1
|
Balaraman AK, Babu MA, Moglad E, Mandaliya V, Rekha MM, Gupta S, Prasad GVS, Kumari M, Chauhan AS, Ali H, Goyal K. Exosome-mediated delivery of CRISPR-Cas9: A revolutionary approach to cancer gene editing. Pathol Res Pract 2025; 266:155785. [PMID: 39708520 DOI: 10.1016/j.prp.2024.155785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/08/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Several molecular strategies based on targeted gene delivery systems have been developed in recent years; however, the CRISPR-Cas9 technology introduced a new era of targeted gene editing, precisely modifying oncogenes, tumor suppressor genes, and other regulatory genes involved in carcinogenesis. However, efficiently and safely delivering CRISPR-Cas9 to cancer cells across the cell membrane and the nucleus is still challenging. Using viral vectors and nanoparticles presents issues of immunogenicity, off-target effects, and low targeting affinity. Naturally, extracellular vesicles called exosomes have garnered the most attention as delivery vehicles in oncology-related CRISPR-Cas9 calls due to their biocompatibility, loading capacity, and inherent targeting features. The following review discusses the current progress in using exosomes to deliver CRISPR-Cas9 components, the approaches to load the CRISPR components into exosomes, and the modification of exosomes to increase stability and tumor-targeted delivery. We discuss the latest strategies in targeting recently accomplished in the exosome field, including modifying the surface of exosomes to enhance their internalization by cancer cells, as well as the measures taken to overcome the impacts of TME on delivery efficiency. Focusing on in vitro and in vivo experimentation, this review shows that exosome-mediated CRISPR-Cas9 can potentially treat cancer types, including pancreatic, lymphoma, and leukemia, for given gene targets. This paper compares exosome-mediated delivery and conventional vectors regarding safety, immune response, and targeting ability. Last but not least, we present the major drawbacks and potential development of the seemingly promising field of exosome engineering in gene editing, with references to CRISPR technologies and applications that may help make the target exosomes therapeutic in oncology.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Viralkumar Mandaliya
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India.
| |
Collapse
|
2
|
Xu K, Feng H, Zhao R, Huang Y. Targeting Tetraspanins at Cell Interfaces: Functional Modulation and Exosome-Based Drug Delivery for Precise Disease Treatment. ChemMedChem 2025; 20:e202400664. [PMID: 39415492 DOI: 10.1002/cmdc.202400664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
Tetraspanins are key players in various physiological and pathological processes, including malignancy, immune response, fertilization, and infectious disease. Affinity ligands targeting the interactions between tetraspanins and partner proteins are promising for modulating downstream signaling pathways, thus emerging as attractive candidates for interfering related biological functions. Due to the involvement in vesicle biogenesis and cargo trafficking, tetraspanins are also regarded as exosome markers, and become molecular targets for drug loading and delivery. Given the rapid development in these areas, this minireview focuses on recent advances in design and engineering of affinity binders toward tetraspanins including CD63, CD81, and CD9. Their mechanism of actions in modulating protein interactions at cell interfaces and treatment of malignant diseases are discussed. Strategies for constructing exosome-based drug delivery platforms are also reviewed, with emphasis on the important roles of tetraspanins and the affinity ligands. Finally, challenges and future development of tetraspanin-targeting therapy and exosomal drug delivery platforms are also discussed.
Collapse
Affiliation(s)
- Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huixia Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Molla G, Bitew M. Revolutionizing Personalized Medicine: Synergy with Multi-Omics Data Generation, Main Hurdles, and Future Perspectives. Biomedicines 2024; 12:2750. [PMID: 39767657 PMCID: PMC11673561 DOI: 10.3390/biomedicines12122750] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 01/11/2025] Open
Abstract
The field of personalized medicine is undergoing a transformative shift through the integration of multi-omics data, which mainly encompasses genomics, transcriptomics, proteomics, and metabolomics. This synergy allows for a comprehensive understanding of individual health by analyzing genetic, molecular, and biochemical profiles. The generation and integration of multi-omics data enable more precise and tailored therapeutic strategies, improving the efficacy of treatments and reducing adverse effects. However, several challenges hinder the full realization of personalized medicine. Key hurdles include the complexity of data integration across different omics layers, the need for advanced computational tools, and the high cost of comprehensive data generation. Additionally, issues related to data privacy, standardization, and the need for robust validation in diverse populations remain significant obstacles. Looking ahead, the future of personalized medicine promises advancements in technology and methodologies that will address these challenges. Emerging innovations in data analytics, machine learning, and high-throughput sequencing are expected to enhance the integration of multi-omics data, making personalized medicine more accessible and effective. Collaborative efforts among researchers, clinicians, and industry stakeholders are crucial to overcoming these hurdles and fully harnessing the potential of multi-omics for individualized healthcare.
