1
|
Topçul MR, Çetin İ, Pulat E, Çalişkan M. Comparison of the effects of crizotinib as monotherapy and as combination therapy with butyric acid on different breast cancer cells. Oncol Lett 2025; 29:38. [PMID: 39530008 PMCID: PMC11551694 DOI: 10.3892/ol.2024.14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, there have been significant developments using combined therapies in cancer treatment. The present study aimed to determine the effects of using crizotinib alone and in combination with butyric acid on different types of breast cancer cells. A total of three different breast cancer models were used: MDA-MB-231, a triple negative model; MCF-7, a Luminal A model; and SKBR-3 cell line, a human epidermal growth factor receptor 2 positive model. In the experiments, proliferation rates and cell index values were obtained using the xCELLigence RTCA DP System, and mitotic index, bromodeoxyuridine labeling index and caspase activity were evaluated as cell kinetics parameters. The results showed that while proliferation rates, cell index values, mitotic index and bromodeoxyuridine labeling index decreased, caspase activity values increased. These results demonstrated that the combined application was more effective than the monotherapy application and could be used at lower concentrations than those drugs applied as monotherapy.
Collapse
Affiliation(s)
- Mehmet R Topçul
- Department of Biology, Faculty of Science, Istanbul University, Istanbul 34459, Turkey
| | - İdil Çetin
- Department of Biology, Faculty of Science, Istanbul University, Istanbul 34459, Turkey
| | - Ercan Pulat
- Division of Biology, Institute of Graduate Studies In Science, Istanbul University, Istanbul 34459, Turkey
| | - Mahmut Çalişkan
- Department of Biology, Faculty of Science, Istanbul University, Istanbul 34459, Turkey
| |
Collapse
|
2
|
Jabbarzadeh Kaboli P, Chen HF, Babaeizad A, Roustai Geraylow K, Yamaguchi H, Hung MC. Unlocking c-MET: A comprehensive journey into targeted therapies for breast cancer. Cancer Lett 2024; 588:216780. [PMID: 38462033 DOI: 10.1016/j.canlet.2024.216780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Breast cancer is the most common malignancy among women, posing a formidable health challenge worldwide. In this complex landscape, the c-MET (cellular-mesenchymal epithelial transition factor) receptor tyrosine kinase (RTK), also recognized as the hepatocyte growth factor (HGF) receptor (HGFR), emerges as a prominent protagonist, displaying overexpression in nearly 50% of breast cancer cases. Activation of c-MET by its ligand, HGF, secreted by neighboring mesenchymal cells, contributes to a cascade of tumorigenic processes, including cell proliferation, metastasis, angiogenesis, and immunosuppression. While c-MET inhibitors such as crizotinib, capmatinib, tepotinib and cabozantinib have garnered FDA approval for non-small cell lung cancer (NSCLC), their potential within breast cancer therapy is still undetermined. This comprehensive review embarks on a journey through structural biology, multifaceted functions, and intricate signaling pathways orchestrated by c-MET across cancer types. Furthermore, we highlight the pivotal role of c-MET-targeted therapies in breast cancer, offering a clinical perspective on this promising avenue of intervention. In this pursuit, we strive to unravel the potential of c-MET as a beacon of hope in the fight against breast cancer, unveiling new horizons for therapeutic innovation.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan; Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
3
|
Kumaki Y, Oda G, Ikeda S. Targeting MET Amplification: Opportunities and Obstacles in Therapeutic Approaches. Cancers (Basel) 2023; 15:4552. [PMID: 37760522 PMCID: PMC10526812 DOI: 10.3390/cancers15184552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The MET gene plays a vital role in cellular proliferation, earning it recognition as a principal oncogene. Therapies that target MET amplification have demonstrated promising results both in preclinical models and in specific clinical cases. A significant obstacle to these therapies is the ability to distinguish between focal amplification and polysomy, a task for which simple MET copy number measurement proves insufficient. To effectively differentiate between the two, it is crucial to utilize comparative measures, including in situ hybridization (ISH) with the centromere or next generation sequencing (NGS) with adjacent genes. Despite the promising potential of MET amplification treatment, the judicious selection of patients is paramount to maximize therapeutic efficacy. The effectiveness of MET inhibitors can fluctuate depending on the extent of MET amplification. Future research must seek to establish the ideal threshold value for MET amplification, identify the most efficacious combination therapies, and innovate new targeted treatments for patients exhibiting MET amplification.
Collapse
Affiliation(s)
- Yuichi Kumaki
- Department of Specialized Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan;
| | - Goshi Oda
- Department of Specialized Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan;
| | - Sadakatsu Ikeda
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Banerjee M, Devi Rajeswari V. A novel cross-communication of HIF-1α and HIF-2α with Wnt signaling in TNBC and influence of hypoxic microenvironment in the formation of an organ-on-chip model of breast cancer. Med Oncol 2023; 40:245. [PMID: 37454033 DOI: 10.1007/s12032-023-02112-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
The microenvironment role is very important in cancer development. The epithelial-mesenchymal transition of the cancer cells depends upon specific signaling and microenvironmental conditions, such as hypoxic conditions. The crosstalk between hypoxia and Wnt signaling through some molecular mechanism in TNBC is related. Cross-communication between hypoxia and Wnt signaling in cancer cells is known, but the detailed mechanism in TNBC is unknown. This review includes the role of the hypoxia microenvironment in TNBC and the novel crosstalk of the Wnt signaling and hypoxia. When targeted, the new pathway and crosstalk link may be a solution for metastatic TNBC and chemoresistance. The microenvironment influences cancer's metastasis, which changes from person to person. Therefore, organ-on-a-chip is a very novel model to test the drugs clinically before going for human trials, focusing on personalized medications can be done. The effect of the hypoxia microenvironment on breast cancer stem cells is still unknown. Apart from all the published papers, this paper mainly focuses only on the hypoxic microenvironment and its association with the growth of TNBC. The medicines or small proteins, drugs, mimics, and inhibitors targeting wnt and hypoxia genes are consolidated in this review paper.
Collapse
Affiliation(s)
- Manosi Banerjee
- Department of Biomedical Science, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Science, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
5
|
Komoto TT, Nishimura FG, Evangelista AF, de Freitas AJA, da Silva G, Silva WA, Peronni K, Marques MMC, Marins M, Fachin AL. Exploring the Therapeutic Potential of trans-Chalcone: Modulation of MicroRNAs Linked to Breast Cancer Progression in MCF-7 Cells. Int J Mol Sci 2023; 24:10785. [PMID: 37445965 DOI: 10.3390/ijms241310785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer is responsible for 25% of all cancers that affect women. Due to its high heterogeneity pattern in clinical diagnosis and its molecular profile differences, researchers have been seeking new targets and therapies, with more specificity and fewer side effects. Thus, one compound that has garnered our attention is trans-chalcone, which is naturally occurring in various plants and possesses promising biological properties, including antitumor effects. MiRNA is an extensive class of non-coding small, endogenous, and single-stranded RNAs, and it is involved in post-translational gene regulation. Therefore, the objective of this study was to investigate the effects of TChal on miRNAs expression and its relationship with anticancer activity against MCF-7. Initially, the trans-chalcone IC50 value was established by MTT assay for MCF-7and HaCat (non-cancer cell), in which we found out that it was 53.73 and 44.18 μM, respectively. Subsequently, we treated MCF-7 cells with trans-chalcone at its IC50 concentration and performed Mi-seq analysis, which unveiled 23 differentially expressed miRNAs. From this set, we selected five miRNAs (miR-25-5p, miR-27a-3p, miR-891a, miR-449a, and miR-4485) for further validation using qRT-PCR, guided by in silico analysis and their known association with tumorigenesis. In conclusion, our research provides valuable insights into the potential use of TChal to reveal MicroRNAs molecular targets that can be applied in breast cancer therapy.
