1
|
Dubey Y, Kanvah S. Multi-organelle imaging with dye combinations: targeting the ER, mitochondria, and plasma membrane. J Mater Chem B 2025; 13:2446-2456. [PMID: 39815810 DOI: 10.1039/d4tb02456g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Multi-organelle imaging allows the visualization of multiple organelles within a single cell, allowing monitoring of the cellular processes in real-time using various fluorescent probes that target specific organelles. However, the limited availability of fluorophores and potential spectral overlap present challenges, and many optimized designs are still in nascency. In this work, we synthesized various sulfonamide-based organic fluorophores that emit in the blue, green, and red regions to target different sub-cellular organelles. By utilizing binary mixtures, we successfully demonstrated multiple imaging of the sub-cellular organelles, such as the endoplasmic reticulum, plasma membrane, and mitochondria in HeLa cells, and dual imaging of the endoplasmic reticulum and mitochondria in A549 lung carcinoma cells with the help of blue and red-emitting fluorophores without any spectral spillover. Additionally, these photostable probes allowed precise cell staining and differentiation, structural features, and live cell dynamics. This approach of utilizing fluorescent mixtures can gain traction for various cellular studies and investigations.
Collapse
Affiliation(s)
- Yogesh Dubey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India.
| |
Collapse
|
2
|
Haritha Kumari A, Jagadesh Kumar J, Sharadha N, Rama Krishna G, Jannapu Reddy R. Visible-Light-Induced Radical Sulfonylative-Cyclization Cascade of 1,6-Enynol Derivatives with Sulfinic Acids: A Sustainable Approach for the Synthesis of 2,3-Disubstituted Benzoheteroles. CHEMSUSCHEM 2024; 17:e202400227. [PMID: 38650432 DOI: 10.1002/cssc.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Benzoheteroles are promising structural scaffolds in the realm of medicinal chemistry, but sustainable synthesis of 2,3-difunctionalized benzoheterole derivatives is still in high demand. Indeed, we have conceptually rationalized the intrinsic reactivity of propargylic-enyne systems for the flexible construction of 2,3-disubstituted benzoheteroles through radical sulfonylative-cyclization cascade under organophotoredox catalysis. We hereby report an efficient visible-light-induced sulfonyl radical-triggered cyclization of 1,6-enynols with sulfinic acids under the dual catalytic influence of 4CzIPN and NiBr2⋅DME, which led to the formation of 2,3-disubstituted benzoheteroles in good to high yields. Additionally, the Rose Bengal (RB)-catalyzed radical sulfonylative-cycloannulation of acetyl-derived 1,6-enynols with sulfinic acids under blue LED irradiation allowed to access 3-(E-styryl)-derived benzofurans and benzothiophenes in moderate to good yields. The scope and limitations of the present strategies were successfully established using different classes of 1,6-enynols and sulfinic acids bearing various sensitive functional groups, yielding the desired products in a highly stereoselective fashion. Plausible mechanistic pathways were also proposed based on the current experimental and control experiments.
Collapse
Affiliation(s)
- Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500 007, India
| | - Jangam Jagadesh Kumar
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500 007, India
| | - Nunavath Sharadha
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500 007, India
| | - Gamidi Rama Krishna
- Centre for X-ray Crystallography, CSIR-National Chemical Laboratory, Pune, 411 008, India
| | - Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500 007, India
| |
Collapse
|
3
|
Dumazer A, Gómez-Santacana X, Malhaire F, Jopling C, Maurel D, Lebon G, Llebaria A, Goudet C. Optical Control of Adenosine A 2A Receptor Using Istradefylline Photosensitivity. ACS Chem Neurosci 2024; 15:645-655. [PMID: 38275568 DOI: 10.1021/acschemneuro.3c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
In recent years, there has been growing interest in the potential therapeutic use of inhibitors of adenosine A2A receptors (A2AR) for the treatment of neurodegenerative diseases and cancer. Nevertheless, the widespread expression of A2AR throughout the body emphasizes the importance of temporally and spatially selective ligands. Photopharmacology is an emerging strategy that utilizes photosensitive ligands to attain high spatiotemporal precision and regulate the function of biomolecules using light. In this study, we combined photochemistry and cellular and in vivo photopharmacology to investigate the light sensitivity of the FDA-approved antagonist istradefylline and its potential use as an A2AR photopharmacological tool. Our findings reveal that istradefylline exhibits rapid trans-to-cis isomerization under near-UV light, and prolonged exposure results in the formation of photocycloaddition products. We demonstrate that exposure to UV light triggers a time-dependent decrease in the antagonistic activity of istradefylline in A2AR-expressing cells and enables real-time optical control of A2AR signaling in living cells and zebrafish. Together, these data demonstrate that istradefylline is a photoinactivatable A2AR antagonist and that this property can be utilized to perform photopharmacological experiments in living cells and animals.
