1
|
Winefield KC, Larsen DS, Painter GF, Compton BJ. Rapid and Stereoselective Access to 6″-Amino-6″-deoxy-α-GalCer Scaffolds. J Org Chem 2025; 90:3745-3751. [PMID: 40035627 DOI: 10.1021/acs.joc.5c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
This work describes a highly efficient route to an orthogonally protected α-galactosylphytosphingosine (α-GalPhyt) from which 6″-N-modified α-galactosylceramide (α-GalCer) analogues can be synthesized rapidly and on-scale. Key to this route is the use of a d-galactal-derived 1,2-anhydro donor that undergoes an α-selective glycosylation with a sphingoid acceptor. The resulting α-GalPhyt intermediate can be orthogonally deprotected, enabling selective manipulation at either the C-6″ position of the galactose ring or at C-2 of the sphingoid lipid. The utility of this approach was demonstrated by the synthesis of the potent natural killer (NK) T cell agonist, NU-α-GalCer, and a novel 6″-amino-6″-deoxy analogue of another notable agonist, 7DW8-5, both from the same key intermediate.
Collapse
Affiliation(s)
- Kaleb C Winefield
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - David S Larsen
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| |
Collapse
|
2
|
Miranda MP. Identification and structural characterization of glucosylceramides in Holothuria (Halodeima) grisea: Insights from TLC and NMR techniques. Carbohydr Res 2025; 549:109374. [PMID: 39818085 DOI: 10.1016/j.carres.2024.109374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Sea cucumbers are widely used in oriental cuisine due to their medicinal properties. Antioxidant, antifungal, antiviral, anticancer and neuroprotective activities have already been identified in several species and in different tissues. Among the class of compounds with biological activity are cerebrosides, which have important functions for the proper functioning of cells, especially neuronal cells. The identification of this class of compounds can be carried out using simple techniques such as thin layer chromatography (TLC) or more sophisticated techniques such as nuclear magnetic resonance (NMR), providing different information depending on the technique used. Therefore, this work aimed to identify the presence of cerebrosides in different tissues of Holothuria (Halodeima) grisea. TLC analysis and separation on a silica column made it possible to accurately identify the positive fractions for cerebrosides. This selectivity is crucial to ensure that the compounds identified are genuine cerebrosides, eliminating interference from other non-pertinent bands. NMR spectroscopy analyses confirmed the presence of glucosylceramide in the tissues studied. The identification of a β-glucose linked to the ceramide, with specific structural characteristics such as hydroxyl on the 3' carbon of the sphingosine and a double bond between the 4' and 5' carbons, highlights the accuracy of the structural determination obtained with the techniques used.
Collapse
Affiliation(s)
- Matheus Pires Miranda
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, 81531-990, Curitiba, PR, Brazil.
| |
Collapse
|
3
|
Gast D, Neidig S, Reindl M, Hoffmann-Röder A. Synthesis of Fluorinated Glycotope Mimetics Derived from Streptococcus pneumoniae Serotype 8 CPS. Int J Mol Sci 2025; 26:1535. [PMID: 40004000 PMCID: PMC11855009 DOI: 10.3390/ijms26041535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Fluorination of carbohydrates is a promising strategy to produce glycomimetics with improved pharmacological properties, such as increased metabolic stability, bioavailability and protein-binding affinity. Fluoroglycans are not only of interest as inhibitors and chemical probes but are increasingly being used to develop potential synthetic vaccine candidates for cancer, HIV and bacterial infections. Despite their attractiveness, the synthesis of fluorinated oligosaccharides is still challenging, emphasizing the need for efficient protocols that allow for the site-specific incorporation of fluorine atoms (especially at late stages of the synthesis). This is particularly true for the development of fully synthetic vaccine candidates, whose (modified) carbohydrate antigen structures (glycotopes) per se comprise multistep synthesis routes. Based on a known minimal protective epitope from the capsular polysaccharide of S. pneumoniae serotype 8, a panel of six novel F-glycotope mimetics was synthesized, equipped with amine linkers for subsequent conjugation to immunogens. Next to the stepwise assembly via fluorinated building blocks, the corresponding 6F-substituted derivatives could be obtained by microwave-assisted, nucleophilic late-stage fluorination of tri- and tetrasaccharidic precursors in high yields. The described synthetic strategy allowed for preparation of the targeted fluorinated oligosaccharides in sufficient quantities for future immunological studies.
Collapse
Affiliation(s)
| | | | | | - Anja Hoffmann-Röder
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany
| |
Collapse
|
4
|
Kober AH, Abdin M, Subhash A, Liu SQ, Dertli E, Abu-Jdayil B, Show PL, Ayyash M. Exopolysaccharides from camel milk-derived Limosilactobacillus reuteri C66: Structural characterization, bioactive and rheological properties for food applications. Food Chem X 2025; 25:102164. [PMID: 39974527 PMCID: PMC11838136 DOI: 10.1016/j.fochx.2025.102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/30/2024] [Accepted: 01/05/2025] [Indexed: 02/21/2025] Open
Abstract
Microbial exopolysaccharides (EPS) are valued as safe, functional bio-ingredients in food. Produced by microorganisms like lactic acid bacteria (LAB), they enhance the rheological and sensory properties of food products. In this study, Limosilactobacillus reuteri C66 (EPS-C66), was utilized to produce EPS. EPS-C66 was isolated, purified, and characterized for its rheological properties and biofunctionalities. Molecular weight was 3.7 × 105 Da. Three monosaccharides (arabinose, mannose, and glucose) were identified. At 10 mg/mL, EPS-C66 exhibited significant scavenging activity against DPPH and ABTS radicals, achieving 67.9 % and 31.3 %, respectively. Additionally, it reduced the viability of Caco-2 and MCF-7 cancer cells by 93.7 % and 61.4 %, respectively. EPS-C66 also demonstrated antibacterial effects against S. aureus, S. typhimurium, L. monocytogenes, and E. coli, with ranges of 5.9, 6.1, 6.0, and 5.7 log CFU/mL, respectively. The current study highlights that EPS-C66 can enhance the health benefits and rheological properties of foods, contributing to the development of novel functional foods.
Collapse
Affiliation(s)
- A.K.M. Humayun Kober
- Department of Dairy & Poultry Science, Chattogram Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh
| | - Mohamed Abdin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Athira Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, İstanbul, Turkey
| | - Basim Abu-Jdayil
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Pau-Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, Abu Dhabi Municipality, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Kazantsev K, Toukach P. Remediation of the NMR data of natural glycans. Int J Biol Macromol 2024; 282:137042. [PMID: 39521218 DOI: 10.1016/j.ijbiomac.2024.137042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Primary structure elucidation in glycobiology is strongly affected by published structure-reporting NMR signals, especially on the 13C nucleus. The glycan NMR simulation accuracy and machine learning outcome depend on the quality of the NMR signal assignment in glycan databases. Within our work on improving the data quality in the Carbohydrate Structure Database (CSDB), we have applied a systematic search for inconsistencies in the published NMR data. The search was based on a bulk comparison between the experimental and simulated 13C NMR chemical shifts and manual analysis of the mismatches. On the basis of this analysis, CSDB was remediated by marking and correcting the NMR errors found in 272 structure elucidation reports published over the past 40 years.
Collapse
Affiliation(s)
- Kirill Kazantsev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Philip Toukach
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia; National Research University Higher School of Economics, Faculty of Chemistry, Vavilova 7, 117312 Moscow, Russia.
| |
Collapse
|
6
|
Arbatsky NP, Shashkov AS, Shneider MM, Mikhailova YV, Shelenkov AA, Sheck EA, Kasimova AA, Kalinchuk NA, Kenyon JJ, Knirel YA. The K129 capsular polysaccharide produced by Acinetobacter baumannii MAR 15-4076 has the same composition as K84 but differs in the linkage between units altering the overall branching topology. Carbohydr Res 2024; 545:109273. [PMID: 39326204 DOI: 10.1016/j.carres.2024.109273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Capsular polysaccharide (CPS) is a heteroglycan that coats the cell surface of most isolates of the important Gram-negative bacterial pathogen, Acinetobacter baumannii. Strain MAR 15-4076, a clinical isolate recovered in Russia in 2015, was found to carry the KL129 sequence at the CPS biosynthesis K locus. The CPS was isolated from the strain and studied by sugar analysis, Smith degradation, one- and two-dimensional 1H and 13C NMR spectroscopy. It was composed of branched pentasaccharide units that include a →3)-α-l-Rhap-(1 → 3)-α-l-Rhap-(1 → 3)-β-d-GlcpNAc-(1→ mainchain and α-d-ManpNAc-(1 → 3)-l-Rhap side branch. Though the pentasaccharide units are identical to those that make up the K84 CPS produced by A. baumannii LUH5540, the units are linked differently via the substitution of an alternate l-Rhap residue, resulting in a difference in the overall topology of the CPS. This was due to the replacement of the Wzy polymerase gene encoded at the K locus.
Collapse
Affiliation(s)
- Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail M Shneider
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Eugene A Sheck
- Institute of Antimicrobial Chemotherapy (IAC), Smolensk State Medical University, Smolensk, Russia
| | - Anastasia A Kasimova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda A Kalinchuk
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Johanna J Kenyon
- School of Pharmacy and Medical Sciences, Health Group, Griffith University, Gold Coast Campus, Southport, Australia; Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, Australia.