Collapse
Affiliation(s)
- Tatiana Takahasi Komoto
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto 14096-900, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos 14784-400, Brazil
| | - Felipe Garcia Nishimura
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto 14096-900, Brazil
| | - Adriane Feijó Evangelista
- Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Manguinhos, Rio de Janeiro 21040-361, Brazil
| | - Ana Julia Aguiar de Freitas
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos 14784-400, Brazil
| | - Gabriel da Silva
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto 14096-900, Brazil
| | - Wilson Araujo Silva
- Center for Medical Genomics at the Clinics Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Kamila Peronni
- Center for Medical Genomics at the Clinics Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | | | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto 14096-900, Brazil
| | - Ana Lucia Fachin
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto 14096-900, Brazil
| |
Collapse
|
6
|
|
7
|
Peng Y, Wang Y, Zhou C, Mei W, Zeng C. PI3K/Akt/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Front Oncol 2022; 12:819128. [PMID: 35402264 PMCID: PMC8987494 DOI: 10.3389/fonc.2022.819128] [Citation(s) in RCA: 291] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is a severe public health issue that is a leading cause of mortality globally. It is also an impediment to improving life expectancy worldwide. Furthermore, the global burden of cancer incidence and death is continuously growing. Current therapeutic options are insufficient for patients, and tumor complexity and heterogeneity necessitate customized medicine or targeted therapy. It is critical to identify potential cancer therapeutic targets. Aberrant activation of the PI3K/AKT/mTOR pathway has a significant role in carcinogenesis. This review summarized oncogenic PI3K/Akt/mTOR pathway alterations in cancer and various cancer hallmarks associated with the PI3K/AKT/mTOR pathway, such as cell proliferation, autophagy, apoptosis, angiogenesis, epithelial-to-mesenchymal transition (EMT), and chemoresistance. Importantly, this review provided recent advances in PI3K/AKT/mTOR inhibitor research. Overall, an in-depth understanding of the association between the PI3K/AKT/mTOR pathway and tumorigenesis and the development of therapies targeting the PI3K/AKT/mTOR pathway will help make clinical decisions.
Collapse
Affiliation(s)
- Yan Peng
- Department of Obstetrics, Longhua District Central Hospital, Shenzhen, China
| | - Yuanyuan Wang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Cheng Zhou
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| | - Wuxuan Mei
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
8
|
Migliaccio I, Paoli M, Risi E, Biagioni C, Biganzoli L, Benelli M, Malorni L. PIK3CA co-occurring mutations and copy-number gain in hormone receptor positive and HER2 negative breast cancer. NPJ Breast Cancer 2022; 8:24. [PMID: 35181669 PMCID: PMC8857304 DOI: 10.1038/s41523-022-00382-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/11/2022] [Indexed: 12/31/2022] Open
Abstract
We aim to elucidate the prognostic value of PIK3CA mutations and copy number (CN) gain (PIK3CA-mut/gain) in hormone receptor-positive and HER2-negative (HR + /HER2−) breast cancer (BC). We analyzed primary HR + /HER2− BC from three publicly available datasets comprising over 2000 samples and assessed the associations with tumoral and clinical characteristics and outcome. Clinical benefit (CB) in alpelisib-treated patients from two studies including 46 patients was analyzed. About 8–10% of HR + /HER2− primary BC had PIK3CA-mut/gain. In two of the datasets analyzed, among patients with PIK3CA mutant tumors, those with mut/gain had significantly worse outcome compared to those with CN neutral (PIK3CA-mut/neut) and PIK3CA-mut/gain remained an independent prognostic factor. CB of alpelisib-treated patients with PIK3CA-mut/gain and PIK3CA-mut/neut tumors was comparable. PIK3CA CN might help clarifying the prognostic and predictive role of PIK3CA mutations. Further studies are warranted.
Collapse
Affiliation(s)
- Ilenia Migliaccio
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy.
| | - Marta Paoli
- Bioinformatics Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy
| | - Emanuela Risi
- "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy
| | - Chiara Biagioni
- Bioinformatics Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy.,"Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy
| | - Laura Biganzoli
- "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy
| | - Luca Malorni
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy.,"Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy
| |
Collapse
|
9
|
Vitale SR, Martorana F, Stella S, Motta G, Inzerilli N, Massimino M, Tirrò E, Manzella L, Vigneri P. PI3K inhibition in breast cancer: Identifying and overcoming different flavors of resistance. Crit Rev Oncol Hematol 2021; 162:103334. [PMID: 33865994 DOI: 10.1016/j.critrevonc.2021.103334] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is commonly deregulated in many human tumors, including breast cancer. Somatic mutations of the PI3K alpha catalytic subunit (PIK3CA) are the most common cause of pathway hyperactivation. Hence, several PI3K inhibitors have been investigated with one of them, alpelisib, recently approved for the treatment of endocrine sensitive, PIK3CA mutated, metastatic breast cancer. Unfortunately, all patients receiving a PI3K inhibitor eventually develop resistance to these compounds. Mechanisms of resistance include oncogenic PI3K alterations, pathway reactivation through upstream or downstream effectors and enhancement of parallel pro-survival pathways. We review the prognostic and predictive role of PI3K alterations in breast cancer, focusing on resistance to PI3K inhibitors and on biomarkers with potential clinical relevance. We also discuss combination strategies that may overcome resistance to PI3K inhibitors, thus increasing the efficacy of these drugs in breast cancer.
Collapse
Affiliation(s)
- Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Medical Oncology A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Gianmarco Motta
- Medical Oncology A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Nicola Inzerilli
- Medical Oncology A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy; Medical Oncology A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy.
| |
Collapse
|
10
|
Malik R, Mambetsariev I, Fricke J, Chawla N, Nam A, Pharaon R, Salgia R. MET receptor in oncology: From biomarker to therapeutic target. Adv Cancer Res 2020; 147:259-301. [PMID: 32593403 DOI: 10.1016/bs.acr.2020.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
First discovered in the 1984, the MET receptor tyrosine kinase (RTK) and its ligand hepatocyte growth factor or HGF (also known as scatter factor or SF) are implicated as key players in tumor cell migration, proliferation, and invasion in a variety of cancers. This pathway also plays a key role during embryogenesis in the development of muscular and nervous structures. High expression of the MET receptor has been shown to correlate with poor prognosis and resistance to therapy. MET exon 14 splicing variants, initially identified by us in lung cancer, is actionable through various tyrosine kinase inhibitors (TKIs). For this reason, this pathway is of interest as a therapeutic target. In this chapter we will be discussing the history of MET, the genetics of this RTK, and give some background on the receptor biology. Furthermore, we will discuss directed therapeutics, mechanisms of resistance, and the future of MET as a therapeutic target.
Collapse
Affiliation(s)
- Raeva Malik
- George Washington University Hospital, Washington, DC, United States
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Jeremy Fricke
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Neal Chawla
- Department of Medicine, Advocate Illinois Masonic Medical Center, Chicago, IL, United States
| | - Arin Nam
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Rebecca Pharaon
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States.
| |
Collapse
|
11
|
Chia SKL, Martin M, Holmes FA, Ejlertsen B, Delaloge S, Moy B, Iwata H, von Minckwitz G, Mansi J, Barrios CH, Gnant M, Tomašević Z, Denduluri N, Šeparović R, Kim SB, Jakobsen EH, Harvey V, Robert N, Smith J, Harker G, Zhang B, Eli LD, Ye Y, Lalani AS, Buyse M, Chan A. PIK3CA alterations and benefit with neratinib: analysis from the randomized, double-blind, placebo-controlled, phase III ExteNET trial. Breast Cancer Res 2019; 21:39. [PMID: 30867034 PMCID: PMC6417207 DOI: 10.1186/s13058-019-1115-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/04/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neratinib is an irreversible pan-HER tyrosine kinase inhibitor that inhibits PI3K/Akt and MAPK signaling pathways after HER2 receptor activation. The ExteNET study showed that neratinib significantly improved 5-year invasive disease-free survival (iDFS) in women who completed trastuzumab-based adjuvant therapy for early breast cancer (EBC). We assessed the prognostic and predictive significance of PIK3CA alterations in patients in ExteNET. METHODS Participants were women aged ≥ 18 years (≥ 20 years in Japan) with stage 1-3c (modified to stage 2-3c in February 2010) operable breast cancer, who had completed (neo)adjuvant chemotherapy plus trastuzumab ≤ 2 years before randomization, with no evidence of disease recurrence or metastatic disease at study entry. Patients were randomized to oral neratinib 240 mg/day or placebo for 1 year. Formalin-fixed, paraffin-embedded primary tumor specimens underwent polymerase chain reaction (PCR) PIK3CA testing for two hotspot mutations in exon 9, one hot-spot mutation in exon 20, and fluorescence in situ hybridization (FISH) analysis for PIK3CA amplification. The primary endpoint (iDFS) was tested with log-rank test and hazard ratios (HRs) estimated using Cox proportional-hazards models. RESULTS Among the intent-to-treat population (n = 2840), tumor specimens were available for PCR testing (991 patients) and PIK3CA FISH (702 patients). Overall, 262 samples were PIK3CA altered: 201 were mutated (77%), 52 (20%) were amplified, and 9 (3%) were mutated and amplified. iDFS was non-significantly worse in placebo-treated patients with altered vs wild-type PIK3CA (HR 1.34; 95% CI 0.72-2.50; P = 0.357). Neratinib's effect over placebo was significant in patients with PIK3CA-altered tumors (HR 0.41; 95% CI 0.17-0.90, P = 0.028) but not PIK3CA wild-type tumors (HR 0.72; 95% CI 0.36-1.41; P = 0.34). The interaction test was non-significant (P = 0.309). CONCLUSIONS Although there was a greater absolute risk reduction associated with neratinib treatment of patients with PIK3CA-altered tumors in ExteNET, current data do not support PIK3CA alteration as a predictive biomarker of response to neratinib in HER2-positive EBC. TRIAL REGISTRATION ClinicalTrials.gov , NCT00878709 . Trial registered April 9, 2009.