Collapse
Affiliation(s)
- Anaëlle Dumazer
- IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Xavier Gómez-Santacana
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Fanny Malhaire
- IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Chris Jopling
- IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Damien Maurel
- IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Guillaume Lebon
- IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Cyril Goudet
- IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| |
Collapse
|
4
|
Tchekalarova J, Todorov P, Stoyanova T, Atanasova M. Comparative Analysis of Anticonvulsant Activity of Trans and Cis 5,5'-Diphenylhydantoin Schiff Bases. Int J Mol Sci 2023; 24:16071. [PMID: 38003260 PMCID: PMC10671424 DOI: 10.3390/ijms242216071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Recently, the four 5,5'-diphenylhydantoin Schiff bases, possessing different aromatic species (SB1-Ph, SB2-Ph, SB3-Ph and SB4-Ph) were synthesized, characterized, and evaluated for anticonvulsant activity in combination with phenytoin. In the present study, the SB1-Ph and SB4-Ph compounds were selected, based on their anticonvulsant potency, and compared with their cis isomers, prepared after a one-hour exposure to the UV source, for their anticonvulsant potency in the maximal electroshock (MES) test and the kainate (KA)-induced status epilepticus (SE) test in mice. In the MES test, the cisSB1-Ph compound exhibited superior to phenytoin and trans isomer activity in the three tested doses, while the cisSB4-Ph compound entirely suppressed the electroshock-induced seizure spread at the highest dose of 40 mg/kg. Pretreatment with the cisSB1-Ph compound and the cisSB4-Ph at the doses of 40 mg/kg, respectively, for seven days, significantly attenuated the severity of KA SE compared to the matched control group pretreated with a vehicle, while phenytoin was ineffective in this test. The cisSB4-Ph but not the cisSB1-Ph demonstrated an antioxidant effect against the KA-induced SE in the hippocampus. Our results suggest that trans-cis conversion of 5,5'-diphenylhydantoin Schiff bases has potential against seizure spread in the MES test and mitigated the KA-induced SE. The antioxidant potency of cisSB4-Ph might be associated with its efficacy in mitigating the SE.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Petar Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Tsveta Stoyanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Milena Atanasova
- Department of Biology, Medical University of Pleven, 5800 Pleven, Bulgaria;
| |
Collapse
|
5
|
Inniss NL, Kozic J, Li F, Rosas-Lemus M, Minasov G, Rybáček J, Zhu Y, Pohl R, Shuvalova L, Rulíšek L, Brunzelle JS, Bednárová L, Štefek M, Kormaník JM, Andris E, Šebestík J, Li ASM, Brown PJ, Schmitz U, Saikatendu K, Chang E, Nencka R, Vedadi M, Satchell KJ. Discovery of a Druggable, Cryptic Pocket in SARS-CoV-2 nsp16 Using Allosteric Inhibitors. ACS Infect Dis 2023; 9:1918-1931. [PMID: 37728236 PMCID: PMC10961098 DOI: 10.1021/acsinfecdis.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
A collaborative, open-science team undertook discovery of novel small molecule inhibitors of the SARS-CoV-2 nsp16-nsp10 2'-O-methyltransferase using a high throughput screening approach with the potential to reveal new inhibition strategies. This screen yielded compound 5a, a ligand possessing an electron-deficient double bond, as an inhibitor of SARS-CoV-2 nsp16 activity. Surprisingly, X-ray crystal structures revealed that 5a covalently binds within a previously unrecognized cryptic pocket near the S-adenosylmethionine binding cleft in a manner that prevents occupation by S-adenosylmethionine. Using a multidisciplinary approach, we examined the mechanism of binding of compound 5a to the nsp16 cryptic pocket and developed 5a derivatives that inhibited nsp16 activity and murine hepatitis virus replication in rat lung epithelial cells but proved cytotoxic to cell lines canonically used to examine SARS-CoV-2 infection. Our study reveals the druggability of this newly discovered SARS-CoV-2 nsp16 cryptic pocket, provides novel tool compounds to explore the site, and suggests a new approach for discovery of nsp16 inhibition-based pan-coronavirus therapeutics through structure-guided drug design.