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Wang M, Sun P, Zhang J, Li D, Liu Y, Xia Y, Shao L, Jia M. Intelligent and biocompatible cellulose aerogels featured with high-elastic and fast-hemostatic for epistaxis and wound healing. Int J Biol Macromol 2024; 277:134239. [PMID: 39074712 DOI: 10.1016/j.ijbiomac.2024.134239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/07/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Nasal tamponade is a commonly employed and highly effective treatment method for preventing nasal bleeding. However, the current nasal packing hemostatic materials exhibit some limitations, such as low hemostatic efficiency, the potential for causing secondary injury when removed from the nasal cavity, limited intelligence in their design, and an inability to promote the healing of nasal mucosa wounds. Herein, we report the fabrication of a smart cellulose aerogel through the covalent cross-linking of carboxymethyl cellulose (CMC) macromolecules, while incorporating one-dimensional cellulose nanofibers (CNF) and two-dimensional MXene as reinforcing network scaffolds and conductive fillers. The abundant hydrogen and ether bonds in aerogels make them possess high elasticity in both dry and wet states, which can be compressed 100 times at 90 % deformation with a stress loss of <10 % under water. The highly elastic aerogels can be filled into the narrow nasal passages, pressuring the capillaries and reducing the amount of bleeding. Moreover, the strong interface between aerogels and blood can promote red blood cell aggregation, platelet adhesion and activation, activate intrinsic coagulation pathway and accelerate blood coagulation, resulting in excellent hemostatic ability. Furthermore, the aerogels exhibit excellent hemocompatibility and cytocompatibility, making them suitable for wound healing and capable of fully healing wounds within 15 days. Notably, the presence of MXene causes the aerogels to form a conductive network when exposed to blood, enabling them to perform real-time hemostatic monitoring without removing the dressing. This innovative biomedical aerogel, prepared from natural materials, shows excellent potential for applications in rapid nasal hemostasis.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China; Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China.
| | - Peipei Sun
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Jing Zhang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Dongwei Li
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Yuhua Liu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Yiran Xia
- Shandong Success Biotechnology Co., Ltd, Jinan 250353, PR China
| | - Lupeng Shao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Mengying Jia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China.
| |
Collapse
|
8
|
Delcourte L, Berbon M, Rodriguez M, Subban K, Lends A, Grélard A, Morvan E, Habenstein B, Saupe SJ, Delhaes L, Aimanianda V, Daskalov A, Loquet A. Magic-angle spinning NMR spectral editing of polysaccharides in whole cells using the DREAM scheme. Methods 2024; 230:59-67. [PMID: 39047926 DOI: 10.1016/j.ymeth.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Most bacterial, plant and fungal cells possess at their surface a protective layer called the cell wall, conferring strength, plasticity and rigidity to withstand the osmotic pressure. This molecular barrier is crucial for pathogenic microorganisms, as it protects the cell from the local environment and often constitutes the first structural component encountered in the host-pathogen interaction. In pathogenic molds and yeasts, the cell wall constitutes the main target for the development of clinically-relevant antifungal drugs. In the past decade, solid-state NMR has emerged as a powerful analytical technique to investigate the molecular organization of microbial cell walls in the context of intact cells. 13C NMR chemical shift is an exquisite source of information to identify the polysaccharides present in the cell wall, and two-dimensional 13C-13C correlation experiments provide an efficient tool to rapidly access the polysaccharide composition in whole cells. Here we investigate the use of the adiabatic DREAM (for dipolar recoupling enhancement through amplitude modulation) recoupling scheme to improve solid-state NMR analysis of polysaccharides in intact cells. We demonstrate the advantages of two-dimensional 13C-13C experiments using the DREAM recoupling scheme. We report the spectral editing of polysaccharide signals by varying the radio-frequency carrier position. We provide practical considerations for the implementation of DREAM experiments to characterize polysaccharides in whole cells. We demonstrate the approach on intact fungal cells of Neurospora crassa and Aspergillus fumigatus, a model and a pathogenic filamentous fungus, respectively. The approach could be envisioned to efficiently reduce the spectral crowding of more complex cell surfaces, such as cell wall and peptidoglycan in bacteria.
Collapse
Affiliation(s)
- Loic Delcourte
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Mélanie Berbon
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Marion Rodriguez
- CNR des Aspergilloses Chroniques, Mycology-Parasitology Department, CHU Bordeaux, Bordeaux 33000, France
| | - Kamalraj Subban
- ImmunoConcEpT, CNRS, UMR 5164, University of Bordeaux, Bordeaux, France
| | - Alons Lends
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Axelle Grélard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Estelle Morvan
- Univ. Bordeaux, CNRS, Inserm, IECB, UAR3033, US01, Pessac, France
| | - Birgit Habenstein
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Sven J Saupe
- CNRS, Université de Bordeaux, IBGC, UMR 5095, Bordeaux, France
| | - Laurence Delhaes
- CNR des Aspergilloses Chroniques, Mycology-Parasitology Department, CHU Bordeaux, Bordeaux 33000, France; Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Univ Bordeaux, Bordeaux 33000, France
| | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, Immunobiology of Aspergillus, Mycology Department, Paris, France
| | - Asen Daskalov
- ImmunoConcEpT, CNRS, UMR 5164, University of Bordeaux, Bordeaux, France; State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Antoine Loquet
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France.
| |
Collapse
|
9
|
Rondon B, Ungolan P, Wu L, Niu J. Chemically Recyclable Pseudo-Polysaccharides from Living Ring-Opening Polymerization of Glucurono-1,6-lactones. J Am Chem Soc 2024; 146:21868-21876. [PMID: 39051936 DOI: 10.1021/jacs.4c06431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Recent advances in synthetic methods and monomer design have given access to precision carbohydrate polymers that extend beyond native polysaccharides. In this article, we present the synthesis of a class of chemically recyclable ester-linked pseudo-polysaccharides via the living anionic ring-opening polymerization of glucurono-1,6-lactones. Notably, the pseudo-polysaccharides exhibited defined chain-end groups, well-controlled molecular weights, and narrow molecular weight distributions, all hallmarks of living polymerization. Furthermore, we demonstrate that our approach is modular, as evidenced by tunable glass transition temperatures (Tg) and the ability to produce both amorphous and semicrystalline polymers by adjusting the monomer side chain structure. Lastly, we showcased the complete catalytic chemical recycling of these pseudo-polysaccharides back to the monomers. The flexibility of the polymerization and the recyclability of these pseudo-polysaccharides promote a sustainable circular economy while offering the potential to access polysaccharide-like materials with tunable thermal and mechanical properties.
Collapse
Affiliation(s)
- Brayan Rondon
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Poom Ungolan
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Lianqian Wu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
10
|
Gass DT, Quintero AV, Hatvany JB, Gallagher ES. Metal adduction in mass spectrometric analyses of carbohydrates and glycoconjugates. MASS SPECTROMETRY REVIEWS 2024; 43:615-659. [PMID: 36005212 DOI: 10.1002/mas.21801] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Glycans, carbohydrates, and glycoconjugates are involved in many crucial biological processes, such as disease development, immune responses, and cell-cell recognition. Glycans and carbohydrates are known for the large number of isomeric features associated with their structures, making analysis challenging compared with other biomolecules. Mass spectrometry has become the primary method of structural characterization for carbohydrates, glycans, and glycoconjugates. Metal adduction is especially important for the mass spectrometric analysis of carbohydrates and glycans. Metal-ion adduction to carbohydrates and glycoconjugates affects ion formation and the three-dimensional, gas-phase structures. Herein, we discuss how metal-ion adduction impacts ionization, ion mobility, ion activation and dissociation, and hydrogen/deuterium exchange for carbohydrates and glycoconjugates. We also compare the use of different metals for these various techniques and highlight the value in using metals as charge carriers for these analyses. Finally, we provide recommendations for selecting a metal for analysis of carbohydrate adducts and describe areas for continued research.
Collapse
Affiliation(s)
- Darren T Gass
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Ana V Quintero
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Jacob B Hatvany
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| |
Collapse
|
11
|
Zhang L, Khoo CS, Koyyalamudi SR, Reddy N. Immunomodulatory activities of polysaccharides isolated from Amauroderma rugosum (Blume and T. Nees) Torrend and their structural characterization. Heliyon 2024; 10:e31672. [PMID: 38868030 PMCID: PMC11167292 DOI: 10.1016/j.heliyon.2024.e31672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Amauroderma rugosum (Blume and T. Nees) Torrend is a traditionally well-known mushroom that is used for the treatment of cancer. In order to evaluate the pharmacological activities of A. rugosum polysaccharides, the mushroom powder was subjected to hot water extraction and pure polysaccharides (ARPs) were isolated by gel-filtration method. Three important APRs called ARP-1, ARP-2 and ARP-5 were identified with average molecular weights of 1494, 450, and 7 kDa respectively. Their antioxidant abilities were estimated by examining free radical scavenging potential against 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid radical (ABTS●+), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH●), and hydroxyl radical. Immunomodulatory potentials of these ARPs were determined using murine macrophage cells. These polysaccharides exhibited high antioxidant abilities and stimulated mouse macrophages leading to the generation of tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Excellent activities were displayed by ARP-1 and APR-2. Gas chromatography and spectroscopic (FT-IR and NMR) methods were employed in order to carry out their structural characterisation. The two high molecular weight ARPs (ARP-1 and ARP-2) displayed β-(1 → 3)-D-glucan backbone structure with branching of β-(1 → 6)-d-glucopyranosyl. These observations suggest high potential of ARPs for immunotherapeutic applications.