Collapse
Affiliation(s)
- Stephen K L Chia
- British Columbia Cancer Agency, University of British Columbia, 600 West 10th Avenue, Vancouver, British Columbia, V5Z4E6, Canada.
| | - Miguel Martin
- Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | - Beverly Moy
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Gunter von Minckwitz
- Luisenkrankenhaus, German Breast Group Forschungs GmbH, Düsseldorf, Neu-isenburg, Germany
| | - Janine Mansi
- Biomedical Research Centre, Guy's Hospital, King's College London, London, UK
| | - Carlos H Barrios
- Pontifical Catholic University of Rio Grande do Sul School of Medicine, Porto Alegre, Brazil
| | - Michael Gnant
- Department of Surgery and Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Zorica Tomašević
- Daily Chemotherapy Hospital, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | | | - Robert Šeparović
- University Hospital for Tumors, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Sung-Bae Kim
- Asan Medical Center, University of Ulsan, Seoul, Korea
| | | | - Vernon Harvey
- Auckland City Hospital, Grafton, Auckland, New Zealand
| | - Nicholas Robert
- McKesson Specialty Health and The US Oncology Network, The Woodlands, TX, USA
| | | | | | - Bo Zhang
- Puma Biotechnology, Inc., Los Angeles, CA, USA
| | - Lisa D Eli
- Puma Biotechnology, Inc., Los Angeles, CA, USA
| | - Yining Ye
- Puma Biotechnology, Inc., Los Angeles, CA, USA
| | | | - Marc Buyse
- International Drug Development Institute (IDDI), Louvain-la-Neuve, Belgium
| | - Arlene Chan
- Breast Cancer Research Centre-WA, Perth & Curtin University, Nedlands, Australia
| |
Collapse
|
12
|
Siddique AB, Ebrahim HY, Akl MR, Ayoub NM, Goda AA, Mohyeldin MM, Nagumalli SK, Hananeh WM, Liu YY, Meyer SA, El Sayed KA. (-)-Oleocanthal Combined with Lapatinib Treatment Synergized against HER-2 Positive Breast Cancer In Vitro and In Vivo. Nutrients 2019; 11:nu11020412. [PMID: 30781364 PMCID: PMC6412724 DOI: 10.3390/nu11020412] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of epidermal growth factor receptor (EGFR)/human epidermal growth factor-2 (HER2) family is a hallmark of aggressive breast cancer. Small-molecule tyrosine kinase inhibitors are among the most effective cancer targeted treatments. (−)-Oleocanthal (OC) is a naturally occurring phenolic secoiridoid lead from extra-virgin olive oil with documented anti-cancer activities via targeting mesenchymal epithelial transition factor (c-Met). Dysregulation of c-Met promotes aggressiveness to breast cancer-targeted therapies. Lapatinib (LP) is an FDA-approved dual EGFR/HER2 inhibitor for HER2-amplified breast cancer. HER2-Positive tumor cells can escape targeted therapies like LP effects by overexpressing c-Met. Combined OC-LP treatment is hypothesized to be mechanistically synergistic against HER2-overexpressing breast cancer. Combined sub-effective treatments of OC-LP resulted in synergistic anti-proliferative effects against the HER2-positive BT-474 and SK-BR-3 breast cancer cell lines, compared to OC or LP monotherapy. Antibody array and Western blot analysis showed that combined OC-LP treatment significantly inhibited EGFR, HER2, and c-Met receptor activation, as well as multiple downstream signaling proteins, compared to individual OC or LP treatment. OC-LP Combination significantly inhibited invasion and migration of breast cancer cells through reduced activation of focal adhesion kinase (FAK) and paxillin. Combined treatment of OC-10 mg/kg with LP-12.5 mg/kg suppressed more than 90% of BT-474 tumor cells growth in a nude mouse xenograft model, compared to individual OC or LP treatment. Activated c-Met, EGFR, HER2, and protein kinase B (AKT) were significantly suppressed in combination-treated mice tumors, compared to OC or LP monotherapy. This study reveals the OC future potential as combination therapy to sensitize HER2-overexpressing breast cancers and significantly reduce required doses of targeted HER family therapeutics.
Collapse
Affiliation(s)
- Abu Bakar Siddique
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Hassan Y Ebrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Mohamed R Akl
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Amira A Goda
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Mohamed M Mohyeldin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Suresh K Nagumalli
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Wael M Hananeh
- Department of Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology (JUST), Irbid 22110, Jordan.
| | - Yong-Yu Liu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Sharon A Meyer
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Khalid A El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| |
Collapse
|
13
|
Greish K, Nehoff H, Bahman F, Pritchard T, Taurin S. Raloxifene nano-micelles effect on triple-negative breast cancer is mediated through estrogen receptor-β and epidermal growth factor receptor. J Drug Target 2019; 27:903-916. [PMID: 30615483 DOI: 10.1080/1061186x.2019.1566341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that differs in progression, recurrence, and prognosis from other forms of breast cancer. The heterogeneity of TNBC has remained a challenge as no targeted therapy is currently available. Previously, we and others have demonstrated that raloxifene, a selective oestrogen receptor modulator, was also acting independently of the oestrogen receptor-α. However, raloxifene is characterised by a low bioavailability in vivo. Thus, we encapsulated raloxifene into a styrene-maleic acid (SMA) micelle to improve its pharmacokinetics. The micellar raloxifene had higher cytotoxicity when compared to the free formulation, promoted a higher cellular uptake and affected critical signalling pathways. Furthermore, SMA-raloxifene reduced TNBC tumour growth more efficiently than free raloxifene. Finally, we showed that this effect was partially mediated through oestrogen receptor-β. In conclusion, we have provided new insight into the role of raloxifene nanoformulation in improving the management of TNBC.
Collapse
Affiliation(s)
- Khaled Greish
- a Department of Molecular Medicine, and Nanomedicine Unit , College of Medicine and Medical Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University , Manama , Kingdom of Bahrain.,b Department of Oncology , Suez Canal University , Ismailia , Egypt
| | - Hayley Nehoff
- c Department of Pharmacology and Toxicology , University of Otago , Dunedin , New Zealand
| | - Fatemah Bahman
- a Department of Molecular Medicine, and Nanomedicine Unit , College of Medicine and Medical Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University , Manama , Kingdom of Bahrain
| | - Tara Pritchard
- d Malaghan Institute of Medical Research , Wellington , New Zealand
| | - Sebastien Taurin
- a Department of Molecular Medicine, and Nanomedicine Unit , College of Medicine and Medical Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University , Manama , Kingdom of Bahrain
| |
Collapse
|
14
|
Rahimi M, Behjat F, Taheri N, Hosseini S, Khorram Khorshid HR, Aghakhani Moghaddam F, Karimlou M, Ghasemi S, Bazazzadegan N, SiratI F, KeyhanI E. Correlation between important genes of mTOR pathway ( PI3K and KIT) in Iranian women with sporadic breast cancer. Med J Islam Repub Iran 2018; 32:135. [PMID: 30815430 PMCID: PMC6387810 DOI: 10.14196/mjiri.32.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Indexed: 11/18/2022] Open
Abstract
Background: PI3K/Akt/mTOR pathway is a crucial pathway in the angiogenesis, tumour growth and cell differentiation of several cancers. The PI3K and KIT genes are key genes of this pathway. Previous studies have reported the importance of these genes in the development of gastrointestinal carcinoma, leukaemia, and melanomas. The role of mutations and overexpression of PI3K and KIT genes in breast cancer has been previously proved. This study investigates the correlation between PI3K and KIT gene mutations in sporadic breast cancer. Methods: Multiplex Ligation-dependent Probe Amplification (MLPA) technique was used to determine the Copy Number Variation (CNV) of PI3K and KIT genes in 34 breast cancer tumours and PCR-sequencing was used to detect the mutation in PI3K exons 9 and 20. Results: Our results reported that 27% of patients had CNV of the KIT gene; whereas, 20% and 17.5% of patients, had mutation and CNV in the PI3K gene, respectively. We did not found a significant correlation between the mutations of PI3K and KIT genes. Conclusion: About two-tenth of the patients revealed CNV and lesser than two-tenth indicated mutation in the PI3K gene, whereas one-third of the patients demonstrated CNV in the KIT gene. Thus, administration of the PI3K and KIT gene inhibitor drugs might be proposed to suppress breast cancer in patients with mutation and CNV of each of these individual genes.