Collapse
Affiliation(s)
- Nicole L. Inniss
- Department of Microbiology-Immunology and Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, 60611, United States
| | - Ján Kozic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, 160 00, Czech Republic
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Monica Rosas-Lemus
- Department of Microbiology-Immunology and Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, 60611, United States
| | - George Minasov
- Department of Microbiology-Immunology and Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, 60611, United States
| | - Jiří Rybáček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, 160 00, Czech Republic
| | - Yingjie Zhu
- WuXi AppTec Co., Ltd, China (Shanghai) Pilot Free Trade Zone, Shanghai, 201308, China
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, 160 00, Czech Republic
| | - Ludmilla Shuvalova
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, 60611, United States
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, 160 00, Czech Republic
| | - Joseph S. Brunzelle
- Northwestern Synchrotron Research Center, Life Sciences Collaborative Access Team, Northwestern University, Argonne, IL, 60439, United States
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, 160 00, Czech Republic
| | - Milan Štefek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, 160 00, Czech Republic
| | - Ján Michael Kormaník
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, 160 00, Czech Republic
| | - Erik Andris
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, 160 00, Czech Republic
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, 160 00, Czech Republic
| | - Alice Shi Ming Li
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Uli Schmitz
- Structural Chemistry, Gilead Pharmaceuticals, San Mateo, CA, 94404, United States
| | - Kumar Saikatendu
- Takeda Development Center Americas, Inc., San Diego, CA, 92121, United States
| | - Edcon Chang
- Takeda Development Center Americas, Inc., San Diego, CA, 92121, United States
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, 160 00, Czech Republic
| | - Masoud Vedadi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Karla J.F. Satchell
- Department of Microbiology-Immunology and Center for Structural Biology of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, 60611, United States
| |
Collapse
|
6
|
Putralis R, Korotkaja K, Kaukulis M, Rudevica Z, Jansons J, Nilova O, Rucins M, Krasnova L, Domracheva I, Plotniece M, Pajuste K, Sobolev A, Rumnieks F, Bekere L, Zajakina A, Plotniece A, Duburs G. Styrylpyridinium Derivatives for Fluorescent Cell Imaging. Pharmaceuticals (Basel) 2023; 16:1245. [PMID: 37765053 PMCID: PMC10535741 DOI: 10.3390/ph16091245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
A set of styrylpyridinium (SP) compounds was synthesised in order to study their spectroscopic and cell labelling properties. The compounds comprised different electron donating parts (julolidine, p-dimethylaminophenyl, p-methoxyphenyl, 3,4,5-trimethoxyphenyl), conjugated linkers (vinyl, divinyl), and an electron-withdrawing N-alkylpyridinium part. Geminal or bis-compounds incorporating two styrylpyridinium (bis-SP) moieties at the 1,3-trimethylene unit were synthesised. Compounds comprising a divinyl linker and powerful electron-donating julolidine donor parts possessed intensive fluorescence in the near-infrared region (maximum at ~760 nm). The compounds had rather high cytotoxicity towards the cancerous cell lines HT-1080 and MH-22A; at the same time, basal cytotoxicity towards the NIH3T3 fibroblast cell line ranged from toxic to harmful. SP compound 6e had IC50 values of 1.0 ± 0.03 µg/mL to the cell line HT-1080 and 0.4 µg/mL to MH-22A; however, the basal toxicity LD50 was 477 mg/kg (harmful). The compounds showed large Stokes' shifts, including 195 nm for 6a,b, 240 nm for 6e, and 325 and 352 nm for 6d and 6c, respectively. The highest photoluminescence quantum yield (PLQY) values were observed for 6a,b, which were 15.1 and 12.2%, respectively. The PLQY values for the SP derivatives 6d,e (those with a julolidinyl moiety) were 0.5 and 0.7%, respectively. Cell staining with compound 6e revealed a strong fluorescent signal localised in the cell cytoplasm, whereas the cell nuclei were not stained. SP compound 6e possessed self-assembling properties and formed liposomes with an average diameter of 118 nm. The obtained novel data on near-infrared fluorescent probes could be useful for the development of biocompatible dyes for biomedical applications.