Collapse
Affiliation(s)
- Lin Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Cheang Soo Khoo
- Wentworth Institute of Higher Education, 302-306 Elizabeth Street, Surry Hills, NSW, 2010, Australia
| | - Sundar Rao Koyyalamudi
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, 2145, Australia
- Discipline of Pediatrics and Child Health, The Children's Hospital at Westmead, University of Sydney, NSW, 2145, Australia
| | - Narsimha Reddy
- School of Science, Parramatta Campus, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
12
|
Jirasek M, Sharma A, Bame JR, Mehr SHM, Bell N, Marshall SM, Mathis C, MacLeod A, Cooper GJT, Swart M, Mollfulleda R, Cronin L. Investigating and Quantifying Molecular Complexity Using Assembly Theory and Spectroscopy. ACS CENTRAL SCIENCE 2024; 10:1054-1064. [PMID: 38799656 PMCID: PMC11117308 DOI: 10.1021/acscentsci.4c00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/16/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024]
Abstract
Current approaches to evaluate molecular complexity use algorithmic complexity, rooted in computer science, and thus are not experimentally measurable. Directly evaluating molecular complexity could be used to study directed vs undirected processes in the creation of molecules, with potential applications in drug discovery, the origin of life, and artificial life. Assembly theory has been developed to quantify the complexity of a molecule by finding the shortest path to construct the molecule from building blocks, revealing its molecular assembly index (MA). In this study, we present an approach to rapidly infer the MA of molecules from spectroscopic measurements. We demonstrate that the MA can be experimentally measured by using three independent techniques: nuclear magnetic resonance (NMR), tandem mass spectrometry (MS/MS), and infrared spectroscopy (IR). By identifying and analyzing the number of absorbances in IR spectra, carbon resonances in NMR, or molecular fragments in tandem MS, the MA of an unknown molecule can be reliably estimated. This represents the first experimentally quantifiable approach to determining molecular assembly. This paves the way to use experimental techniques to explore the evolution of complex molecules as well as a unique marker of where an evolutionary process has been operating.
Collapse
Affiliation(s)
- Michael Jirasek
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Abhishek Sharma
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Jessica R. Bame
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - S. Hessam M. Mehr
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Nicola Bell
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Stuart M. Marshall
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Cole Mathis
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Alasdair MacLeod
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Geoffrey J. T. Cooper
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Marcel Swart
- University
of Girona, Campus Montilivi (Ciencies), c/M.A. Capmany 69, 17003 Girona, Spain
- ICREA, Pg. Lluis Companys
23, 08010 Barcelona, Spain
| | - Rosa Mollfulleda
- University
of Girona, Campus Montilivi (Ciencies), c/M.A. Capmany 69, 17003 Girona, Spain
| | - Leroy Cronin
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| |
Collapse
|
13
|
Dwivedi R, Maurya AK, Ahmed H, Farrag M, Pomin VH. Nuclear magnetic resonance-based structural elucidation of novel marine glycans and derived oligosaccharides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:269-285. [PMID: 37439410 DOI: 10.1002/mrc.5377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
Marine glycans of defined structures are unique representatives among all kinds of structurally complex glycans endowed with important biological actions. Besides their unique biological properties, these marine sugars also enable advanced structure-activity relationship (SAR) studies given their distinct and defined structures. However, the natural high molecular weights (MWs) of these marine polysaccharides, sometimes even bigger than 100 kDa, pose a problem in many biophysical and analytical studies. Hence, the preparation of low MW oligosaccharides becomes a strategy to overcome the problem. Regardless of the polymeric or oligomeric lengths of these molecules, structural elucidation is mandatory for SAR studies. For this, nuclear magnetic resonance (NMR) spectroscopy plays a pivotal role. Here, we revisit the NMR-based structural elucidation of a series of marine sulfated poly/oligosaccharides discovered in our laboratory within the last 2 years. This set of structures includes the α-glucan extracted from the bivalve Marcia hiantina; the two sulfated galactans extracted from the red alga Botryocladia occidentalis; the fucosylated chondroitin sulfate isolated from the sea cucumber Pentacta pygmaea; the oligosaccharides produced from the fucosylated chondroitin sulfates from this sea cucumber species and from another species, Holothuria floridana; and the sulfated fucan from this later species. Specific 1H and 13C chemical shifts, generated by various 1D and 2D homonuclear and heteronuclear NMR spectra, are exploited as the primary source of information in the structural elucidation of these marine glycans.
Collapse
Affiliation(s)
- Rohini Dwivedi
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Antim K Maurya
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Hoda Ahmed
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Marwa Farrag
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
14
|
Ye Z, Li J, Shi J, Song Y, Liu Y, Hou J. Glycosidase-activated H 2S donorsto enhance chemotherapy efficacy. Bioorg Med Chem Lett 2024; 100:129644. [PMID: 38316370 DOI: 10.1016/j.bmcl.2024.129644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Hydrogen sulfide (H2S) plays a critical role in cancer biology. Herein, we developed a series of glycosidase-triggered hydrogen sulfide (H2S) donors by connecting sugar moieties (including glucose, galactose and mannose) to COS donors via a self-immolative spacer. In the presence of corresponding glycosidases, H2S was gradually released from these donors in PBS buffer with releasing efficiencies from 36 to 67 %. H2S release was also detected by H2S probe WSP-1 after treatment HepG2 cells with Man1. Cytotoxicities of these glycosylated H2S donors were evaluated against HepG2 by MTT assay. Among them, Man1 and Man2 exhibited an obvious reduction of cell viability in HepG2 cells, with cell viability as 37.6 % for 80 μM of Man. Consistently, significant apoptosis was observed in HepG2 cells after treatment with Man1 and Man2. Finally, We evaluated the potential of Man1 for combination therapy with doxorubicin. A synergistic effect was observed between Man1 and Doxorubicin in HepG2 and Hela cells. All these results indicated glycosidase-activated H2S donorshave promising potential for cancer therapy.
Collapse
Affiliation(s)
- Zizhen Ye
- Tianjin Key Laboratory on Technologies Enabling Development of ClinicalTherapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Jixiang Li
- Tianjin Key Laboratory on Technologies Enabling Development of ClinicalTherapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Jiarui Shi
- Tianjin Key Laboratory on Technologies Enabling Development of ClinicalTherapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of ClinicalTherapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of ClinicalTherapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China.
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of ClinicalTherapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China.
| |
Collapse
|
15
|
Zulkifli SZ, Ab Ghani N, Rasol NE, Salleh WMNHW, Ismail NH. Lepiginosides A-D: three new triterpenoid saponins and a new farnesyl glycoside from the stembarks of Lepisanthes rubiginosa (roxb.) leenh. Nat Prod Res 2024; 38:10-15. [PMID: 35862620 DOI: 10.1080/14786419.2022.2102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Phytochemical investigation of methanolic extract of L. rubiginosa using modern chromatographic techniques has led to the isolation of three new triterpenoid saponins, lepiginosides A-C (1-3), a new farnesyl glycoside, lepiginoside D (4), together with lepisantheside B (5) and gleditsoside C (6). The characterization and structural elucidation of the isolated compounds were established by extensive spectroscopic data analysis and comparison with literature data. Moreover, the antibacterial activity against seven bacteria, but none is active.
Collapse
Affiliation(s)
- Siti Zafirah Zulkifli
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Kuala Lumpur, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Nurunajah Ab Ghani
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Kuala Lumpur, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Nurulfazlina Edayah Rasol
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Kuala Lumpur, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | | | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Kuala Lumpur, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| |
Collapse
|
16
|
Nagasawa T, Sato K, Kasumi T. Interaction of Organogermanium Compounds with Saccharides in Aqueous Solutions: Promotion of Aldose-to-ketose Isomerization and Its Molecular Mechanism. J Appl Glycosci (1999) 2023; 70:81-97. [PMID: 38239765 PMCID: PMC10792222 DOI: 10.5458/jag.jag.jag-2023_0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/28/2023] [Indexed: 01/22/2024] Open
Abstract
This review discusses sugar isomerization with organogermanium compounds. Organogermanium compounds markedly increase the aldose-ketose (glucose-fructose or lactose-lactulose) isomerization ratio, double the initial reaction rate, and significantly reduce the base-catalyzed degradation of sugars. 1H-nuclear magnetic resonance analysis reveals that the affinity of organogermanium compounds with a 3-(trihydroxygermyl)propanoic acid (THGP) structure toward ketoses is 20-40 times stronger than that toward aldoses; thus, such organogermanium compounds form complexes more readily with ketoses than with aldoses. Stable ketose complexes, which contain multiple cis-diol structures and high fractions of furanose structures, suppress the reverse ketose-aldose reaction, thereby shifting the equilibrium toward the ketose side. These complexes also protect sugar molecules from alkaline degradation owing to the repulsion between anionic charges. The increased rate of the initial reaction in the alkaline isomerization process results from stabilizing the transition state by forming a complex between THGP and a cis-enediol intermediate. The cyclic pentacoordinate or hexacoordinate THGP structures give rise to a conjugated system of germanium orbitals, which is extended through dπ-pπ interactions, thereby improving the stability of the complex. Based on these results, we have developed a bench-scale lactulose syrup manufacturing plant incorporating a system to separate, recover, and reuse organogermanium poly-trans-[(2-carboxyethyl)germasesquioxane]. This manufacturing plant can be used as a model of an alkaline isomerization accelerator for continuous industrial production.