Collapse
Affiliation(s)
- Maryam Rahimi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farkhondeh Behjat
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nazanin Taheri
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shadi Hosseini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | | | - Masoud Karimlou
- Department of Epidemiology and Biostatistics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Saghar Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Niloofar Bazazzadegan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fereidoon SiratI
- Cancer Institute, Department of surgery- Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe KeyhanI
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
15
|
Liu S, Li S, Wang B, Liu W, Gagea M, Chen H, Sohn J, Parinyanitikul N, Primeau T, Do KA, Vande Woude GF, Mendelsohn J, Ueno NT, Mills GB, Tripathy D, Gonzalez-Angulo AM. Cooperative Effect of Oncogenic MET and PIK3CA in an HGF-Dominant Environment in Breast Cancer. Mol Cancer Ther 2018; 18:399-412. [PMID: 30518672 DOI: 10.1158/1535-7163.mct-18-0710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/30/2018] [Accepted: 11/28/2018] [Indexed: 01/08/2023]
Abstract
There is compelling evidence that oncogenic MET and PIK3CA signaling pathways contribute to breast cancer. However, the activity of pharmacologic targeting of either pathway is modest. Mechanisms of resistance to these monotherapies have not been clarified. Currently, commonly used mouse models are inadequate for studying the HGF-MET axis because mouse HGF does not bind human MET. We established human HGF-MET paired mouse models. In this study, we evaluated the cooperative effects of MET and PIK3CA in an environment with involvement of human HGF in vivo Oncogenic MET/PIK3CA synergistically induced aggressive behavior and resistance to each targeted therapy in an HGF-paracrine environment. Combined targeting of MET and PI3K abrogates resistance. Associated cell signaling changes were explored by functional proteomics. Consistently, combined targeting of MET and PI3K inhibited activation of associated oncogenic pathways. We also evaluated the response of tumor cells to HGF stimulation using breast cancer patient-derived xenografts (PDX). HGF stimulation induced significant phosphorylation of MET for all PDX lines detected to varying degrees. However, the levels of phosphorylated MET are not correlated with its expression, suggesting that MET expression level cannot be used as a sole criterion to recruit patients to clinical trials for MET-targeted therapy. Altogether, our data suggest that combined targeting of MET and PI3K could be a potential clinical strategy for breast cancer patients, where phosphorylated MET and PIK3CA mutation status would be biomarkers for selecting patients who are most likely to derive benefit from these cotargeted therapy.
Collapse
Affiliation(s)
- Shuying Liu
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shunqiang Li
- Section of Breast Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Bailiang Wang
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenbin Liu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huiqin Chen
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joohyuk Sohn
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Napa Parinyanitikul
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tina Primeau
- Section of Breast Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - John Mendelsohn
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ana M Gonzalez-Angulo
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
16
|
Jouali F, Marchoudi N, Talbi S, Bilal B, El Khasmi M, Rhaissi H, Fekkak J. Detection of PIK3/AKT pathway in Moroccan population with triple negative breast cancer. BMC Cancer 2018; 18:900. [PMID: 30227836 PMCID: PMC6145190 DOI: 10.1186/s12885-018-4811-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 09/12/2018] [Indexed: 02/08/2023] Open
Abstract
Background Triple Negative Breast Cancer (TNBC) is an aggressive form of breast cancer, that represents 10–20% of all breast carcinomas and characterized by the lack of a specific cell surface marker compared to other breast cancer subtypes. Due to the absence of molecular markers for TNBC his treatment options remains limited, without proven targeted therapies, which emphasize the need for discovering molecular markers that could be targeted for patient treatment, An important number of TNBC cases harbor aberrations in the phosphoinositide 3-kinase (PI3K) pathway, leading to constitutive activation of the downstream signaling pathway. Among mechanisms of PI3K enhancement, PIK3CA mutations are most frequently (~ 30%) observed, along with protein loss of PTEN and AKT activation by phosphorylation (pAkt). Therefore, we propose to analyze clinocopathologic and molecular characteristics of PI3K/AKT/PTEN pathway in Moroccan triple negative breast cancer patients. Methods We conducted a retrospective study of 39 patients diagnosed with triple negative breast cancer between early 2013 and 2016. In this study, we used the Ion Personal Genome Machine (PGM) and Ion Torrent Ampliseq Cancer panel to sequence hotspot regions from PIK3CA, AKT and PTEN genes to identify genetic mutations in 39 samples of TNBC subtype from Moroccan patients and to correlate the results with clinical-pathologic data. Results All patients were female with a median age of 46 years from (34–65). Most patients have had invasive ductal carcinoma (84.6%) and 69.2% of them were grade III SBR. Among the 39, 9 were right sided tumor patients and the remaining 30 were left-sided. Mutational analysis of PIK3CA gene was achieved in all TNBC patients. PIK3CA hotspot mutations were detected in 5/39 of TNBC (13%), in detail, among these 5 TNBC patients, one harbored mutation in exons 9 and four in exon 20. Conclusion The PI3KCA gene is highly activated and plays a crucial role in the pathogenesis of TNBC more, therefore, may be a potential therapeutic target to improve outcomes in patients.
Collapse
Affiliation(s)
- Farah Jouali
- Anoual Laboratory of Radio-Immuno Analysis, Angle Blvd Alexandrieet Blvd Anoual, 20360, Casablanca, Morocco. .,Laboratory of Pathophysiology and Molecular Genetics, Ben M'Sik Faculty of Science, 7955, Casablanca, Morocco.
| | - Nabila Marchoudi
- Anoual Laboratory of Radio-Immuno Analysis, Angle Blvd Alexandrieet Blvd Anoual, 20360, Casablanca, Morocco
| | - Salwa Talbi
- Department of Oncology, Center Hospital University Mohammed VI, 40080, Marrakech, Morocco
| | - Basma Bilal
- Department of Pathology, Center Hospital University Ibn Rochd, 20100, Casablanca, Morocco
| | - Mohamed El Khasmi
- Laboratory of Pathophysiology and Molecular Genetics, Ben M'Sik Faculty of Science, 7955, Casablanca, Morocco
| | - Houria Rhaissi
- Laboratory of Pathophysiology and Molecular Genetics, Ben M'Sik Faculty of Science, 7955, Casablanca, Morocco
| | - Jamal Fekkak
- Anoual Laboratory of Radio-Immuno Analysis, Angle Blvd Alexandrieet Blvd Anoual, 20360, Casablanca, Morocco
| |
Collapse
|
17
|
Wang M, Liang L, Lei X, Multani A, Meric-Bernstam F, Tripathy D, Wu Y, Chen H, Zhang H. Evaluation of cMET aberration by immunohistochemistry and fluorescence in situ hybridization (FISH) in triple negative breast cancers. Ann Diagn Pathol 2018; 35:69-76. [DOI: 10.1016/j.anndiagpath.2018.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
|
18
|
Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W, Liu B, Lei Y, Du S, Vuppalapati A, Luu HH, Haydon RC, He TC, Ren G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 2018; 5:77-106. [PMID: 30258937 PMCID: PMC6147049 DOI: 10.1016/j.gendis.2018.05.001] [Citation(s) in RCA: 723] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022] Open
Abstract
As the most commonly occurring cancer in women worldwide, breast cancer poses a formidable public health challenge on a global scale. Breast cancer consists of a group of biologically and molecularly heterogeneous diseases originated from the breast. While the risk factors associated with this cancer varies with respect to other cancers, genetic predisposition, most notably mutations in BRCA1 or BRCA2 gene, is an important causative factor for this malignancy. Breast cancers can begin in different areas of the breast, such as the ducts, the lobules, or the tissue in between. Within the large group of diverse breast carcinomas, there are various denoted types of breast cancer based on their invasiveness relative to the primary tumor sites. It is important to distinguish between the various subtypes because they have different prognoses and treatment implications. As there are remarkable parallels between normal development and breast cancer progression at the molecular level, it has been postulated that breast cancer may be derived from mammary cancer stem cells. Normal breast development and mammary stem cells are regulated by several signaling pathways, such as estrogen receptors (ERs), HER2, and Wnt/β-catenin signaling pathways, which control stem cell proliferation, cell death, cell differentiation, and cell motility. Furthermore, emerging evidence indicates that epigenetic regulations and noncoding RNAs may play important roles in breast cancer development and may contribute to the heterogeneity and metastatic aspects of breast cancer, especially for triple-negative breast cancer. This review provides a comprehensive survey of the molecular, cellular and genetic aspects of breast cancer.
