1
|
Quancard J, Bach A, Borsari C, Craft R, Gnamm C, Guéret SM, Hartung IV, Koolman HF, Laufer S, Lepri S, Messinger J, Ritter K, Sbardella G, Unzue Lopez A, Willwacher MK, Cox B, Young RJ. The European Federation for Medicinal Chemistry and Chemical Biology (EFMC) Best Practice Initiative: Hit to Lead. ChemMedChem 2025; 20:e202400931. [PMID: 39957306 DOI: 10.1002/cmdc.202400931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/26/2025] [Indexed: 02/18/2025]
Abstract
The Hit to Lead (H2L) process is an integral part of contemporary drug discovery, encompassing the optimisation of validated Hit structures into Lead molecules. High quality leads build confidence, through activity and property profiles as well as preliminary biological data, which might include validating pharmacologic hypotheses along the way, indicating that further investment in the structure(s) and target would be worthwhile. Leads have line of sight to a development candidate and bring an understanding of what priorities Lead Optimisation should address. In this set of best practices, we detail the essential criteria that characterise a good lead, which include establishing SAR from analogues and assessing preliminary DMPK indicators, selectivity and early safety parameters. We highlight the importance of identifying liabilities of the lead series and demonstrating that each can be individually modulated whilst maintaining on target potency. We make the case for having physicochemical properties as critical optimisation parameters and how ligand efficiency metrics can enable this. Then we go over general tactics that can be used to convert hits into a lead series. These include essential steps that, when performed early, increase the chance of success such as deconstructive SAR, pharmacophore and bioactive conformation determination and scaffold optimisation. Finally, we suggest decision-making criteria to substantiate confidence in further investment or, as importantly, making a recommendation to cease further work on a series.
Collapse
Affiliation(s)
- Jean Quancard
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Anders Bach
- Department of Drug Design & Pharmacology, Faculty of Health & Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Chiara Borsari
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133, Milano, Italy
| | - Russell Craft
- Medicinal chemistry, Symeres, Kadijk 3, 9747 AT, Groningen, The Netherlands
| | - Christian Gnamm
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riß, Germany
| | - Stéphanie M Guéret
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, 43183, Gothenburg, Sweden
| | - Ingo V Hartung
- Medicinal Chemistry, Global R&D, Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Hannes F Koolman
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riß, Germany
| | - Stefan Laufer
- Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy & Biochemistry, Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72070, Tübingen, Germany
| | - Susan Lepri
- Discovery Chemistry, Johnson & Johnson Innovative Medicine, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Josef Messinger
- Medicine Design, Orionpharma, Orionintie 1, 02101, Espoo, Finland
| | - Kurt Ritter
- Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy & Biochemistry, Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72070, Tübingen, Germany
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Andrea Unzue Lopez
- Medicinal Chemistry, Global R&D, Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Marina K Willwacher
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riß, Germany
| | - Brian Cox
- School of Life Sciences, University of Sussex, Brighton, BN1 9RH, UK
| | | |
Collapse
|
2
|
Klahn P. How Should we Teach Medicinal Chemistry in Higher Education to Prepare Students for a Future Career as Medicinal Chemists and Drug Designers? - A Teacher's Perspective. ChemMedChem 2025; 20:e202400791. [PMID: 39564941 PMCID: PMC11733470 DOI: 10.1002/cmdc.202400791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 11/21/2024]
Abstract
In the recent two decades, the multidisciplinary field of medicinal chemistry has undergone several conceptual and technology-driven paradigm changes with significant impact on the skill set medicinal chemists need to acquire during their education. Considering the need for academic medicinal chemistry teaching, this article aims at identifying important skills, competences, and basic knowledge as general learning outcomes based on an analysis of the relevant stakeholders and concludes effective teaching strategies preparing students for a future career as medicinal chemists and drug designers.