Collapse
Affiliation(s)
- Reinis Putralis
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, LV-1007 Riga, Latvia;
| | - Ksenija Korotkaja
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Martins Kaukulis
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
| | - Zhanna Rudevica
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Olga Nilova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Martins Rucins
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Laura Krasnova
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Ilona Domracheva
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Mara Plotniece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, LV-1007 Riga, Latvia;
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Felikss Rumnieks
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Laura Bekere
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Anna Zajakina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Aiva Plotniece
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, LV-1007 Riga, Latvia;
| | - Gunars Duburs
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| |
Collapse
|
7
|
Bhurta D, Hossain MM, Bhardwaj M, Showket F, Nandi U, Dar MJ, Bharate SB. Orally bioavailable styryl derivative of rohitukine-N-oxide inhibits CDK9/T1 and the growth of pancreatic cancer cells. Eur J Med Chem 2023; 258:115533. [PMID: 37302342 DOI: 10.1016/j.ejmech.2023.115533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/14/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
The chromone alkaloid is one of the classical pharmacophores for cyclin-dependent kinases (CDKs) and represents the first CDK inhibitor to reach clinical trials. Rohitukine (1), a chromone alkaloid isolated from Dysoxylum binectariferum inspired the discovery of several clinical candidates. The N-oxide derivative of rohitukine occurs naturally, with no reports on its biological activity. Herein, we report isolation, biological evaluation, and synthetic modification of rohitukine N-oxide for CDK9/T1 inhibition and antiproliferative activity in cancer cells. Rohitukine N-oxide (2) inhibits CDK9/T1 (IC50 7.6 μM) and shows antiproliferative activity in the colon and pancreatic cancer cells. The chloro-substituted styryl derivatives, 2b, and 2l, inhibit CDK9/T1 with IC50 values of 0.17 and 0.15 μM, respectively. These derivatives display cellular antiproliferative activity in HCT 116 (colon) and MIA PaCa-2 (pancreatic) cancer cells with GI50 values of 2.5-9.7 μM with excellent selectivity over HEK293 (embryonic kidney) cells. Both analogs induce cell death in MIA PaCa-2 cells via inducing intracellular ROS production, reducing mitochondrial membrane potential, and inducing apoptosis. These analogs are metabolically stable in liver microsomes and have a decent oral pharmacokinetics in BALB/c mice. The molecular modeling studies indicated their strong binding at the ATP-binding site of CDK7/H and CDK9/T1.
Collapse
Affiliation(s)
- Deendyal Bhurta
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Md Mehedi Hossain
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Mahir Bhardwaj
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Farheen Showket
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Utpal Nandi
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Mohd Jamal Dar
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India.