Collapse
Affiliation(s)
- Yixiao Feng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mia Spezia
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Shifeng Huang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, Yichang 443002, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiaojuan Ji
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Wei Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, China
| | - Bo Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yan Lei
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Scott Du
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Akhila Vuppalapati
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
19
|
Gao HF, Yang CQ, Cheng MY, Zhu T, Yang M, Zhang LL, Wang K. Prognostic Significance of Mesenchymal-Epithelial Transition in Triple-Negative Breast Cancers. Clin Breast Cancer 2018; 18:e961-e966. [PMID: 29880407 DOI: 10.1016/j.clbc.2018.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/07/2018] [Accepted: 04/28/2018] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The prognostic value of the mesenchymal-epithelial transition (MET) in triple-negative breast cancers (TNBCs) remains controversial. A meta-analysis of the impact of MET in TNBCs was performed by searching published data. METHODS PubMed and Embase databases were searched for eligible literature. The principal outcome measures were hazard ratios (HRs) for recurrence-free survival or overall survival according to MET expression. Combined HRs were calculated using fixed- or random-effects models according to heterogeneity. RESULTS Six studies involving 785 patients met our selection criteria. The meta-analysis results showed that MET overexpression was associated with a 1.29-fold increased risk of recurrence (combined HR 1.29; 95% confidence interval, 1.04-1.60; P = .020) in the TNBCs. Three studies provided the related overall survival data (488 cases). The results showed that MET overexpression was associated with a 1.38-fold increased risk of mortality (HR, 1.38; 95% confidence interval, 1.08-1.76; P = .009). CONCLUSION MET is an adverse prognostic marker for TNBCs. The results strengthen the rationale for targeted therapy of TNBCs using MET inhibitors in future clinical trials.
Collapse
Affiliation(s)
- Hong-Fei Gao
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ci-Qiu Yang
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Min-Yi Cheng
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Teng Zhu
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mei Yang
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liu-Lu Zhang
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
20
|
Rizzolo P, Navazio AS, Silvestri V, Valentini V, Zelli V, Zanna I, Masala G, Bianchi S, Scarnò M, Tommasi S, Palli D, Ottini L. Somatic alterations of targetable oncogenes are frequently observed in BRCA1/2 mutation negative male breast cancers. Oncotarget 2018; 7:74097-74106. [PMID: 27765917 PMCID: PMC5342038 DOI: 10.18632/oncotarget.12272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Male breast cancer (MBC) is a rare disease. Due to its rarity, MBC research and clinical approach are mostly based upon data derived from its largely known female counterpart. We aimed at investigating whether MBC cases harbor somatic alterations of genes known as prognostic biomarkers and molecular therapeutic targets in female breast cancer. We examined 103 MBC cases, all characterized for germ-line BRCA1/2 mutations, for somatic alterations in PIK3CA, EGFR, ESR1 and CCND1 genes. Pathogenic mutations of PIK3CA were detected in 2% of MBCs. No pathogenic mutations were identified in ESR1 and EGFR. Gene copy number variations (CNVs) analysis showed amplification of PIK3CA in 8.1%, EGFR in 6.8% and CCND1 in 16% of MBCs, whereas deletion of ESR1 was detected in 15% of MBCs. Somatic mutations and gene amplification were found only in BRCA1/2 mutation negative MBCs. Significant associations emerged between EGFR amplification and large tumor size (T4), ER-negative and HER2-positive status, between CCND1 amplification and HER2-positive and MIB1-positive status, and between ESR1 deletion and ER-negative status. Our results show that amplification of targetable oncogenes is frequent in BRCA1/2 mutation negative MBCs and may identify MBC subsets characterized by aggressive phenotype that may benefit from potential targeted therapeutic approaches.
Collapse
Affiliation(s)
- Piera Rizzolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Sara Navazio
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Veronica Zelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ines Zanna
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Giovanna Masala
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Simonetta Bianchi
- Division of Pathological Anatomy, Department of Medical and Surgical Critical Care, University of Florence, Florence, Italy
| | - Marco Scarnò
- CINECA (Inter University Consortium for Super Computing), Rome, Italy
| | - Stefania Tommasi
- Molecular Genetics Laboratory, Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
21
|
Veenstra C, Pérez-Tenorio G, Stelling A, Karlsson E, Mirwani SM, Nordensköljd B, Fornander T, Stål O. Met and its ligand HGF are associated with clinical outcome in breast cancer. Oncotarget 2018; 7:37145-37159. [PMID: 27175600 PMCID: PMC5095065 DOI: 10.18632/oncotarget.9268] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/26/2016] [Indexed: 12/22/2022] Open
Abstract
Few biomarkers exist to predict radiotherapy response in breast cancer. In vitro studies suggest a role for Met and its ligand HGF. To study this suggested role, MET and HGF gene copy numbers were determined by droplet digital PCR in tumours from 205 pre-menopausal and 184 post-menopausal patients, both cohorts randomised to receive either chemo- or radiotherapy. MET amplification was found in 8% of the patients in both cohorts and HGF amplification in 7% and 6% of the patients in the pre- and post-menopausal cohort, respectively. Met, phosphorylated Met (pMet), and HGF protein expression was determined by immunohistochemistry in the pre-menopausal cohort. Met, pMet, and HGF was expressed in 33%, 53%, and 49% of the tumours, respectively. MET amplification was associated with increased risk of distant recurrence for patients receiving chemotherapy. For the pre-menopausal patients, expression of cytoplasmic pMet and HGF significantly predicted benefit from radiotherapy in terms of loco-regional recurrence. Similar trends were seen for MET and HGF copy gain. In the post-menopausal cohort, no significant association of benefit from radiotherapy with neither genes nor proteins was found. The present results do not support that inhibition of Met prior to radiotherapy would be favourable for pre-menopausal breast cancer, as previously suggested.
Collapse
Affiliation(s)
- Cynthia Veenstra
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, Linköping, Sweden
| | - Gizeh Pérez-Tenorio
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, Linköping, Sweden
| | - Anna Stelling
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, Linköping, Sweden
| | - Elin Karlsson
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, Linköping, Sweden
| | - Sanam Mirwani Mirwani
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, Linköping, Sweden
| | - Bo Nordensköljd
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, Linköping, Sweden
| | - Tommy Fornander
- Department of Oncology-Pathology, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | - Olle Stål
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, Linköping, Sweden
| |
Collapse
|
22
|
Hosseini S, Behjati F, Rahimi M, Taheri N, Khoram Khorshid H, Aghakhani Moghaddam F, Ghasemi S, Karimlou M, Sirati F, Keyhani E. Relationship Between PIK3CA Amplification and P110α and CD34 Tissue Expression as Angiogenesis Markers in Iranian Women with Sporadic Breast Cancer. IRANIAN JOURNAL OF PATHOLOGY 2018; 13:447-453. [PMID: 30774684 PMCID: PMC6358562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/13/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE The PI3K/AKT/mTOR pathway is known to play an important role in regulating angiogenesis both in normal and breast cancer (BC) tissues. PIK3CA amplification was reported in various malignancies, including approximately 10% of BC cases. The aim of this study was to identify the frequency of PIK3CA amplification in Iranian female patients suffering from BC. Additionally, possible association between PIK3CA amplification and P110α expression with microvascular density (MVD) was examined. METHODS DNA samples were extracted from paraffin embedded tumor tissue blocks and copy number changes were evaluated by MLPA Technique. The results were analyzed by coffalyzer software. The tissue expression of P110α and CD34 was assessed using immunohistochemistry. RESULTS Ten out of 40 samples (17.5%) showed amplification in PIK3CA gene and 22 out of 40 samples (55%) showed overexpression in P110α. For CD34, from 40 samples, 20 (50%), 15 (37.5%) and 5 (12.5%) had scores 1+, 2+ and 3+, respectively. CONCLUSION No significant association was detected between gain of PIK3CA copy number and P110α or CD34 tissue expression.