Collapse
Affiliation(s)
- Philipp Klahn
- Department of Chemistry and Molecular BiologyDivision of Organic and Medicinal ChemistryUniversity of GothenburgMedicinaregatan 7B, NatriumGöteborg413 90Sweden
| |
Collapse
|
3
|
Mari M, Lanthier C, Proj M, Donckele EJ, Josa-Culleré L, Goncharenko K, Leroy S, Matagne B, McKenna SM, Borsari C. Boosting the Impact of EFMC Young Scientists Network Through the Creation of Working Groups. ChemMedChem 2024; 19:e202400134. [PMID: 38778632 DOI: 10.1002/cmdc.202400134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/20/2024] [Indexed: 05/25/2024]
Abstract
The establishment of the Young Scientists Network (YSN) by the European Federation for Medicinal Chemistry (EFMC) served as a proactive response to the evolving landscape of the scientific community. The YSN aims to assist early-career medicinal chemists and chemical biologists by responding to emerging themes, such as the influence of social media, shifts in gender balance within the scientific population, and evolving educational opportunities. The YSN also ensures that the upcoming generation of scientists actively contributes to shape the EFMC's strategic direction while addressing their specific needs. Initially conceived as a general concept, YSN has evolved into a proactive and dynamic team which demonstrates a tangible impact. To boost the impact of the YSN and involve additional motivated young scientists, we have adopted a novel organization, and structured the team in seven working groups (WGs). Herein, we will discuss the tasks of the different WGs as well as the activities planned for the near future. We believe this structure will strengthen the pivotal role YSN has already played in serving medicinal chemists and chemical biologists in Europe. The YSN now has the structure and motivation to pave the way to attract young scientists across Europe and to give them the stage within EFMC.
Collapse
Affiliation(s)
- Michele Mari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Scientific Campus "E. Mattei", Via Cà le Suore, 2/4, 61029, Urbino (PU), Italy
| | - Caroline Lanthier
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitplein 1, 2610, Antwerp, Belgium
| | - Matic Proj
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Askerceva 7, Ljubljana, 1000, Slovenia
- Analytical Development, Sandoz Global Development Center, Verovskova ulica 57, 1526, Ljubljana, Slovenia
| | - Etienne J Donckele
- Monte Rosa Therapeutics, WKL-136.3, Klybeckstrasse 191, 4057, Basel, Switzerland
| | - Laia Josa-Culleré
- Laboratory of Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | | | - Salomé Leroy
- LD Organisation sprl, Rue Michel de Ghelderode 33/2, 1348, Louvain-la-Neuve, Belgium
| | - Brieuc Matagne
- LD Organisation sprl, Rue Michel de Ghelderode 33/2, 1348, Louvain-la-Neuve, Belgium
| | - Sean M McKenna
- Leiden Academic Centre for Drug Research, Faculty of Science, University of Leiden, Einsteinweg 55, 2333, CC Leiden, The Netherlands
| | - Chiara Borsari
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| |
Collapse
|
4
|
Xue L, Jie CVML, Desrayaud S, Auberson YP. Developing Low Molecular Weight PET and SPECT Imaging Agents. ChemMedChem 2024; 19:e202400094. [PMID: 38634545 DOI: 10.1002/cmdc.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Imaging agents for positron emission tomography (PET) and single-photon emission computerized tomography (SPECT) have shown their utility in many situations, answering clinical questions related to drug development and medical considerations. The discovery and development of imaging agents follow a well-understood process, with variations related to available starting points and to the envisaged imaging application. This article describes the general development path leading from the expression of an imaging need and project initiation to a clinically usable imaging agent. The definition of the project rationale, the design and optimization of early leads, and the assessment of the imaging potential of an imaging agent candidate are followed by preclinical and clinical development activities that differ from those required for therapeutic agents. These include radiolabeling with a positron emitter and first-in-human clinical studies, to rapidly evaluate the ability of a new imaging agent to address the questions it was designed to answer.