| |
Collapse
|
8
|
Roslan N, Halim KBA, Bunnori NM, Aluwi MFFM, Kassim K, Ngah N. In Silico Study of Thiourea Derivatives as Potential Epidermal Growth Factor Receptor Inhibitors. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2023; 22:453-472. [DOI: 10.1142/s2737416523500199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Over the years, the escalation of cancer cases has been linked to the resistance, less selectivity, and toxicity of available anticancer drugs to normal cells. Therefore, continuous efforts are necessary to find new anticancer drugs with high selectivity of epidermal growth factor receptor tyrosine kinase (EGFR-TK) as a therapeutic target. The EGFR-TK protein has a crucial role in cell proliferation and cancer progression. With about 30% of cancer cases involved with the protein, it has piqued the interest as a therapeutic target. The potential of theoretically designed thiourea derivatives as anticancer agents in this report was evaluated against EGFR-TK via in silico techniques, including molecular docking (AutoDock Vina), molecular dynamics simulations (GROMACS), pharmacokinetics, and drug-likeness properties (SwissADME and Molinspiration). New hybrid molecules of the thiourea derivative moiety were designed in this study based on the fragment-based drug discovery and linked with diverse pharmacophoric fragments with reported anticancer potential ([Formula: see text]) and the modification of the methyl position on phenyl ring ([Formula: see text]). These fragments include pyridine, thiophene, furan, pyrrole and styrene groups. Out of 15 compounds, compound 13 displayed the most potent inhibitory activity, with the lowest binding affinity in docking of [Formula: see text]8.7 kcal/mol compared to the positive control erlotinib of [Formula: see text]6.7 kcal/mol. Our molecular dynamics (MD) simulations revealed that molecule 13, comprising styrene and 2-methylphenyl substituents on [Formula: see text] and [Formula: see text], respectively, showed adequate compactness, uniqueness and satisfactory stability. Subsequently, the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties and drug-likeness properties also indicate that this theoretically designed inhibitor ( 13) is less toxic and contains high druggable properties. Thus, compound 13 could be promising against EGFR-TK.
Collapse
Affiliation(s)
- Norashikin Roslan
- Department of Chemistry, Kulliyah of Science, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
- Research Unit for Bioinformatics & Computational Biology (RUBIC), Kulliyah of Science, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Khairul Bariyyah Abd. Halim
- Department of Biotechnology, Kulliyah of Science, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
- Research Unit for Bioinformatics & Computational Biology (RUBIC), Kulliyah of Science, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Noraslinda Muhamad Bunnori
- Department of Biotechnology, Kulliyah of Science, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
- Research Unit for Bioinformatics & Computational Biology (RUBIC), Kulliyah of Science, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | | | - Karimah Kassim
- Institute of Sciences, Universiti Teknologi MARA, Shah Alam, 40450 Shah Alam, Selangor, Malaysia
| | - Nurziana Ngah
- Department of Chemistry, Kulliyah of Science, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
- Synthetic and Functional Materials Research Group (SYNTOF), Department of Chemistry, Kulliyyah of Science International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan Pahang, Malaysia
| |
Collapse
|
9
|
Rastija V, Vrandečić K, Ćosić J, Kanižai Šarić G, Majić I, Agić D, Šubarić D, Karnaš M, Bešlo D, Brahmbhatt H, Komar M. Antifungal Activities of Fluorinated Pyrazole Aldehydes on Phytopathogenic Fungi, and Their Effect on Entomopathogenic Nematodes, and Soil-Beneficial Bacteria. Int J Mol Sci 2023; 24:ijms24119335. [PMID: 37298285 DOI: 10.3390/ijms24119335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Fluoro-substituted pyrazoles have a wide range of biological activities, such as antibacterial, antiviral, and antifungal activities. The aim of this study was to evaluate the antifungal activities of fluorinated 4,5-dihydro-1H-pyrazole derivatives on four phytopathogenic fungi: Sclerotinia sclerotiorum, Macrophomina phaseolina, Fusarium oxysporum f. sp. lycopersici, and F. culmorum. Moreover, they were tested on two soil beneficial bacteria-Bacillus mycoides and Bradyrhizobium japonicum-as well as two entomopathogenic nematodes (EPNs)-Heterorhabditis bacteriophora and Steinernema feltiae. The molecular docking was performed on the three enzymes responsible for fungal growth, the three plant cell wall-degrading enzymes, and acetylcholinesterase (AChE). The most active compounds against fungi S. sclerotiorum were 2-chlorophenyl derivative (H9) (43.07% of inhibition) and 2,5-dimethoxyphenyl derivative (H7) (42.23% of inhibition), as well as H9 against F. culmorum (46.75% of inhibition). Compounds were shown to be safe for beneficial soil bacteria and nematodes, except for compound H9 on EPN H. bacteriophora (18.75% mortality), which also showed the strongest inhibition against AChE (79.50% of inhibition). The molecular docking study revealed that antifungal activity is possible through the inhibition of proteinase K, and nematicidal activity is possible through the inhibition of AChE. The fluorinated pyrazole aldehydes are promising components of future plant protection products that could be environmentally and toxicologically acceptable.