Collapse
Affiliation(s)
- Shadi Hosseini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farkhondeh Behjati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Rahimi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nazanin Taheri
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | | | - Saghar Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Masoud Karimlou
- Dept. of Epidemiology and Biostatistics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Fereidoon Sirati
- Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Keyhani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran,Corresponding information: Elahe Keyhani, Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran, E-mail :
| |
Collapse
|
23
|
Ayoub NM, Al-Shami KM, Alqudah MA, Mhaidat NM. Crizotinib, a MET inhibitor, inhibits growth, migration, and invasion of breast cancer cells in vitro and synergizes with chemotherapeutic agents. Onco Targets Ther 2017; 10:4869-4883. [PMID: 29042798 PMCID: PMC5634371 DOI: 10.2147/ott.s148604] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MET is a receptor tyrosine kinase known for its pleiotropic effects in tumorigenesis. Dysregulations of MET expression and/or signaling have been reported and determined to be associated with inferior outcomes in breast cancer patients rendering MET a versatile candidate for targeted therapeutic intervention. Crizotinib is a multi-targeted small-molecule kinase inhibitor for MET, ALK, and ROS1 kinases. This study evaluated the anti-proliferative, cytotoxic, anti-migratory, and anti-invasive effects of crizotinib in breast cancer cells in vitro. Cell viability was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) colorimetric assay. In vitro wound-healing assay was used to examine the effect of crizotinib on breast cancer cell migration. The expressions of Ki-67, MET, and phospho-MET receptors were characterized using immunofluorescence staining. Results showed that crizotinib has significant anti-proliferative activity on all mammary tumor cells with IC50 values of 5.16, 1.5, and 3.85 µM in MDA-MB-231, MCF-7, and SK-BR-3 cells, respectively. Crizotinib induced cytotoxic effects in all breast cancer cells examined. Combined treatment of small dose of crizotinib with paclitaxel or doxorubicin exhibited a highly synergistic inhibition of growth of MDA-MB-231 and MCF-7 cells with combination index values <1 while no significant effect was observed in SK-BR-3 cells compared with individual compounds. Treatment with crizotinib demonstrated a remarkable reduction in the expression of Ki-67 protein in all 3 tested cell lines. Crizotinib inhibited migration and invasion of MDA-MB-231 cells in a dose-dependent fashion. Crizotinib reduced MET receptor activation in MDA-MB-231 cells when treated at effective concentrations. In conclusion, crizotinib suppressed proliferation, migration, and invasion of breast cancer cells in vitro. The results of this study demonstrated that combined treatment of crizotinib with chemotherapeutic agents resulted in a synergistic growth inhibition of specific breast cancer cell lines.
Collapse
Affiliation(s)
- Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Kamal M Al-Shami
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad A Alqudah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nizar M Mhaidat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
24
|
Sai J, Owens P, Novitskiy SV, Hawkins OE, Vilgelm AE, Yang J, Sobolik T, Lavender N, Johnson AC, McClain C, Ayers GD, Kelley MC, Sanders M, Mayer IA, Moses HL, Boothby M, Richmond A. PI3K Inhibition Reduces Mammary Tumor Growth and Facilitates Antitumor Immunity and Anti-PD1 Responses. Clin Cancer Res 2017; 23:3371-3384. [PMID: 28003307 PMCID: PMC5479746 DOI: 10.1158/1078-0432.ccr-16-2142] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/23/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
Purpose: Metastatic breast cancers continue to elude current therapeutic strategies, including those utilizing PI3K inhibitors. Given the prominent role of PI3Kα,β in tumor growth and PI3Kγ,δ in immune cell function, we sought to determine whether PI3K inhibition altered antitumor immunity.Experimental Design: The effect of PI3K inhibition on tumor growth, metastasis, and antitumor immune response was characterized in mouse models utilizing orthotopic implants of 4T1 or PyMT mammary tumors into syngeneic or PI3Kγ-null mice, and patient-derived breast cancer xenografts in humanized mice. Tumor-infiltrating leukocytes were characterized by IHC and FACS analysis in BKM120 (30 mg/kg, every day) or vehicle-treated mice and PI3Kγnull versus PI3KγWT mice. On the basis of the finding that PI3K inhibition resulted in a more inflammatory tumor leukocyte infiltrate, the therapeutic efficacy of BKM120 (30 mg/kg, every day) and anti-PD1 (100 μg, twice weekly) was evaluated in PyMT tumor-bearing mice.Results: Our findings show that PI3K activity facilitates tumor growth and surprisingly restrains tumor immune surveillance. These activities could be partially suppressed by BKM120 or by genetic deletion of PI3Kγ in the host. The antitumor effect of PI3Kγ loss in host, but not tumor, was partially reversed by CD8+ T-cell depletion. Treatment with therapeutic doses of both BKM120 and antibody to PD-1 resulted in consistent inhibition of tumor growth compared with either agent alone.Conclusions: PI3K inhibition slows tumor growth, enhances antitumor immunity, and heightens susceptibility to immune checkpoint inhibitors. We propose that combining PI3K inhibition with anti-PD1 may be a viable therapeutic approach for triple-negative breast cancer. Clin Cancer Res; 23(13); 3371-84. ©2016 AACR.
Collapse
Affiliation(s)
- Jiqing Sai
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Philip Owens
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | | | - Oriana E Hawkins
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Anna E Vilgelm
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Jinming Yang
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Tammy Sobolik
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Nicole Lavender
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Andrew C Johnson
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Colt McClain
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Gregory D Ayers
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee
| | - Mark C Kelley
- Department of Surgical Oncology, Vanderbilt University, Nashville, Tennessee
| | - Melinda Sanders
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Ingrid A Mayer
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Harold L Moses
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Mark Boothby
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee.
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
25
|
Fukumoto M, Ijuin T, Takenawa T. PI(3,4)P 2 plays critical roles in the regulation of focal adhesion dynamics of MDA-MB-231 breast cancer cells. Cancer Sci 2017; 108:941-951. [PMID: 28247964 PMCID: PMC5448597 DOI: 10.1111/cas.13215] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 01/16/2023] Open
Abstract
Phosphoinositides play pivotal roles in the regulation of cancer cell phenotypes. Among them, phosphatidylinositol 3,4‐bisphosphate (PI(3,4)P2) localizes to the invadopodia, and positively regulates tumor cell invasion. In this study, we examined the effect of PI(3,4)P2 on focal adhesion dynamics in MDA‐MB‐231 basal breast cancer cells. Knockdown of SHIP2, a phosphatidylinositol 3,4,5‐trisphosphatase (PIP3) 5‐phosphatase that generates PI(3,4)P2, in MDA‐MB‐231 breast cancer cells, induced the development of focal adhesions and cell spreading, leading to the suppression of invasion. In contrast, knockdown of PTEN, a 3‐phosphatase that de‐phosphorylates PIP3 and PI(3,4)P2, induced cell shrinkage and increased cell invasion. Interestingly, additional knockdown of SHIP2 rescued these phenotypes. Overexpression of the TAPP1 PH domain, which binds to PI(3,4)P2, and knockdown of Lpd, a downstream effector of PI(3,4)P2, resulted in similar phenotypes to those induced by SHIP2 knockdown. Taken together, our results suggest that inhibition of PI(3,4)P2 generation and/or downstream signaling could be useful for inhibiting breast cancer metastasis.
Collapse
Affiliation(s)
- Miki Fukumoto
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Ijuin
- Division of Biochemistry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadaomi Takenawa
- Division of Molecular and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
26
|
Yu T, Di G. Role of tumor microenvironment in triple-negative breast cancer and its prognostic significance. Chin J Cancer Res 2017; 29:237-252. [PMID: 28729775 PMCID: PMC5497211 DOI: 10.21147/j.issn.1000-9604.2017.03.10] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Breast cancer has been shown to live in the tumor microenvironment, which consists of not only breast cancer cells themselves but also a significant amount of pathophysiologically altered surrounding stroma and cells. Diverse components of the breast cancer microenvironment, such as suppressive immune cells, re-programmed fibroblast cells, altered extracellular matrix (ECM) and certain soluble factors, synergistically impede an effective anti-tumor response and promote breast cancer progression and metastasis. Among these components, stromal cells in the breast cancer microenvironment are characterized by molecular alterations and aberrant signaling pathways, whereas the ECM features biochemical and biomechanical changes. However, triple-negative breast cancer (TNBC), the most aggressive subtype of this disease that lacks effective therapies available for other subtypes, is considered to feature a unique microenvironment distinct from that of other subtypes, especially compared to Luminal A subtype. Because these changes are now considered to significantly impact breast cancer development and progression, these unique alterations may serve as promising prognostic factors of clinical outcome or potential therapeutic targets for the treatment of TNBC. In this review, we focus on the composition of the TNBC microenvironment, concomitant distinct biological alteration, specific interplay between various cell types and TNBC cells, and the prognostic implications of these findings.