Collapse
Affiliation(s)
- Lian Xue
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, Victoria 3052, Australia
| | - Caitlin V M L Jie
- ETH Zürich, Department of Chemistry and Applied Biosciences Center for Radiopharmaceutical Sciences, Vladimir-Prelog Weg 1-5/10, 8093, Zürich, Switzerland
| | - Sandrine Desrayaud
- Novartis Biomedical Research, In Vivo preclinical PK/ADME, Novartis campus, WSJ-352/6/73.01, 4056, Basel, Switzerland
| | - Yves P Auberson
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis campus, WSJ-88.10.100, 4056, Basel, Switzerland
| |
Collapse
|
5
|
Jalencas X, Berg H, Espeland LO, Sreeramulu S, Kinnen F, Richter C, Georgiou C, Yadrykhinsky V, Specker E, Jaudzems K, Miletić T, Harmel R, Gribbon P, Schwalbe H, Brenk R, Jirgensons A, Zaliani A, Mestres J. Design, quality and validation of the EU-OPENSCREEN fragment library poised to a high-throughput screening collection. RSC Med Chem 2024; 15:1176-1188. [PMID: 38665834 PMCID: PMC11042166 DOI: 10.1039/d3md00724c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 04/28/2024] Open
Abstract
The EU-OPENSCREEN (EU-OS) European Research Infrastructure Consortium (ERIC) is a multinational, not-for-profit initiative that integrates high-capacity screening platforms and chemistry groups across Europe to facilitate research in chemical biology and early drug discovery. Over the years, the EU-OS has assembled a high-throughput screening compound collection, the European Chemical Biology Library (ECBL), that contains approximately 100 000 commercially available small molecules and a growing number of thousands of academic compounds crowdsourced through our network of European and non-European chemists. As an extension of the ECBL, here we describe the computational design, quality control and use case screenings of the European Fragment Screening Library (EFSL) composed of 1056 mini and small chemical fragments selected from a substructure analysis of the ECBL. Access to the EFSL is open to researchers from both academia and industry. Using EFSL, eight fragment screening campaigns using different structural and biophysical methods have successfully identified fragment hits in the last two years. As one of the highlighted projects for antibiotics, we describe the screening by Bio-Layer Interferometry (BLI) of the EFSL, the identification of a 35 μM fragment hit targeting the beta-ketoacyl-ACP synthase 2 (FabF), its binding confirmation to the protein by X-ray crystallography (PDB 8PJ0), its subsequent rapid exploration of its surrounding chemical space through hit-picking of ECBL compounds that contain the fragment hit as a core substructure, and the final binding confirmation of two follow-up hits by X-ray crystallography (PDB 8R0I and 8R1V).
Collapse
Affiliation(s)
- Xavier Jalencas
- Research Group on Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute Parc de Recerca Biomèdica (PRBB), Doctor Aiguader 88 08003 Barcelona Spain
| | - Hannes Berg
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
- Chemical Biology, Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
| | - Ludvik Olai Espeland
- Department of Biomedicine, University of Bergen Jonas Lies Vei 91 5020 Bergen Norway
- Department of Chemistry, University of Bergen Allégaten 41 5007 Bergen Norway
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
- Chemical Biology, Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
| | - Franziska Kinnen
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
- Chemical Biology, Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
| | - Christian Richter
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
- Chemical Biology, Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
| | - Charis Georgiou
- Department of Biomedicine, University of Bergen Jonas Lies Vei 91 5020 Bergen Norway
| | | | - Edgar Specker
- EU-OPENSCREEN ERIC Robert-Rössle Straße 10 13125 Berlin Germany
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis Aizkraules 21 Riga LV-1006 Latvia
| | - Tanja Miletić
- EU-OPENSCREEN ERIC Robert-Rössle Straße 10 13125 Berlin Germany
| | - Robert Harmel
- EU-OPENSCREEN ERIC Robert-Rössle Straße 10 13125 Berlin Germany
| | - Phil Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) Schnackenburgallee 114 22525 Hamburg Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD) Theodor Stern Kai 7 60590 Frankfurt Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
- Chemical Biology, Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
- Instruct-ERIC Oxford House, Parkway Court, John Smith Drive Oxford OX4 2JY UK