Collapse
Affiliation(s)
- Getnet Molla
- College of Veterinary Medicine, Jigjiga University, Jigjiga P.O. Box 1020, Ethiopia
- Bio and Emerging Technology Institute (BETin), Addis Ababa P.O. Box 5954, Ethiopia;
| | - Molalegne Bitew
- Bio and Emerging Technology Institute (BETin), Addis Ababa P.O. Box 5954, Ethiopia;
| |
Collapse
|
4
|
Rice GE, Salomon C. IFPA Joan Hunt Senior Award in Placentology lecture: Extracellular vesicle signalling and pregnancy. Placenta 2024; 157:5-13. [PMID: 38458919 DOI: 10.1016/j.placenta.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
The field of extracellular vesicle (EV) signalling has the potential to transform our understanding of maternal-fetal communication and affords new opportunities for non-invasive prenatal testing and therapeutic intervention. EVs have been implicated in implantation, placentation, maternal adaptation to pregnancy and complications of pregnancy, being detectable in maternal circulation as early as 6 weeks of pregnancy. EVs of differing biogenic origin, composition and bioactivity are released by cells to maintain homoeostasis. Induction of EV signalling is associated with aberrant cellular metabolism and manifests as changes in EV concentrations and/or composition. Characterizing such changes affords opportunity to develop more informative diagnostics and efficacious interventions. To develop accurate and reliable EV-based diagnostics requires: identification of disease-associated biomarkers in specific EV subpopulations; and rapid, reproducible and scalable sample processing. Conventional isolation methods face challenges due to co-isolation of particles with similar physicochemical properties. Methods targeting specific vesicle-surface epitopes and compatible with automated platforms show promise. Effective EV therapeutics require precise targeting, achieved through genetic engineering to release EVs expressing cell-targeting ligands and carrying therapeutic payloads. Unlike cell-based therapies, this approach offers advantages including: low immunogenicity; stability; and long-term storage. Although EV diagnostics and therapeutics in reproductive biology are nascent, available technologies can enhance our understanding of EV signalling between mother and fetus, its role in pregnancies and improve outcomes.
Collapse
Affiliation(s)
- Gregory E Rice
- Inoviq Limited, Notting Hill, Australia; Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia.
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
5
|
Mousavi SM, Nezhad FF, Ghahramani Y, Binazadeh M, Javidi Z, Azhdari R, Gholami A, Omidifar N, Rahman MM, Chiang WH. Recent Advances in Bioactive Carbon Nanotubes Based on Polymer Composites for Biosensor Applications. Chem Biodivers 2024; 21:e202301288. [PMID: 38697942 DOI: 10.1002/cbdv.202301288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Recent breakthroughs in the field of carbon nanotubes (CNTs) have opened up unprecedented opportunities for the development of specialized bioactive CNT-polymers for a variety of biosensor applications. The incorporation of bioactive materials, including DNA, aptamers and antibodies, into CNTs to produce composites of bioactive CNTs has attracted considerable attention. In addition, polymers are essential for the development of biosensors as they provide biocompatible conditions and are the ideal matrix for the immobilization of proteins. The numerous applications of bioactive compounds combined with the excellent chemical and physical properties of CNTs have led to the development of bioactive CNT-polymer composites. This article provides a comprehensive overview of CNT-polymer composites and new approaches to encapsulate bioactive compounds and polymers in CNTs. Finally, biosensor applications of bioactive CNT-polymer for the detection of glucose, H2O2 and cholesterol were investigated. The surface of CNT-polymer facilitates the immobilization of bioactive molecules such as DNA, enzymes or antibodies, which in turn enables the construction of state-of-the-art, future-oriented biosensors.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | | | - Yasamin Ghahramani
- Department of Endodontics, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Mollasadra Street, 71345, Shiraz, Fars, Iran
| | - Zahra Javidi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rouhollah Azhdari
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|