Collapse
Affiliation(s)
| | | | - Takafumi Kasumi
- Enzymology and Molecular Biology Laboratory, Department of Chemistry and Life Science, Nihon University
| |
Collapse
|
17
|
Bamigbade G, Ali AH, Subhash A, Tamiello-Rosa C, Al Qudsi FR, Esposito G, Hamed F, Liu SQ, Gan RY, Abu-Jdayil B, Ayyash M. Structural characterization, biofunctionality, and environmental factors impacting rheological properties of exopolysaccharide produced by probiotic Lactococcus lactis C15. Sci Rep 2023; 13:17888. [PMID: 37857676 PMCID: PMC10587178 DOI: 10.1038/s41598-023-44728-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Exopolysaccharides (EPSs) possess distinctive rheological and physicochemical properties and innovative functionality. This study aimed to investigate the physicochemical, bioactive, and rheological properties of an EPS secreted by Lactococcus lactis subsp. lactis C15. EPS-C15 was found to have an average molecular weight of 8.8 × 105 Da and was identified as a hetero-EPS composed of arabinose, xylose, mannose, and glucose with a molar ratio of 2.0:2.7:1.0:21.3, respectively. The particle size and zeta potential represented 311.2 nm and - 12.44 mV, respectively. FITR exhibited that EPS-C15 possessed a typical polysaccharide structure. NMR displayed that EPS-C15 structure is → 3)α-d-Glcvi (1 → 3)α-d-Xylv (1 → 6)α-d-Glciv(1 → 4)α-d-Glc(1 → 3)β-d-Man(1 → 2)α-d-Glci(1 → . EPS-C15 scavenged DPPH and ABTS free radicals with 50.3% and 46.4% capacities, respectively. Results show that the antiproliferative activities of EPS-C15 revealed inhibitions of 49.7% and 88.1% against MCF-7 and Caco-2 cells, respectively. EPS-C15 has antibacterial properties that inhibited Staphylococcus aureus (29.45%), Salmonella typhimurium (29.83%), Listeria monocytogenes (30.33%), and E. coli O157:H7 (33.57%). The viscosity of EPS-C15 decreased as the shear rate increased. The rheological properties of the EPS-C15 were affected by changes in pH levels and the addition of salts. EPS-C15 is a promising biomaterial that has potential applications in various industries, such as food, pharmaceuticals, and healthcare.
Collapse
Affiliation(s)
- Gafar Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Abdelmoneim H Ali
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Athira Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Camila Tamiello-Rosa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Farah R Al Qudsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 21121, Jordan
| | - Gennaro Esposito
- Science Division - New York University Abu Dhabi, NYUAD Campus, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE
| | - Fathalla Hamed
- Department of Physics, College of Science, United Arab Emirates University (UAEU), PO Box 1555, Al Ain, UAE
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Science Drive 2, Singapore, 117542, Singapore
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore
| | - Basim Abu-Jdayil
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, UAE.
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, UAE.
| |
Collapse
|
18
|
Singh K, Yadava RN, Yadav R. Antibacterial Compound Isolation and Characterization from the Plant Cynotis axillaris Schult. Chem Biodivers 2023; 20:e202301094. [PMID: 37690999 DOI: 10.1002/cbdv.202301094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/12/2023]
Abstract
A novel flavone glycoside was isolated from the methanolic extract of Cynotis axillaris Schult. Various analysis and characterization techniques were used to determine its structure and properties. The compound exhibited a melting point range of 231-232 °C and had a molecular formula of C27 H30 O14 . Several spectral characterization techniques were employed to establish the isolated compound's structure. These included UV-visible spectroscopy, FT-IR, LC-ESI-MS, and NMR spectroscopy. Based on these analyses, the structure of the isolated compound was determined to be 5,7,4'-trihydroxyflavone-8-α-L-rhamnopyranoside-4'-O-β-D-galactopyranosyl. This structure indicates that it is a flavone glycoside consisting of a flavone (5,7,4'-trihydroxyflavone) moiety attached to a sugar molecule (galactopyranosyl) at position 4', which further bears a rhamnose group at position 8 of the flavone. In addition, to the structural characterization, the compound also demonstrated significant antibacterial efficacy against various bacterial pathogens, including Gram-positive bacteria such as Bacillus subtilis MTCC441 and Gram-negative bacteria such as Escherichia coli MTCC1098, Proteus vulgarize MTCC426, and Salmonella Typhimurium MTCC3224. The antimicrobial activity was evaluated by measuring the zone of inhibition in millimetres, which provides an indication of the compound's ability to inhibit bacterial growth. The study successfully identified and characterized a novel flavone glycoside from Cynotis axillaris Schult. and its antimicrobial activity.
Collapse
Affiliation(s)
- Kesar Singh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, 470003, India
| | - R N Yadava
- Department of chemistry, Purnea University Bihar, India
| | - Ritu Yadav
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
19
|
Aizawa T, Sato J, Saito S, Yasuda T, Maruyama Y, Urai M. An extracellular polysaccharide is involved in the aluminum tolerance of Pullulanibacillus sp. CA42, a newly isolated strain from the Chinese water chestnut growing in an actual acid sulfate soil area in Vietnam. Front Microbiol 2023; 14:1241244. [PMID: 37700869 PMCID: PMC10493610 DOI: 10.3389/fmicb.2023.1241244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023] Open
Abstract
A novel aluminum-tolerant bacterial strain CA42 was isolated from the aquatic plant Eleocharis dulcis, which grows in a highly acidic swamp in Vietnam. Inoculation with CA42 allowed Oryza sativa to grow in the presence of 300 μM AlCl3 at pH 3.5, and biofilms were observed around the roots. Using 16S rRNA gene sequencing analysis, the strain was identified as Pullulanibacillus sp. CA42. This strain secreted large amounts of an extracellular polysaccharide (CA42 EPS). Results from structural analyses on CA42 EPS, namely methylation analysis and nuclear magnetic resonance (NMR), indicated that the chemical structure of CA42 EPS was a glycogen-like α-glucan. Purified CA42 EPS and the commercially available oyster glycogen adsorbed aluminum ions up to 15-30 μmol/g dry weight. Digestion treatments with α-amylase and pullulanase completely attenuated the aluminum ion-adsorbing activity of purified CA42 EPS and oyster glycogen, suggesting that the glycogen-like structure adsorbed aluminum ions and that its branching structure played an important role in its aluminum adsorbing activity. Furthermore, the aluminum tolerance of CA42 cells was attenuated by pullulanase treatment directly on the live CA42 cells. These results suggest that CA42 EPS adsorbs aluminum ions and is involved in the aluminum tolerance mechanism of Pullulanibacillus sp. CA42. Thus, this strain may be a potential plant growth-promoting bacterium in acidic soils. In addition, this study is the first to report a glycogen-like polysaccharide that adsorbs aluminum ions.
Collapse
Affiliation(s)
- Tomoko Aizawa
- Department of Bioscience, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Junki Sato
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Shimon Saito
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Takanari Yasuda
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Yutaro Maruyama
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Makoto Urai
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
20
|
Andreolli M, Villanova V, Zanzoni S, D'Onofrio M, Vallini G, Secchi N, Lampis S. Characterization of trehalolipid biosurfactant produced by the novel marine strain Rhodococcus sp. SP1d and its potential for environmental applications. Microb Cell Fact 2023; 22:126. [PMID: 37443119 DOI: 10.1186/s12934-023-02128-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Biosurfactants are surface-active compounds with environmental and industrial applications. These molecules show higher biocompatibility, stability and efficiency compared to synthetic surfactants. On the other hand, biosurfactants are not cost-competitive to their chemical counterparts. Cost effective technology such as the use of low-cost substrates is a promising approach aimed at reducing the production cost. This study aimed to evaluate the biosurfactant production and activity by the novel strain Rhodococcus sp. SP1d by using different growth substrates. Therefore, to exploit the biosurfactant synthesized by SP1d for environmental applications, the effect of this compound on the bacteria biofilm formation was evaluated. Eventually, for a possible bioremediation application, the biosurfactant properties and its chemical characteristics were investigated using diesel as source of carbon. RESULTS Rhodococcus sp. SP1d evidence the highest similarity to Rhodococcus globerulus DSM 43954T and the ability to biosynthesize surfactants using a wide range of substrates such as exhausted vegetable oil, mineral oil, butter, n-hexadecane, and diesel. The maximum production of crude biosurfactant after 10 days of incubation was reached on n-hexadecane and diesel with a final yield of 2.38 ± 0.51 and 1.86 ± 0.31 g L- 1 respectively. Biosurfactants produced by SP1d enhanced the biofilm production of P. protegens MP12. Moreover, the results showed the ability of SP1d to produce biosurfactants on diesel even when grown at 10 and 18 °C. The biosurfactant activity was maintained over a wide range of NaCl concentration, pH, and temperature. A concentration of 1000 mg L- 1 of the crude biosurfactant showed an emulsification activity of 55% towards both xylene and olive oil and a reduction of 25.0 mN m- 1 of surface tension of water. Eventually, nuclear magnetic resonance spectroscopy indicated that the biosurfactant is formed by trehalolipids. CONCLUSIONS The use of low-cost substrates such as exhausted oils and waste butter reduce both the costs of biosurfactant synthesis and the environmental pollution due to the inappropriate disposal of these residues. High production yields, stability and emulsification properties using diesel and n-hexadecane as substrates, make the biosurfactant produced by SP1d a sustainable biocompound for bioremediation purpose. Eventually, the purified biosurfactant improved the biofilm formation of the fungal antagonistic strain P. protegens MP12, and thus seem to be exploitable to increase the adherence and colonization of plant surfaces by this antagonistic strain and possibly enhance antifungal activity.
Collapse
Affiliation(s)
- Marco Andreolli
- VUCC-DBT Verona University Culture Collection, Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy.
- Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy.
| | - Valeria Villanova
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Serena Zanzoni
- Centro Piattaforme Tecnologiche, University of Verona, Verona, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy
| | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy
| | - Nicola Secchi
- Eurovix S.p.A, Viale Mattei 17, Entratico, Bergamo, 24060, Italy
| | - Silvia Lampis
- VUCC-DBT Verona University Culture Collection, Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy
- Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy
| |
Collapse
|
21
|
van de Sande JW, Albada B. Chemical Synthesis of Glycopeptides containing l-Arabinosylated Hydroxyproline and Sulfated Tyrosine. Org Lett 2023; 25:1907-1911. [PMID: 36917069 PMCID: PMC10043930 DOI: 10.1021/acs.orglett.3c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Post-translationally modified peptides are important regulating molecules for living organisms. Here, we report the stereoselective total synthesis of β-1,2-linked l-arabinosylated Fmoc-protected hydroxyproline building blocks and their incorporation, together with sulfated tyrosine and hydroxyproline, into the plant peptide hormone PSY1. Clean glycopeptides were obtained by performing acetyl removal from the l-arabinose groups prior to deprotection of the neopentyl-protected sulfated tyrosine.