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen Jonas Lies Vei 91 5020 Bergen Norway
- Computational Biology Unit, University of Bergen Thormøhlensgate 55 5008 Bergen Norway
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis Aizkraules 21 Riga LV-1006 Latvia
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) Schnackenburgallee 114 22525 Hamburg Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD) Theodor Stern Kai 7 60590 Frankfurt Germany
| | - Jordi Mestres
- Research Group on Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute Parc de Recerca Biomèdica (PRBB), Doctor Aiguader 88 08003 Barcelona Spain
- Institut de Quimica Computacional i Catalisi, Facultat de Ciencies, Universitat de Girona Maria Aurelia Capmany 69 17003 Girona Catalonia Spain
| |
Collapse
|
6
|
Feoli A, Sarno G, Castellano S, Sbardella G. DMSO-Related Effects on Ligand-Binding Properties of Lysine Methyltransferases G9a and SETD8. Chembiochem 2024; 25:e202300809. [PMID: 38205880 DOI: 10.1002/cbic.202300809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/12/2024]
Abstract
Being the standard solvent for preparing stock solutions of compounds for drug discovery, DMSO is always present in assay buffers in concentrations ranging from 0.1 % to 5 % (v/v). Even at the lowest concentrations, DMSO-containing solutions can have significant effects on individual proteins and possible pitfalls cannot be eliminated. Herein, we used two protein systems, the lysine methyltransferases G9a/KMT1 C and SETD8/KMT5 A, to study the effects of DMSO on protein stability and on the binding of the corresponding inhibitors, using different biophysical methods such as nano Differential Scanning Fluorimetry (nanoDSF), Differential Scanning Fluorimetry (DSF), microscale thermophoresis (MST), and surface plasmon resonance (SPR), all widely used in drug discovery screening campaigns. We demonstrated that the effects of DMSO are protein- and technique-dependent and cannot be predicted or extrapolated on the basis of previous studies using different proteins and/or different assays. Moreover, we showed that the application of orthogonal biophysical methods can lead to different binding affinity data, thus confirming the importance of using at least two different orthogonal assays in screening campaigns. This variability should be taken into account in the selection and characterization of hit compounds, in order to avoid data misinterpretation.
Collapse
Affiliation(s)
- Alessandra Feoli
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Giuliana Sarno
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II 132, I-84084, Fisciano, SA, Italy
| | - Sabrina Castellano
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Gianluca Sbardella
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
7
|
Cipriano A, Viviano M, Feoli A, Milite C, Sarno G, Castellano S, Sbardella G. NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. J Med Chem 2023; 66:11632-11655. [PMID: 37650225 PMCID: PMC10510401 DOI: 10.1021/acs.jmedchem.3c00770] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 09/01/2023]
Abstract
NADPH oxidases (NOXs) form a family of electron-transporting membrane enzymes whose main function is reactive oxygen species (ROS) generation. Strong evidence suggests that ROS produced by NOX enzymes are major contributors to oxidative damage under pathologic conditions. Therefore, blocking the undesirable actions of these enzymes is a therapeutic strategy for treating various pathological disorders, such as cardiovascular diseases, inflammation, and cancer. To date, identification of selective NOX inhibitors is quite challenging, precluding a pharmacologic demonstration of NOX as therapeutic targets in vivo. The aim of this Perspective is to furnish an updated outlook about the small-molecule NOX inhibitors described over the last two decades. Structures, activities, and in vitro/in vivo specificity are discussed, as well as the main biological assays used.
Collapse
Affiliation(s)
- Alessandra Cipriano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Monica Viviano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Alessandra Feoli
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Ciro Milite
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Giuliana Sarno
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Sabrina Castellano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Gianluca Sbardella
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|