a backbone with aggregation-induced emission (AIE) properties to enable monitoring of binding and a calix[4]arene scaffold initially pre-positioning the supramolecular binding units. With a series of four AIE-equipped ligands with stepwise increased valency we demonstrated that the functionalized AIE linkers approach ligand binding affinities in the nanomolar range and allow efficient proteolytic inhibition of Taspase 1. Moreover, implementation of the calix[4]arene backbone further enhanced the ligands' inhibitory potential, pointing to a specific linker contribution.
Collapse
Affiliation(s)
- Katrin Hommel
- Molecular Biology II, Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Alisa-Maite A Kauth
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Abbna Kirupakaran
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Sebastian Theisen
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Matthias Hayduk
- Faculty of Chemistry (Organic Chemistry II), Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Felix C Niemeyer
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Reza Zadmard
- Department of Organic Chemistry, Chemistry and Chemical Engineering Research Center of Iran (CCERCI), P. O. Box 14335-186, Tehran, Iran
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry II), Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Thomas Schrader
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Shirley K Knauer
- Molecular Biology II, Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| |
Collapse
|
2
|
Seiler T, Lennartz A, Klein K, Hommel K, Figueroa Bietti A, Hadrovic I, Kollenda S, Sager J, Beuck C, Chlosta E, Bayer P, Juul-Madsen K, Vorup-Jensen T, Schrader T, Epple M, Knauer SK, Hartmann L. Potentiating Tweezer Affinity to a Protein Interface with Sequence-Defined Macromolecules on Nanoparticles. Biomacromolecules 2023; 24:3666-3679. [PMID: 37507377 DOI: 10.1021/acs.biomac.3c00393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Survivin, a well-known member of the inhibitor of apoptosis protein family, is upregulated in many cancer cells, which is associated with resistance to chemotherapy. To circumvent this, inhibitors are currently being developed to interfere with the nuclear export of survivin by targeting its protein-protein interaction (PPI) with the export receptor CRM1. Here, we combine for the first time a supramolecular tweezer motif, sequence-defined macromolecular scaffolds, and ultrasmall Au nanoparticles (us-AuNPs) to tailor a high avidity inhibitor targeting the survivin-CRM1 interaction. A series of biophysical and biochemical experiments, including surface plasmon resonance measurements and their multivalent evaluation by EVILFIT, reveal that for divalent macromolecular constructs with increasing linker distance, the longest linkers show superior affinity, slower dissociation, as well as more efficient PPI inhibition. As a drawback, these macromolecular tweezer conjugates do not enter cells, a critical feature for potential applications. The problem is solved by immobilizing the tweezer conjugates onto us-AuNPs, which enables efficient transport into HeLa cells. On the nanoparticles, the tweezer valency rises from 2 to 16 and produces a 100-fold avidity increase. The hierarchical combination of different scaffolds and controlled multivalent presentation of supramolecular binders was the key to the development of highly efficient survivin-CRM1 competitors. This concept may also be useful for other PPIs.
Collapse
Affiliation(s)
- Theresa Seiler
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, Duesseldorf 40225, Germany
| | - Annika Lennartz
- Department for Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Universitaetsstrasse 5, Essen 45117, Germany
| | - Kai Klein
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, Essen 45117, Germany
| | - Katrin Hommel
- Department for Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Universitaetsstrasse 5, Essen 45117, Germany
| | - Antonio Figueroa Bietti
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Inesa Hadrovic
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Sebastian Kollenda
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, Essen 45117, Germany
| | - Jonas Sager
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, Essen 45117, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Emilia Chlosta
- Department for Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Universitaetsstrasse 5, Essen 45117, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Kristian Juul-Madsen
- Department of Biomedicine, Aarhus University, Skou Building (1115), Høegh-Guldbergs Gade 10, DK-8000 Aarhus C, Denmark
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Aarhus University, Skou Building (1115), Høegh-Guldbergs Gade 10, DK-8000 Aarhus C, Denmark
| | - Thomas Schrader
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, Essen 45117, Germany
| | - Shirley K Knauer
- Department for Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Universitaetsstrasse 5, Essen 45117, Germany
| | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, Duesseldorf 40225, Germany
| |
Collapse
|
3
|
Saibu OA, Hammed SO, Oladipo OO, Odunitan TT, Ajayi TM, Adejuyigbe AJ, Apanisile BT, Oyeneyin OE, Oluwafemi AT, Ayoola T, Olaoba OT, Alausa AO, Omoboyowa DA. Protein-protein interaction and interference of carcinogenesis by supramolecular modifications. Bioorg Med Chem 2023; 81:117211. [PMID: 36809721 DOI: 10.1016/j.bmc.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Protein-protein interactions (PPIs) are essential in normal biological processes, but they can become disrupted or imbalanced in cancer. Various technological advancements have led to an increase in the number of PPI inhibitors, which target hubs in cancer cell's protein networks. However, it remains difficult to develop PPI inhibitors with desired potency and specificity. Supramolecular chemistry has only lately become recognized as a promising method to modify protein activities. In this review, we highlight recent advances in the use of supramolecular modification approaches in cancer therapy. We make special note of efforts to apply supramolecular modifications, such as molecular tweezers, to targeting the nuclear export signal (NES), which can be used to attenuate signaling processes in carcinogenesis. Finally, we discuss the strengths and weaknesses of using supramolecular approaches to targeting PPIs.