Collapse
Affiliation(s)
- Tianjian Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Genhong Di
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
27
|
Tolaney SM, Ziehr DR, Guo H, Ng MR, Barry WT, Higgins MJ, Isakoff SJ, Brock JE, Ivanova EV, Paweletz CP, Demeo MK, Ramaiya NH, Overmoyer BA, Jain RK, Winer EP, Duda DG. Phase II and Biomarker Study of Cabozantinib in Metastatic Triple-Negative Breast Cancer Patients. Oncologist 2017; 22:25-32. [PMID: 27789775 PMCID: PMC5313267 DOI: 10.1634/theoncologist.2016-0229] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/21/2016] [Indexed: 11/17/2022] Open
Abstract
Currently, no targeted therapies are available for metastatic triplenegative breast cancer (mTNBC). We evaluated the safety, efficacy, and biomarkers of response to cabozantinib, a multikinase inhibitor, in patients with mTNBC. We conducted a single arm phase II and biomarker study that enrolled patients with measurable mTNBC. Patients received cabozantinib (60 mg daily) on a 3-week cycle and were restaged after 6 weeks and then every 9 weeks. The primary endpoint was objective response rate. Predefined secondary endpoints included progression-free survival (PFS), toxicity, and tissue and blood circulating cell and protein biomarkers. Of 35 patients who initiated protocol therapy, 3 (9% [95% confidence interval (CI): 2, 26]) achieved a partial response (PR). Nine patients achieved stable disease (SD) for at least 15 weeks, and thus the clinical benefit rate (PR+SD) was 34% [95% CI: 19, 52]. Median PFS was 2.0 months [95% CI: 1.3, 3.3]. The most common toxicities were fatigue, diarrhea, mucositis, and palmar-plantar erythrodysesthesia. There were no grade 4 toxicities, but 12 patients (34%) required dose reduction. Two patients had TNBCs with MET amplification. During cabozantinib therapy, there were significant and durable increases in plasma placental growth factor, vascular endothelial growth factor (VEGF), VEGF-D, stromal cell-derived factor 1a, and carbonic anhydrase IX, and circulating CD3 + cells and CD8 + T lymphocytes, and decreases in plasma soluble VEGF receptor 2 and CD14+ monocytes (all p < .05). Higher baseline concentrations of soluble MET (sMET) associated with longer PFS (p = .03). In conclusion, cabozantinib showed encouraging safety and efficacy signals but did not meet the primary endpoint in pretreated mTNBC. Exploratory analyses of circulating biomarkers showed that cabozantinib induces systemic changes consistent with activation of the immune system and antiangiogenic activity, and that sMET should be further evaluated a potential biomarker of response. IMPLICATIONS FOR PRACTICE Triple-negative breast cancer (TNBC)-a disease with a dearth of effective therapies-often overexpress MET, which is associated with poor clinical outcomes. However, clinical studies of agents targeting MET and VEGF pathways-alone or in combination-have shown disappointing results. This study of cabozantinib (a dual VEGFR2/MET) in metastatic TNBC, while not meeting its prespecified endpoint, showed that treatment is associated with circulating biomarker changes, and is active in a subset of patients. Furthermore, this study demonstrates that cabozantinib therapy induces a systemic increase in cytotoxic lymphocyte populations and a decrease in immunosuppressive myeloid populations. This supports the testing of combinations of cabozantinib with immunotherapy in future studies in breast cancer patients.
Collapse
Affiliation(s)
| | - David R. Ziehr
- Department of MedicineMassachusetts General Hospital Cancer CenterBostonMassachusettsUSA
| | - Hao Guo
- Dana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Mei R. Ng
- Steele Laboratories, Department of Radiation OncologyMassachusetts General Hospital Research InstituteBostonMassachusettsUSA
| | | | - Michaela J. Higgins
- Department of MedicineMassachusetts General Hospital Cancer CenterBostonMassachusettsUSA
| | - Steven J. Isakoff
- Department of MedicineMassachusetts General Hospital Cancer CenterBostonMassachusettsUSA
| | | | | | | | | | | | | | - Rakesh K. Jain
- Steele Laboratories, Department of Radiation OncologyMassachusetts General Hospital Research InstituteBostonMassachusettsUSA
| | | | - Dan G. Duda
- Steele Laboratories, Department of Radiation OncologyMassachusetts General Hospital Research InstituteBostonMassachusettsUSA
| |
Collapse
|
28
|
Tolaney SM, Nechushtan H, Ron IG, Schöffski P, Awada A, Yasenchak CA, Laird AD, O'Keeffe B, Shapiro GI, Winer EP. Cabozantinib for metastatic breast carcinoma: results of a phase II placebo-controlled randomized discontinuation study. Breast Cancer Res Treat 2016; 160:305-312. [PMID: 27714541 PMCID: PMC5065609 DOI: 10.1007/s10549-016-4001-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/23/2016] [Indexed: 12/16/2022]
Abstract
Purpose Cabozantinib (XL184), a multi-targeted oral tyrosine kinase inhibitor with activity against MET, VEGFR2, AXL, and other tyrosine kinases, was assessed in a cohort of metastatic breast cancer (MBC) patients in a phase II randomized discontinuation trial (RDT). Methods Patients received 100 mg cabozantinib daily during a 12-week lead-in stage. Those with stable disease per modified Response Evaluation Criteria in Solid Tumors version 1.0 at 12 weeks were randomized to either continue cabozantinib or receive placebo. Primary endpoints were objective response rate (ORR) during the 12-week lead-in stage and progression-free survival (PFS) after randomization. Patients were also followed for overall survival (OS). Results Forty-five patients with MBC and a median of three prior lines of chemotherapy for metastatic disease were enrolled. The ORR during the lead-in stage was 13.6 % (95 % confidence interval [CI] 6–25.7 %), and the disease control rate at week 12 was 46.7 % (95 % CI 31.7–61.6 %). Per the initial RDT study design, patients with stable disease at week 12 were randomized to cabozantinib or placebo. Following a Study Oversight Committee recommendation, randomization was suspended. Patients in the lead-in stage continued on open-label cabozantinib. Patients in the randomization stage were subsequently unblinded. The overall median PFS for all MBC patients was 4.3 months. Median OS was 11.4 months (95 % CI 10.5–16.5 months). The most common grade 3/4 adverse events in the lead-in stage were palmar-plantar erythrodysesthesia (13 %) and fatigue (11 %). One death from respiratory failure was reported as drug-related during the lead-in stage. Conclusions In heavily pretreated MBC patients, cabozantinib monotherapy demonstrated clinical activity including objective response and disease control.
Collapse
Affiliation(s)
- Sara M Tolaney
- Department of Medical Oncology, Breast Oncology Center, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA. .,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Hovav Nechushtan
- Oncology Department, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ilan-Gil Ron
- Department of Oncology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Patrick Schöffski
- Department of General Medical Oncology, Leuven Cancer Institute, KU Leuven, Louvain, Belgium
| | - Ahmad Awada
- Medical Oncology, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Chris A Yasenchak
- Willamette Valley Cancer Institute, RiverBend Pavilion, Springfield, OR, USA
| | | | | | - Geoffrey I Shapiro
- Department of Medical Oncology, Breast Oncology Center, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Eric P Winer
- Department of Medical Oncology, Breast Oncology Center, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
29
|
Fleisher B, Clarke C, Ait-Oudhia S. Current advances in biomarkers for targeted therapy in triple-negative breast cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2016; 8:183-197. [PMID: 27785100 PMCID: PMC5063595 DOI: 10.2147/bctt.s114659] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is a complex heterogeneous disease characterized by the absence of three hallmark receptors: human epidermal growth factor receptor 2, estrogen receptor, and progesterone receptor. Compared to other breast cancer subtypes, TNBC is more aggressive, has a higher prevalence in African-Americans, and more frequently affects younger patients. Currently, TNBC lacks clinically accepted targets for tailored therapy, warranting the need for candidate biomarkers. BiomarkerBase, an online platform used to find biomarkers reported in clinical trials, was utilized to screen all potential biomarkers for TNBC and select only the ones registered in completed TNBC trials through clinicaltrials.gov. The selected candidate biomarkers were classified as surrogate, prognostic, predictive, or pharmacodynamic (PD) and organized by location in the blood, on the cell surface, in the cytoplasm, or in the nucleus. Blood biomarkers include vascular endothelial growth factor/vascular endothelial growth factor receptor and interleukin-8 (IL-8); cell surface biomarkers include EGFR, insulin-like growth factor binding protein, c-Kit, c-Met, and PD-L1; cytoplasm biomarkers include PIK3CA, pAKT/S6/p4E-BP1, PTEN, ALDH1, and the PIK3CA/AKT/mTOR-related metabolites; and nucleus biomarkers include BRCA1, the gluco-corticoid receptor, TP53, and Ki67. Candidate biomarkers were further organized into a "cellular protein network" that demonstrates potential connectivity. This review provides an inventory and reference point for promising biomarkers for breakthrough targeted therapies in TNBC.