Collapse
Affiliation(s)
- Jasper W van de Sande
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
22
|
Abstract
Glycans, carbohydrate molecules in the realm of biology, are present as biomedically important glycoconjugates and a characteristic aspect is that their structures in many instances are branched. In determining the primary structure of a glycan, the sugar components including the absolute configuration and ring form, anomeric configuration, linkage(s), sequence, and substituents should be elucidated. Solution state NMR spectroscopy offers a unique opportunity to resolve all these aspects at atomic resolution. During the last two decades, advancement of both NMR experiments and spectrometer hardware have made it possible to unravel carbohydrate structure more efficiently. These developments applicable to glycans include, inter alia, NMR experiments that reduce spectral overlap, use selective excitations, record tilted projections of multidimensional spectra, acquire spectra by multiple receivers, utilize polarization by fast-pulsing techniques, concatenate pulse-sequence modules to acquire several spectra in a single measurement, acquire pure shift correlated spectra devoid of scalar couplings, employ stable isotope labeling to efficiently obtain homo- and/or heteronuclear correlations, as well as those that rely on dipolar cross-correlated interactions for sequential information. Refined computer programs for NMR spin simulation and chemical shift prediction aid the structural elucidation of glycans, which are notorious for their limited spectral dispersion. Hardware developments include cryogenically cold probes and dynamic nuclear polarization techniques, both resulting in enhanced sensitivity as well as ultrahigh field NMR spectrometers with a 1H NMR resonance frequency higher than 1 GHz, thus improving resolution of resonances. Taken together, the developments have made and will in the future make it possible to elucidate carbohydrate structure in great detail, thereby forming the basis for understanding of how glycans interact with other molecules.
Collapse
Affiliation(s)
- Carolina Fontana
- Departamento
de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
23
|
Chen Q, Lan P, Tan S, Banwell MG. The Palladium-Catalyzed Glycosylation of Halotropones. Org Lett 2023; 25:384-388. [PMID: 36606750 DOI: 10.1021/acs.orglett.2c04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A range of mono- and disaccharides, including glucose derivative 10, has been cleanly coupled, in the presence of a Pd catalyst, with various halogenated and structurally distinctive tropones, including "parent" compound 11, to afford the corresponding α- and β-anomeric forms of the tropolone glycosides, e.g., 12 and 13, respectively. Varying the ligand used influences the anomer distribution significantly and such that either the α- or β-form predominates. Notable chemo- and regioselectivities are observed when dihalogenated troponoids are employed as coupling partners.
Collapse
Affiliation(s)
- Qi Chen
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong510632, China
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong510632, China
| | - Shen Tan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong510632, China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong510632, China.,Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University,Zhanjiang, Guangdong524023, China
| |
Collapse
|
24
|
Wang X, Shi J, Xu Z, Wang D, Song Y, Han G, Wang B, Cao H, Liu Y, Hou J. Targeted delivery of Nitric Oxide triggered by α-Glucosidase to Ameliorate NSAIDs-induced Enteropathy. Redox Biol 2022; 59:102590. [PMID: 36603529 PMCID: PMC9813757 DOI: 10.1016/j.redox.2022.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) increase risks of severe small intestinal injuries. Development of effective therapeutic strategies to overcome this issue remains challenging. Nitric oxide (NO) as a gaseous mediator plays a protective role in small intestinal injuries. However, small intestine-specific delivery systems for NO have not been reported yet. In this study, we reported a small intestine-targeted polymeric NO donor (CS-NO) which was synthesized by covalent grafting of α-glucosidase-activated NO donor onto chitosan. In vitro and in vivo experiments demonstrated that CS-NO could be activated by intestinal α-glucosidase to release NO in the small intestine. Pre-treatment of mice with CS-NO significantly alleviated small intestinal damage induced by indomethacin, as demonstrated by down-regulation of the levels of pro-inflammatory cytokines and chemokines CXCL1/KC. Moreover, CS-NO also attenuated indomethacin-induced gut barrier dysfunction as evidenced by up-regulation of the levels of tight junction proteins and restoration of the levels of goblet cells and MUC2 production. Meanwhile, CS-NO effectively restored the defense function of Paneth cells against pathogens in small intestine. Our present study paves the way to develop NO-based therapeutic strategy for NSAIDs-induced small intestinal injuries.
Collapse
Affiliation(s)
- Xianglu Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China,Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jiarui Shi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Zhixin Xu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Dan Wang
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yuguang Song
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Guifang Han
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Yangping Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Jingli Hou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
25
|
Belakhov VV, Boikova IV, Krasnobaeva IL, Kolodyaznaya VA. Preparation and Insecticidal Activity of Organosulfur Derivatives of β-D-Ribofuranoside. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222130114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
26
|
Kahriman N, Serdaroğlu V, Aydın A, Türkmenoğlu B, Usta A. Diastereoselective Synthesis, Characterization, Investigation of Anticancer, Antibacterial Activities, In Silico Approaches and DNA/BSA Binding Affinities of Novel Pyrimidine-Sugar Derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Mettwally WS, Gamal AA, Shams El-Din NG, Hamdy AA. Biological activities and structural characterization of sulfated polysaccharide extracted from a newly Mediterranean Sea record Grateloupia gibbesii Harvey. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Cloutier M, Lavoie S, Gauthier C. C7 Epimerization of Benzylidene-Protected β-d-Idopyranosides Brings Structural Insights into Idose Conformational Flexibility. J Org Chem 2022; 87:12932-12953. [PMID: 36137237 DOI: 10.1021/acs.joc.2c01504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Idose is unique among other aldohexoses because of its high conformational flexibility in solution. We herein show that benzylidene acetal-protected 3-O-acyl-β-d-idopyranosides undergo Lewis acid-catalyzed C7 epimerization with concomitant 4C1 to 1C4 ring inversion. The reaction conditions and structural parameters for this transformation to occur have been thoroughly investigated through an extensive glycosylation study combined with NMR analyses, X-ray diffraction, and quantum molecular modeling. In addition to reporting a direct, β-stereoselective idosylation approach, our work brings fundamental structural insights into the conformational flexibility of idose.
Collapse
Affiliation(s)
- Maude Cloutier
- Unité Mixte de Recherche INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 555, boulevard de l'Université, Chicoutimi, Québec, Canada G7H 2B1
| | - Serge Lavoie
- Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi (UQAC), 555, boulevard de l'Université, Chicoutimi, Québec, Canada G7H 2B1
| | - Charles Gauthier
- Unité Mixte de Recherche INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 555, boulevard de l'Université, Chicoutimi, Québec, Canada G7H 2B1.,Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi (UQAC), 555, boulevard de l'Université, Chicoutimi, Québec, Canada G7H 2B1
| |
Collapse
|
29
|
Smith MJ, Castañar L, Adams RW, Morris GA, Nilsson M. Giving Pure Shift NMR Spectroscopy a REST─Ultrahigh-Resolution Mixture Analysis. Anal Chem 2022; 94:12757-12761. [PMID: 36069721 PMCID: PMC9494296 DOI: 10.1021/acs.analchem.2c02411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most interesting problems in chemistry, biology, and pharmacy involve mixtures. However, analysis of such mixtures by NMR remains a challenge, often requiring the mixture components to be physically separated before analysis. A variety of methods have been proposed that exploit species-specific properties such as diffusion and relaxation to distinguish between the signals of different components in a mixture without the need for laborious separation. However, these methods can struggle to distinguish between components when signals overlap. Here, we exploit the relaxation properties of selected nuclei to distinguish between different components of a mixture while using pure shift methods to increase spectral resolution by up to an order of magnitude, greatly reducing signal overlap. The advantages of the new method are demonstrated in a mixture of d-xylose and l-arabinose, distinguishing unambiguously between the five major species present.
Collapse
Affiliation(s)
- Marshall J Smith
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Laura Castañar
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Ralph W Adams
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Gareth A Morris
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Mathias Nilsson
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
30
|
Mizukoshi H, Kimura K, Ikemura H, Mori Y, Nagaoka M. Structural determination of the cell wall polysaccharide LCPS-1 in Lacticaseibacillus paracasei strain Shirota YIT 9029. Carbohydr Res 2022; 521:108670. [PMID: 36103733 DOI: 10.1016/j.carres.2022.108670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
The neutral polysaccharides LCPS-1 and LCPS-2 play functional roles in the cell wall of the lactic acid bacterium Lacticaseibacillus paracasei strain Shirota YIT 9029 (LcS; formerly Lactobacillus casei strain Shirota YIT 9029), which has long been used as a probiotic food product. Studies have shown that LCPS-1 is associated with the immunomodulatory functions of LcS. We hypothesized that the structure of LCPS-1 is crucial for elucidating the mechanism of action of LcS on host immune responses and aimed to solve the undetermined primary structure of LCPS-1. Our results showed that LCPS-1 has a molecular weight of >400 kDa and is composed of Glc, Rha, Gal, and GlcNAc, with a repeating structure. Using limited degradation reactions, including controlled Smith and deamination degradations, we obtained key fragments with low molecular weight. Subsequently, their structures were analyzed using NMR spectra and other analytical techniques. Further, we integrated the results for each key fragment to derive the complete structure of LCPS-1. Our results indicated that the most probable structure of LCPS-1 is composed of two types of units (X, Y), each with a basic structure of seven sugars in which the C2-position of Rha is substituted with an acetyl group. The structure of X is {6[Glcβ1-2] Galα1-3[2-OAc] Rhaβ1-4Glcβ1-4[Rhaα1-3] [Glcα1-6] Glcβ1-} and that of Y is {6[Glcβ1-2] Galα1-3[2-OAc] Rhaβ1-4Glcβ1-4[Rhaα1-3] [Glcα1-6)] GlcNAcβ1-}, which can be expressed as (X6Y12)n. In this study, we identified the primary structure of LCPS-1, and our results may enable an improved understanding of the immunomodulatory abilities of LcS.