Collapse
Affiliation(s)
- Oluwatosin A Saibu
- Department of Environmental Toxicology, Universitat Duisburg-Essen, NorthRhine-Westphalia, Germany
| | - Sodiq O Hammed
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Tope T Odunitan
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Temitope M Ajayi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Aderonke J Adejuyigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Boluwatife T Apanisile
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oluwatoba E Oyeneyin
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Adenrele T Oluwafemi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Tolulope Ayoola
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Olamide T Olaoba
- Department of Molecular Pathogenesis and Therapeutics, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Abdullahi O Alausa
- Department of Molecular Biology and Biotechnology, ITMO University, St Petersburg, Russia
| | - Damilola A Omoboyowa
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| |
Collapse
|
4
|
Höing A, Struth R, Beuck C, Rafieiolhosseini N, Hoffmann D, Stauber RH, Bayer P, Niemeyer J, Knauer SK. Dual activity inhibition of threonine aspartase 1 by a single bisphosphate ligand. RSC Adv 2022; 12:34176-34184. [PMID: 36545626 PMCID: PMC9709806 DOI: 10.1039/d2ra06019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Therapy resistance remains a challenge for the clinics. Here, dual-active chemicals that simultaneously inhibit independent functions in disease-relevant proteins are desired though highly challenging. As a model, we here addressed the unique protease threonine aspartase 1, involved in various cancers. We hypothesized that targeting basic residues in its bipartite nuclear localization signal (NLS) by precise bisphosphate ligands inhibits additional steps required for protease activity. We report the bisphosphate anionic bivalent inhibitor 11d, selectively binding to the basic NLS cluster (220KKRR223) with high affinity (K D = 300 nM), thereby disrupting its interaction and function with Importin α (IC50 = 6 μM). Cell-free assays revealed that 11d additionally affected the protease's catalytic substrate trans-cleavage activity. Importantly, functional assays comprehensively demonstrated that 11d inhibited threonine aspartase 1 also in living tumor cells. We demonstrate for the first time that intracellular interference with independent key functions in a disease-relevant protein by an inhibitor binding to a single site is possible.
Collapse
Affiliation(s)
- Alexander Höing
- Molecular Biology II, Center of Medical Biotechnology (ZMB)/Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| | - Robin Struth
- Organic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7 45141 Essen Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| | - Neda Rafieiolhosseini
- Bioinformatics and Computational Biophysics, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology/ENT, University Medical Center Mainz (UMM) Langenbeckstrasse 1 55101 Mainz Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| | - Jochen Niemeyer
- Organic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7 45141 Essen Germany
| | - Shirley K Knauer
- Molecular Biology II, Center of Medical Biotechnology (ZMB)/Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| |
Collapse
|
5
|
Höing A, Kirupakaran A, Beuck C, Pörschke M, Niemeyer FC, Seiler T, Hartmann L, Bayer P, Schrader T, Knauer SK. Recognition of a Flexible Protein Loop in Taspase 1 by Multivalent Supramolecular Tweezers. Biomacromolecules 2022; 23:4504-4518. [PMID: 36200481 DOI: 10.1021/acs.biomac.2c00652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many natural proteins contain flexible loops utilizing well-defined complementary surface regions of their interacting partners and usually undergo major structural rearrangements to allow perfect binding. The molecular recognition of such flexible structures is still highly challenging due to the inherent conformational dynamics. Notably, protein-protein interactions are on the other hand characterized by a multivalent display of complementary binding partners to enhance molecular affinity and specificity. Imitating this natural concept, we here report the rational design of advanced multivalent supramolecular tweezers that allow addressing two lysine and arginine clusters on a flexible protein surface loop. The protease Taspase 1, which is involved in cancer development, carries a basic bipartite nuclear localization signal (NLS) and thus interacts with Importin α, a prerequisite for proteolytic activation. Newly established synthesis routes enabled us to covalently fuse several tweezer molecules into multivalent NLS ligands. The resulting bi- up to pentavalent constructs were then systematically compared in comprehensive biochemical assays. In this series, the stepwise increase in valency was robustly reflected by the ligands' gradually enhanced potency to disrupt the interaction of Taspase 1 with Importin α, correlated with both higher binding affinity and inhibition of proteolytic activity.
Collapse
Affiliation(s)
- Alexander Höing
- Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Abbna Kirupakaran
- Institute of Organic Chemistry I, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Marius Pörschke
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Felix C Niemeyer
- Institute of Organic Chemistry I, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Theresa Seiler
- Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Laura Hartmann
- Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Thomas Schrader
- Institute of Organic Chemistry I, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Shirley K Knauer
- Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|