Collapse
Affiliation(s)
- Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Karolina Vrandečić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Jasenka Ćosić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Gabriella Kanižai Šarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Ivana Majić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Dejan Agić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Domagoj Šubarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Maja Karnaš
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Drago Bešlo
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Harshad Brahmbhatt
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, Franje Kuhača 20, 31000 Osijek, Croatia
| | - Mario Komar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University, Franje Kuhača 20, 31000 Osijek, Croatia
| |
Collapse
|
10
|
Wangngae S, Ngivprom U, Khrootkaew T, Worakaensai S, Lai RY, Kamkaew A. Cationic styryl dyes for DNA labelling and selectivity toward cancer cells and Gram-negative bacteria. RSC Adv 2023; 13:2115-2122. [PMID: 36712646 PMCID: PMC9832362 DOI: 10.1039/d2ra07601b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Fluorescence-based methods are important tools for the analysis of nucleic acids in vitro and in cells. In this study, two cationic cyanine-styryl derivatives were produced using a two-step synthesis. Their optical properties were evaluated in different solvents, and frontier molecular orbital theory was utilized to interpret the findings. The DNA binding of these molecules was investigated to show fluorescence intensification. The molecular docking of both dyes in DNA illustrated the relevance of the electrostatic interaction between the quaternary ammonium of both dyes and the phosphate of the DNA backbone. Last but not least, applications of the synthesized styryl dyes were demonstrated to be selective towards cancer cells and particular kinds of bacteria.
Collapse
Affiliation(s)
- Sirilak Wangngae
- School of Chemistry, Institute of Science, Suranaree University of TechnologyNakhon Ratchasima30000Thailand
| | - Utumporn Ngivprom
- School of Chemistry, Institute of Science, Suranaree University of TechnologyNakhon Ratchasima30000Thailand,Center for Biomolecular Structure, Function and Application, Suranaree University of TechnologyNakhon Ratchasima30000Thailand
| | - Tunyawat Khrootkaew
- School of Chemistry, Institute of Science, Suranaree University of TechnologyNakhon Ratchasima30000Thailand
| | - Suphanida Worakaensai
- School of Chemistry, Institute of Science, Suranaree University of TechnologyNakhon Ratchasima30000Thailand,Center for Biomolecular Structure, Function and Application, Suranaree University of TechnologyNakhon Ratchasima30000Thailand
| | - Rung-Yi Lai
- School of Chemistry, Institute of Science, Suranaree University of TechnologyNakhon Ratchasima30000Thailand,Center for Biomolecular Structure, Function and Application, Suranaree University of TechnologyNakhon Ratchasima30000Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of TechnologyNakhon Ratchasima30000Thailand
| |
Collapse
|
11
|
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS. Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in Cancer Therapeutics and Inflammation. Int J Mol Sci 2022; 23:15765. [PMID: 36555406 PMCID: PMC9779495 DOI: 10.3390/ijms232415765] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the deadliest non communicable diseases. Numerous anticancer medications have been developed to target the molecular pathways driving cancer. However, there has been no discernible increase in the overall survival rate in cancer patients. Therefore, innovative chemo-preventive techniques and agents are required to supplement standard cancer treatments and boost their efficacy. Fruits and vegetables should be tapped into as a source of compounds that can serve as cancer therapy. Phytochemicals play an important role as sources of new medication in cancer treatment. Some synthetic and natural chemicals are effective for cancer chemoprevention, i.e., the use of exogenous medicine to inhibit or impede tumor development. They help regulate molecular pathways linked to the development and spread of cancer. They can enhance antioxidant status, inactivating carcinogens, suppressing proliferation, inducing cell cycle arrest and death, and regulating the immune system. While focusing on four main categories of plant-based anticancer agents, i.e., epipodophyllotoxin, camptothecin derivatives, taxane diterpenoids, and vinca alkaloids and their mode of action, we review the anticancer effects of phytochemicals, like quercetin, curcumin, piperine, epigallocatechin gallate (EGCG), and gingerol. We examine the different signaling pathways associated with cancer and how inflammation as a key mechanism is linked to cancer growth.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan
| | | | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|