Collapse
Affiliation(s)
- Harumi Mizukoshi
- Yakult Central Institute for Microbiological Research, 5-11 Izumi Kunitachi-shi, Tokyo, 186-8650, Japan.
| | - Kazumasa Kimura
- Yakult Central Institute for Microbiological Research, 5-11 Izumi Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Haruo Ikemura
- Yakult Central Institute for Microbiological Research, 5-11 Izumi Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Yoko Mori
- Yakult Central Institute for Microbiological Research, 5-11 Izumi Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Masato Nagaoka
- Yakult Central Institute for Microbiological Research, 5-11 Izumi Kunitachi-shi, Tokyo, 186-8650, Japan
| |
Collapse
|
31
|
Detailed Structural Analysis of the Immunoregulatory Polysaccharides from the Mycobacterium Bovis BCG. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175691. [PMID: 36080458 PMCID: PMC9458083 DOI: 10.3390/molecules27175691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
Bacillus Calmette-Guérin polysaccharide and nucleic acid (BCG-PSN), extracted from Mycobacterium bovis, is an immunoregulatory medicine commonly used in clinic. However, the structural characteristics and potential pharmacological efficacy of the polysaccharides from BCG-PSN remain unclear. Herein, two polysaccharides (BCG-1 and BCG-2) were purified and their structures were characterized. Monosaccharide composition analysis combined with methylation analysis and NMR data indicated that BCG-1 and BCG-2 were an α-D-(1→4)-mannan with (1→2)-linked branches, and an α-D-(1→4)-glucan with (1→6)-linked branches, respectively. Herein, the mannan from BCG-PSN was first reported. Bioactivity assays showed that BCG-1 and BCG-2 dose-dependently and potently increased the production of inflammatory mediators (NO, TNF-α, IL-6, IL-1β, and IL-10), as well as their mRNA expressions in RAW264.7 cells; both have similar or stronger effects compared with BCG-PSN injection. These data suggest that BCG-1 and BCG-2 are very likely the active ingredients of BCG-PSN.
Collapse
|
32
|
Huynh HT, Tsai ST, Hsu PJ, Biswas A, Phan HT, Kuo JL, Ni CK, Chiu CC. Collision-induced dissociation of Na +-tagged ketohexoses: experimental and computational studies on fructose. Phys Chem Chem Phys 2022; 24:20856-20866. [PMID: 36043336 DOI: 10.1039/d2cp02313j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Collision-induced dissociation tandem mass spectrometry (CID-MSn) and computational investigation at the MP2/6-311+G(d,p) level of theory have been employed to study Na+-tagged fructose, an example of a ketohexose featuring four cyclic isomers: α-fructofuranose (αFruf), β-fructofuranose (βFruf), α-fructopyranose (αFrup), and β-fructopyranose (βFrup). The four isomers can be separated by high-performance liquid chromatography (HPLC) and they show different mass spectra, indicating that CID-MSn can distinguish the different fructose forms. Based on a simulation using a micro-kinetic model, we have obtained an overview of the mechanisms for the different dissociation pathways. It has been demonstrated that the preference for the C-C cleavage over the competing isomerization of linear fructose is the main reason for the previously reported differences between the CID-MS spectra of aldohexoses and ketohexoses. In addition, the kinetic modeling helped to confirm the assignment of the different measured mass spectra to the different fructose isomers. The previously reported assignment based on the peak intensities in the HPLC chromatogram had left some open questions as the preference for the dehydration channels did not always follow trends previously observed for aldohexoses. Setting up the kinetic model further enabled us to directly compare the computational and experimental results, which indicated that the model can reproduce most trends in the differences between the dissociation pathways of the four cyclic fructose isomers.
Collapse
Affiliation(s)
- Hai Thi Huynh
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan. .,Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shang-Ting Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan. .,Department of Applied Chemistry, National Chiayi University, Chiayi, 60004, Taiwan
| | - Po-Jen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan.
| | - Anik Biswas
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan. .,Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Huu Trong Phan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan. .,Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan. .,Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan.,International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei, 10617, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan. .,Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Cheng-Chau Chiu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan. .,Center for Theoretical and Computational Physics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
33
|
Separation of Monosaccharide Anomers on Photo-Click Cysteine-Based Stationary Phase: The α/β Interconversion Process Studied by Dynamic Hydrophilic Liquid Chromatography. SEPARATIONS 2022. [DOI: 10.3390/separations9080203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In High-Performance Liquid Chromatography (HPLC), the separation of reducing sugars can typically show three possible typologies of chromatographic profiles (i.e., single peak, two resolved peaks and two peaks interconnected by a plateau) due to the rate at which the relevant α/β anomers interconversion (anomerization) can take place in relation to their elution-time. By analyzing these chromatographic profiles, thermodynamic and kinetic properties of anomerization phenomenon can be extrapolated. In this work we studied the anomerization of some monosaccharides by using a recently developed photo-click cysteine-based stationary phase through dynamic hydrophilic interaction liquid chromatography (D-HILIC) conditions. In the 5–25 °C temperature range, the ΔG#α→β and ΔG#β→α barriers were found to achieve values within the interval 21.1/22.2 kcal/mol for glucose, with differences between α→β and β→α reactions of about 0.4 kcal/mol. For xylose, in the same temperature range, the ΔG#α→β and ΔG#β→α barriers are between 20.7 to 21.5 kcal/mol, with differences between α→β and β→α reactions of about 0.2 kcal/mol. The experimental data are in agreement with those reported in literature, confirming the this new stationary phase using HILIC conditions is a robust platform to measure kinetic and thermodynamic properties of the isomerization reaction.
Collapse
|
34
|
Mukherjee S, Jana S, Khawas S, Kicuntod J, Marschall M, Ray B, Ray S. Synthesis, molecular features and biological activities of modified plant polysaccharides. Carbohydr Polym 2022; 289:119299. [DOI: 10.1016/j.carbpol.2022.119299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
|
35
|
Smart IM-MS and NMR study of natural diastereomers: the study case of the essential oil from Senecio transiens. Anal Bioanal Chem 2022; 414:6695-6705. [DOI: 10.1007/s00216-022-04232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
|
36
|
Fels L, Bunzel M. Application of accelerated heteronuclear single quantum coherence experiments to the rapid quantification of monosaccharides and disaccharides in dairy products. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:692-701. [PMID: 35102606 DOI: 10.1002/mrc.5255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Monosaccharides and disaccharides are important dietary components, but if insufficiently metabolized by some population subgroups, they are also linked to disease patterns. Thus, the correct analytical identification, quantification, and labeling of these food components are crucial to inform and potentially protect consumers. Enzymatic assays and high-performance anion-exchange chromatography with pulsed amperometric detection are established methods for the quantification of monosaccharides and disaccharides that, however, require long measuring times (60-180 min). Accelerated methods for the identification and quantification of the nutritionally relevant monosaccharides and disaccharides d-glucose, d-galactose, d-fructose, sucrose, lactose, and maltose were therefore developed. To realize this goal, the NMR experiments HSQC (heteronuclear single quantum coherence) and acceleration by sharing adjacent polarization (ASAP)-HSQC were applied. Measurement times were reduced to 27 and 6 min, respectively, by optimizing the interscan delay and applying non-uniform sampling. The optimized methods were used to quantify d-glucose, d-galactose, d-fructose, sucrose, and lactose in various dairy products. Results of the HSQC and ASAP-HSQC methods are equivalent to the results of the reference methods in terms of both precision and accuracy, demonstrating that these methods can be used to correctly analyze nutritionally relevant monosaccharides and disaccharides in short times.
Collapse
Affiliation(s)
- Lea Fels
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
37
|
Fels L, Ruf F, Bunzel M. Quantification of Isomaltulose in Food Products by Using Heteronuclear Single Quantum Coherence NMR-Experiments. Front Nutr 2022; 9:928102. [PMID: 35832046 PMCID: PMC9271938 DOI: 10.3389/fnut.2022.928102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Isomaltulose is a commonly used sweetener in sports nutrition and in products intended for consumption by diabetics. Because previously established chromatographic methods for quantification of isomaltulose suffer from long analysis times (60–210 min), faster quantitative approaches are required. Here, an HSQC (heteronuclear single quantum coherence) experiment with reduced interscan delay was established in order to quantify isomaltulose next to potential additional sugars such as d-glucose, d-fructose, d-galactose, sucrose, lactose, and maltose in 53 min. By using HSQC coupled to non-uniform sampling (NUS) as well as ASAP-HSQC (acceleration by sharing adjacent polarization), analysis times were reduced to a few minutes. Application of NUS-HSQC with reduced interscan delay takes 27 min, resulting in accurate and precise data. In principle, application of ASAP-HSQC approaches (with analysis times as low as 6 min) can be used; however, precision data may not suffice all applications.
Collapse
|
38
|
Santos RA, Pinto DC, Silva AM. NMR Structural Characterization of Oxygen Heterocyclic Compounds. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Banerjee A, Mohammed Breig SJ, Gómez A, Sánchez-Arévalo I, González-Faune P, Sarkar S, Bandopadhyay R, Vuree S, Cornejo J, Tapia J, Bravo G, Cabrera-Barjas G. Optimization and Characterization of a Novel Exopolysaccharide from Bacillus haynesii CamB6 for Food Applications. Biomolecules 2022; 12:834. [PMID: 35740959 PMCID: PMC9221024 DOI: 10.3390/biom12060834] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/13/2022] Open
Abstract
Extremophilic microorganisms often produce novel bioactive compounds to survive under harsh environmental conditions. Exopolysaccharides (EPSs), a constitutive part of bacterial biofilm, are functional biopolymers that act as a protecting sheath to the extremophilic bacteria and are of high industrial value. In this study, we elucidate a new EPS produced by thermophilic Bacillus haynesii CamB6 from a slightly acidic (pH 5.82) Campanario hot spring (56.4 °C) located in the Central Andean Mountains of Chile. Physicochemical properties of the EPS were characterized by different techniques: Scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS), Atomic Force Microscopy (AFM), High-Performance Liquid Chromatography (HPLC), Gel permeation chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), 1D and 2D Nuclear Magnetic Resonance (NMR), and Thermogravimetric analysis (TGA). The EPS demonstrated amorphous surface roughness composed of evenly distributed macromolecular lumps. GPC and HPLC analysis showed that the EPS is a low molecular weight heteropolymer composed of mannose (66%), glucose (20%), and galactose (14%). FTIR analysis demonstrated the polysaccharide nature (-OH groups, Acetyl groups, and pyranosic ring structure) and the presence of different glycosidic linkages among sugar residues, which was further confirmed by NMR spectroscopic analyses. Moreover, D-mannose α-(1→2) and α-(1→4) linkages prevail in the CamB6 EPS structure. TGA revealed the high thermal stability (240 °C) of the polysaccharide. The functional properties of the EPS were evaluated for food industry applications, specifically as an antioxidant and for its emulsification, water-holding (WHC), oil-holding (OHC), and flocculation capacities. The results suggest that the study EPS can be a useful additive for the food-processing industry.
Collapse
Affiliation(s)
- Aparna Banerjee
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule, Talca 3466706, Chile;
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3466706, Chile;
| | - Sura Jasem Mohammed Breig
- Department of Biochemical Engineering, Al-khawarizmi Collage of Engineering, University of Baghdad, Baghdad 10011, Iraq;
| | - Aleydis Gómez
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3466706, Chile;
| | - Ignacio Sánchez-Arévalo
- Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3466706, Chile; (I.S.-A.); (P.G.-F.)
| | - Patricio González-Faune
- Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3466706, Chile; (I.S.-A.); (P.G.-F.)
| | - Shrabana Sarkar
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule, Talca 3466706, Chile;
- UGC Center of Advanced Study, Department of Botany, The University of Burdwan, Burdwan 713104, India;
| | - Rajib Bandopadhyay
- UGC Center of Advanced Study, Department of Botany, The University of Burdwan, Burdwan 713104, India;
| | - Sugunakar Vuree
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Jorge Cornejo
- Institute of Chemistry and Natural Resources, Universidad de Talca, Talca 3460000, Chile; (J.C.); (J.T.)
| | - Jaime Tapia
- Institute of Chemistry and Natural Resources, Universidad de Talca, Talca 3460000, Chile; (J.C.); (J.T.)
| | - Gaston Bravo
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Av. Cordillera 2634, Parque Industrial Coronel, Coronel 3349001, Chile;
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Av. Cordillera 2634, Parque Industrial Coronel, Coronel 3349001, Chile;
| |
Collapse
|
40
|
Structural characterization and antioxidant activity of polysaccharides extracted from Chinese yam by a cellulase-assisted method. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Antioxidant and Antibacterial Activities of a Purified Polysaccharide Extracted from Ceratonia siliqua L. and Its Involvement in the Enhancement Performance of Whipped Cream. SEPARATIONS 2022. [DOI: 10.3390/separations9050117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The main objective discussed in this research was to determine the structural characteristics of carob kibble water-soluble polysaccharide (KWSP), extracted from Ceratonia siliqua L., and to assess its in vitro antioxidant activities, as well as its effect on whipped cream. The results obtained through 13C, 1H, and the hetero-nuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FT-IR) analysis indicated that KWSP had the characteristic bands of polysaccharides. Thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) suggested that KWSP is a hetero-polysaccharide composed of glucose and fructose, with an average molecular weight (Mw) amounting to 65 KDa. In addition, KWSP showed a good water holding capacity (WHC), a good oil holding capacity (OHC), and an emulsification stability, rated as 3.14 ± 0.05 g/g, 0.87 ± 0.02 g/g, and 71 ± 0.01%, respectively. The antioxidant activity of KWSP was investigated in vitro, demonstrating important DPPH and ABTS⋅+ radical scavenging activities and a good total antioxidant capacity. KWSP exhibited antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, and Salmonella enterica. On the other hand, the incorporation of KWSP in whipped cream was investigated, to enhance its antioxidant capacity and consequently to extend its expiration date. Moreover, KWSP reduces the formation of conjugated dienes and trienes in cream fat.
Collapse
|
42
|
You J, Lee S, Tark HJ, Nang MJ, Oh JH, Choi I. Optical Detection of Copper Ions via Structural Dissociation of Plasmonic Sugar Nanoprobes. Anal Chem 2022; 94:5521-5529. [PMID: 35344342 DOI: 10.1021/acs.analchem.1c04340] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heavy metal ions are known to cause environmental pollution and several human diseases because of their inherent toxicity. Among them, Cu2+ is an essential element for the human body, but its continuous exposure and accumulation may cause adverse effects. Thus, copper ion levels in aquatic environments are strictly regulated by international standards. Herein, we demonstrate a simple optical method for detecting Cu2+ using plasmonic sugar nanoprobes (PSNs) composed of gold nanoparticles and polysaccharides. Gold precursors were reduced to nanoparticles and spontaneously embedded in the sugar-based polymeric network with the sulfated residues of carrageenan during the polymerization procedure. Owing to the abundant functional residues of PSNs and their affinity toward Cu2+, we observed the Cu2+-mediated preferential dissociation of the PSNs, resulting in absorbance spectral shifts and scattering shifts of the PSNs. Based on these plasmon band shifts, Cu2+ below the EPA regulation level of 20 μM can be easily detected by the optimized experimental condition. Additionally, the reaction mechanism between the PSNs and Cu2+ was elucidated by indepth spectroscopic analyses, which revealed that the increased binding of Cu2+ to the sulfate groups in the PSNs induces the eventual decomposition of the PSNs.
Collapse
Affiliation(s)
- Jieun You
- Department of Life Science, University of Seoul, 163 Siripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Seungki Lee
- Department of Life Science, University of Seoul, 163 Siripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Hyun Jin Tark
- Department of Life Science, University of Seoul, 163 Siripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Min Jeong Nang
- Department of Life Science, University of Seoul, 163 Siripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Ji Hyeon Oh
- Department of Life Science, University of Seoul, 163 Siripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, 163 Siripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.,Department of Applied Chemistry, University of Seoul, 163 Siripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| |
Collapse
|
43
|
Belakhov VV, Boikova IV, Krasnobaeva IL, Kolodyaznaya VA. Preparation and Insecticidal Activity of the First Organofluorine Insecticide Based on β-D-Ribofuranoside Monosaccharide. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363221130181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Furevi A, Ruda A, Angles d’Ortoli T, Mobarak H, Ståhle J, Hamark C, Fontana C, Engström O, Apostolica P, Widmalm G. Complete 1H and 13C NMR chemical shift assignments of mono-to tetrasaccharides as basis for NMR chemical shift predictions of oligo- and polysaccharides using the computer program CASPER. Carbohydr Res 2022; 513:108528. [DOI: 10.1016/j.carres.2022.108528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/02/2023]
|
45
|
Bharadwaj VS, Westawker LP, Crowley MF. Towards Elucidating Structure–Spectra Relationships in Rhamnogalacturonan II: Computational Protocols for Accurate 13C and 1H Shifts for Apiose and Its Borate Esters. Front Mol Biosci 2022; 8:756219. [PMID: 35141275 PMCID: PMC8820409 DOI: 10.3389/fmolb.2021.756219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Apiose is a naturally occurring, uncommon branched-chain pentose found in plant cell walls as part of the complex polysaccharide Rhamnogalacturonan II (RG-II). The structural elucidation of the three-dimensional structure of RG-II by nuclear magnetic resonance (NMR) spectroscopy is significantly complicated by the ability of apiose to cross-link via borate ester linkages to form RG-II dimers. Here, we developed a computational approach to gain insight into the structure–spectra relationships of apio–borate complexes in an effort to complement experimental assignments of NMR signals in RG-II. Our protocol involved structure optimizations using density functional theory (DFT) followed by isotropic magnetic shielding constant calculations using the gauge-invariant atomic orbital (GIAO) approach to predict chemical shifts. We evaluated the accuracy of 23 different functional–basis set (FBS) combinations with and without implicit solvation for predicting the experimental 1H and 13C shifts of a methyl apioside and its three borate derivatives. The computed NMR predictions were evaluated on the basis of the overall shift accuracy, relative shift ordering, and the ability to distinguish between dimers and monomers. We demonstrate that the consideration of implicit solvation during geometry optimizations in addition to the magnetic shielding constant calculations greatly increases the accuracy of NMR chemical shift predictions and can correctly reproduce the ordering of the 13C shifts and yield predictions that are, on average, within 1.50 ppm for 13C and 0.12 ppm for 1H shifts for apio–borate compounds.
Collapse
|
46
|
Santagata G, Cimmino A, Poggetto GD, Zannini D, Masi M, Emendato A, Surico G, Evidente A. Polysaccharide Based Polymers Produced by Scabby Cankered Cactus Pear ( Opuntia ficus-indica L.) Infected by Neofusicoccum batangarum: Composition, Structure, and Chemico-Physical Properties. Biomolecules 2022; 12:89. [PMID: 35053237 PMCID: PMC8773635 DOI: 10.3390/biom12010089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
Neofusiccocum batangarum is the causal agent of scabby canker of cactus pear (Opuntia ficus-indica L.). The symptoms of this disease are characterized by crusty, perennial cankers, with a leathery, brown halo. Characteristically, a viscous polysaccharide exudate, caking on contact with air, leaks from cankers and forms strips or cerebriform masses on the surface of cactus pear cladodes. When this polysaccharide mass was partial purified, surprisingly, generated a gel. The TLC analysis and the HPLC profile of methyl 2-(polyhydroxyalkyl)-3-(o-tolylthiocarbomoyl)-thiazolidine-4R-carboxylates obtained from the mixture of monosaccharides produced by acid hydrolysis of the three EPSs examined in this research work [the polysaccharide component of the exudate (EPSC) and the EPSs extracted from asymptomatic (EPSH) and symptomatic (EPSD) cladodes] showed the presence of d-galactose, l-rhamnose, and d-glucose in a 1:1:0.5 ratio in EPSC while d-galactose, l-rhamnose, d-glucose, and d-xylose at the same ratio were observed in EPSH and EPSD. The presence of uronic acid residues in EPSC was also showed by solid state NMR and IR investigation. Furthermore, this manuscript reports the chemical-physical characterization of the gel produced by the infected cactus pear.
Collapse
Affiliation(s)
- Gabriella Santagata
- Istituto per i Polimeri Compositi e Biomateriali, CNR, Via Campi Flegrei 34, Comprensorio “A. Olivetti”, 80078 Pozzuoli (NA), Italy; (G.D.P.); (D.Z.)
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (M.M.); (A.E.)
| | - Giovanni Dal Poggetto
- Istituto per i Polimeri Compositi e Biomateriali, CNR, Via Campi Flegrei 34, Comprensorio “A. Olivetti”, 80078 Pozzuoli (NA), Italy; (G.D.P.); (D.Z.)
| | - Domenico Zannini
- Istituto per i Polimeri Compositi e Biomateriali, CNR, Via Campi Flegrei 34, Comprensorio “A. Olivetti”, 80078 Pozzuoli (NA), Italy; (G.D.P.); (D.Z.)
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (M.M.); (A.E.)
| | - Alessandro Emendato
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Giuseppe Surico
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, Piazzale delle Cascine 28, 50144 Firenze, Italy;
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (M.M.); (A.E.)
| |
Collapse
|
47
|
Palivec V, Johannessen C, Kaminský J, Martinez-Seara H. Use of Raman and Raman optical activity to extract atomistic details of saccharides in aqueous solution. PLoS Comput Biol 2022; 18:e1009678. [PMID: 35051172 PMCID: PMC8806073 DOI: 10.1371/journal.pcbi.1009678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/01/2022] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Sugars are crucial components in biosystems and industrial applications. In aqueous environments, the natural state of short saccharides or charged glycosaminoglycans is floating and wiggling in solution. Therefore, tools to characterize their structure in a native aqueous environment are crucial but not always available. Here, we show that a combination of Raman/ROA and, on occasions, NMR experiments with Molecular Dynamics (MD) and Quantum Mechanics (QM) is a viable method to gain insights into structural features of sugars in solutions. Combining these methods provides information about accessible ring puckering conformers and their proportions. It also provides information about the conformation of the linkage between the sugar monomers, i.e., glycosidic bonds, allowing for identifying significantly accessible conformers and their relative abundance. For mixtures of sugar moieties, this method enables the deconvolution of the Raman/ROA spectra to find the actual amounts of its molecular constituents, serving as an effective analytical technique. For example, it allows calculating anomeric ratios for reducing sugars and analyzing more complex sugar mixtures to elucidate their real content. Altogether, we show that combining Raman/ROA spectroscopies with simulations is a versatile method applicable to saccharides. It allows for accessing many features with precision comparable to other methods routinely used for this task, making it a viable alternative. Furthermore, we prove that the proposed technique can scale up by studying the complicated raffinose trisaccharide, and therefore, we expect its wide adoption to characterize sugar structural features in solution.
Collapse
Affiliation(s)
- Vladimír Palivec
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
48
|
Singh R, Dhiman M, Saklani A, Immanuel Selvaraj C, Kate AS. Isolation and characterization of a novel flavanone glycoside from an endemic plant Haplanthodes neilgherryensis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:96-101. [PMID: 33555214 DOI: 10.1080/10286020.2021.1880394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The chemical characterization study of an endemic plant, Haplanthodes neilgherryensisis (Wight) R.B. Majumdar from Western Ghats of India, resulted in to the isolation of a new flavanone glycoside, 5-hydroxy-7-methoxy-8-O-β-D-glucopyranosyl-2S-flavanone (1), along with 3 known flavonoids, 7-O-methyl dihydrowogonin (2), 7-O-methyl wogonin (3), andrographidine C (4). The structure of 1 was elucidated by using 1 D and 2 D NMR and HRMS experimental data, while for the known compounds, 1H NMR and mass spectrometry data were compared with the reported literature. Compound 1 was tested in vitro to check the improvement in uptake of glucose by the L6 rat skeletal muscle tissues and the observed EC50 value was 5.8 µM, while rosiglitazone showed EC50 of 2.7 µM.
Collapse
Affiliation(s)
- Ruchi Singh
- Natural Products-Botany, Piramal Enterprises Ltd, Mumbai 400070, India
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore 632014, India
| | - Mini Dhiman
- Natural Products-Bioactivity Lab, Piramal Enterprises Ltd, Mumbai 400070, India
| | - Arvind Saklani
- Natural Products-Botany, Piramal Enterprises Ltd, Mumbai 400070, India
| | - C Immanuel Selvaraj
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore 632014, India
| | - Abhijeet S Kate
- Natural Products-Bioactivity Lab, Piramal Enterprises Ltd, Mumbai 400070, India
- National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
49
|
Cao F, Liang M, Liu J, Liu Y, Renye JA, Qi PX, Ren D. Characterization of an exopolysaccharide (EPS-3A) produced by Streptococcus thermophilus ZJUIDS-2-01 isolated from traditional yak yogurt. Int J Biol Macromol 2021; 192:1331-1343. [PMID: 34673108 DOI: 10.1016/j.ijbiomac.2021.10.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
Yak yogurt, one of the naturally fermented dairy products prepared by local herdsmen in the Qinghai-Tibet Plateau, contains a diverse array of microorganisms. We isolated and identified a novel Streptococcus thermophilus strain, ZJUIDS-2-01, from the traditional yak yogurt. We further purified and carried out detailed structural, physiochemical, and bioactivity studies of an exopolysaccharide (EPS-3A) produced by S. thermophilus ZJUIDS-2-01. The weight-average molecular weight (Mw) of EPS-3A was estimated to be 1.38 × 106 Da by High-Performance Gel Permeation Chromatography (HPGPC). The monosaccharide analysis established its composition to be glucose, galactose, N-acetyl-D-galactosamine, and rhamnose in a ratio of 5.2:2.5:6.4:1.0. The molecular structure of EPS-3A was determined by the combination of permethylation analysis, FT-IR, and NMR spectroscopic techniques. The ζ-potential measurements indicated that EPS-3A had a pKa value of ~4.40. The DSC yielded a melting point (Tm) of 80.4 °C and enthalpy change (ΔH) of 578 J/g for EPS-3A, comparable to those of the xanthan gum (XG), a commercial EPS. EPS-3A exhibited better O/W emulsion stability and flocculating capacity than XG. Furthermore, it also demonstrated similar antioxidant activity to XG and promising in vitro antibacterial properties. This work evidenced that EPS-3A derived from S. thermophilus ZJUIDS-2-01 holds the potential for food and industrial applications.
Collapse
Affiliation(s)
- Feiwei Cao
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Mingming Liang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Liu
- College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | - John A Renye
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Phoebe X Qi
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA 19038, USA.
| | - Daxi Ren
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
50
|
Gabrielli V, Muñoz-García JC, Pergolizzi G, de Andrade P, Khimyak YZ, Field RA, Angulo J. Molecular Recognition of Natural and Non-Natural Substrates by Cellodextrin Phosphorylase from Ruminiclostridium Thermocellum Investigated by NMR Spectroscopy. Chemistry 2021; 27:15688-15698. [PMID: 34436794 PMCID: PMC9293210 DOI: 10.1002/chem.202102039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/08/2022]
Abstract
β‐1→4‐Glucan polysaccharides like cellulose, derivatives and analogues, are attracting attention due to their unique physicochemical properties, as ideal candidates for many different applications in biotechnology. Access to these polysaccharides with a high level of purity at scale is still challenging, and eco‐friendly alternatives by using enzymes in vitro are highly desirable. One prominent candidate enzyme is cellodextrin phosphorylase (CDP) from Ruminiclostridium thermocellum, which is able to yield cellulose oligomers from short cellodextrins and α‐d‐glucose 1‐phosphate (Glc‐1‐P) as substrates. Remarkably, its broad specificity towards donors and acceptors allows the generation of highly diverse cellulose‐based structures to produce novel materials. However, to fully exploit this CDP broad specificity, a detailed understanding of the molecular recognition of substrates by this enzyme in solution is needed. Herein, we provide a detailed investigation of the molecular recognition of ligands by CDP in solution by saturation transfer difference (STD) NMR spectroscopy, tr‐NOESY and protein‐ligand docking. Our results, discussed in the context of previous reaction kinetics data in the literature, allow a better understanding of the structural basis of the broad binding specificity of this biotechnologically relevant enzyme.
Collapse
Affiliation(s)
- Valeria Gabrielli
- School of Pharmacy, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Juan C Muñoz-García
- School of Pharmacy, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Giulia Pergolizzi
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich, NR4 7TH, UK
| | - Peterson de Andrade
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich, NR4 7TH, UK.,Present address, Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich, NR4 7TH, UK.,Present address, Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Jesús Angulo
- School of Pharmacy, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012, Seville, Spain.,Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092, Sevilla, Spain
| |
Collapse
|