Collapse
Affiliation(s)
- Brett Fleisher
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL
| | - Charlotte Clarke
- Department of Translational Research, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Sihem Ait-Oudhia
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL
| |
Collapse
|
30
|
Wang F, Li S, Zhao Y, Yang K, Chen M, Niu H, Yang J, Luo Y, Tang W, Sheng M. Predictive role of the overexpression for CXCR4, C-Met, and VEGF-C among breast cancer patients: A meta-analysis. Breast 2016; 28:45-53. [PMID: 27214240 DOI: 10.1016/j.breast.2016.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/27/2016] [Accepted: 04/29/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The overexpression of CXCR4, C-Met and VEGF-C present widely in breast tumors, they may be markers of resistance to treatment. However, the studies are still controversial. Thus, this meta-analysis aims to research the relationship between the overexpression of CXCR4, C-Met, VEGF-C and clinical prognosis among breast cancer patients. METHODS PubMed and EMBASE databases were searched for eligible literature. The outcomes of interest were progression-free survival (PFS), relapse-free survival (RFS) and overall survival (OS). All tests of statistical significance were two sided. RESULTS A total of 7830 patients from 28 eligible studies were assessed. The overexpression of the CXCR4 and C-Met both implied significantly worse PFS compared with normal expression [HR = 2.56, 95% CI = 1.34-4.91, P = 0.005; and HR = 1.63 95% CI = 1.20-2.22, P = 0.002]. Meanwhile, if patients had high expression of CXCR4, they would have worse OS [HR = 2.56 95% CI = 1.52-4.31, P = 0.000]. However, the overexpression of C-Met did not relate to OS for breast cancer patients [HR = 1.16, 95% CI = 0.69-1.95, P = 0.570]. Meanwhile, no statistically significant different was observed with respect to PFS and OS between VEGF-C overexpression and normal expression [HR = 0.99, 95% CI = 0.64-1.52, P = 0.968; and HR = 0.76, 95% CI = 0.43-1.33, P = 0.333]. CONCLUSIONS Our meta-analysis showed that CXCR4 and C-Met were efficient prognostic factors for breast cancer. Nevertheless, highly expressing VEGF-C was not related to progression-free survival and overall survival. Due to the small samples and insufficient date, further studies should be conducted to clarify the association between the overexpression of CXCR4 or C-Met or VEGF-C and the prognosis about breast cancer patients.
Collapse
Affiliation(s)
- Fang Wang
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Shanshan Li
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Yueguang Zhao
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Kunxian Yang
- First People's Hospital of Yunnan Province, 157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Minju Chen
- First People's Hospital of Yunnan Province, 157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Heng Niu
- First People's Hospital of Yunnan Province, 157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Jingyu Yang
- First People's Hospital of Yunnan Province, 157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Ying Luo
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Wenru Tang
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China.
| | - Miaomiao Sheng
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China.
| |
Collapse
|
31
|
Cossu-Rocca P, Orrù S, Muroni MR, Sanges F, Sotgiu G, Ena S, Pira G, Murgia L, Manca A, Uras MG, Sarobba MG, Urru S, De Miglio MR. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer. PLoS One 2015; 10:e0141763. [PMID: 26540293 PMCID: PMC4634768 DOI: 10.1371/journal.pone.0141763] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/12/2015] [Indexed: 12/19/2022] Open
Abstract
Background Triple Negative Breast Cancer (TNBC) accounts for 12–24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20–40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. Materials and Methods PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. Results PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Conclusions Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.
Collapse
Affiliation(s)
- Paolo Cossu-Rocca
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
- * E-mail:
| | - Sandra Orrù
- Department of Pathology, “A. Businco” Oncologic Hospital, ASL Cagliari, Cagliari, Italy
| | - Maria Rosaria Muroni
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Francesca Sanges
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Giovanni Sotgiu
- Epidemiology and Medical Statistics Unit, Department of Biomedical Sciences, University of Sassari, Research, Medical Education and Professional Development Unit, AOU Sassari, Sassari, Italy
| | - Sara Ena
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanna Pira
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Luciano Murgia
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | | | | | | | - Silvana Urru
- Biomedicine Sector, Center for Advanced Studies, Research and Development in Sardinia Technology Park Polaris, Cagliari, Italy
| | | |
Collapse
|
32
|
Cava C, Bertoli G, Castiglioni I. Integrating genetics and epigenetics in breast cancer: biological insights, experimental, computational methods and therapeutic potential. BMC SYSTEMS BIOLOGY 2015; 9:62. [PMID: 26391647 PMCID: PMC4578257 DOI: 10.1186/s12918-015-0211-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Development of human cancer can proceed through the accumulation of different genetic changes affecting the structure and function of the genome. Combined analyses of molecular data at multiple levels, such as DNA copy-number alteration, mRNA and miRNA expression, can clarify biological functions and pathways deregulated in cancer. The integrative methods that are used to investigate these data involve different fields, including biology, bioinformatics, and statistics. RESULTS These methodologies are presented in this review, and their implementation in breast cancer is discussed with a focus on integration strategies. We report current applications, recent studies and interesting results leading to the identification of candidate biomarkers for diagnosis, prognosis, and therapy in breast cancer by using both individual and combined analyses. CONCLUSION This review presents a state of art of the role of different technologies in breast cancer based on the integration of genetics and epigenetics, and shares some issues related to the new opportunities and challenges offered by the application of such integrative approaches.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| |
Collapse
|
33
|
Yan S, Jiao X, Zou H, Li K. Prognostic significance of c-Met in breast cancer: a meta-analysis of 6010 cases. Diagn Pathol 2015; 10:62. [PMID: 26047809 PMCID: PMC4458003 DOI: 10.1186/s13000-015-0296-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022] Open
Abstract
Background The prognostic value of c-Met in breast cancer remains controversial. A meta-analysis of the impact of c-Met in breast cancer was performed by searching published data. Methods Published studies analyzing overall survival (OS) or relapse free survival (RFS) according to c-Met expression were searched. The principal outcome measures were hazard ratios (HRs) for RFS or OS according to c-Met expression. Combined HRs were calculated using fixed- or random- effects models according to the heterogeneity. Results Twenty-one studies involving 6,010 patients met our selection criteria. The impact of c-Met on RFS and OS was investigated in 12 and 17 studies, respectively. The meta-analysis results showed that c-Met overexpression significantly predicted poor RFS and OS in unselected breast cancer. Subgroup analysis indicated that c-Met overexpression was correlated with poor RFS and OS in Western patients, but was not associated with RFS or OS in Asian patients. C-Met was associated with poor OS in lymph node negative breast cancer and with poor RFS in hormone-receptor positive and triple negative breast cancer, but was not associated with prognosis in human epidermal growth factor receptor (HER)-2 positive breast cancer. Conclusions C-Met overexpression is an adverse prognostic marker in breast cancer, except among Asian and HER-2 positive patients. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1869780799156041
Collapse
Affiliation(s)
- Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| | - Xin Jiao
- Department of Respiratory Medicine, Shenyang Chest Hospital, Shenyang, 110044, China.
| | - Huawei Zou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| | - Kai Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
34
|
Mukohara T. PI3K mutations in breast cancer: prognostic and therapeutic implications. BREAST CANCER-TARGETS AND THERAPY 2015; 7:111-23. [PMID: 26028978 PMCID: PMC4440424 DOI: 10.2147/bctt.s60696] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The PI3K pathway is the most frequently enhanced oncogenic pathway in breast cancer. Among mechanisms of PI3K enhancement, PIK3CA mutations are most frequently (∼30%) observed, along with protein loss of PTEN. Since the first discovery of PIK3CA mutations in solid malignancies in 2004, numerous studies have revealed the prognostic and therapeutic implications of these mutations. Although many issues remain unconfirmed, some have been carved in stone by the level of consistency they have shown among studies: 1) PIK3CA mutations are most likely to be observed in ER-positive/HER2-negative tumors, and are associated with other good prognostic characters; 2) PIK3CA mutations can coexist with other PI3K-enhancing mechanisms, such as HER2 amplification and PTEN protein loss; 3) PIK3CA mutations are potentially a good prognostic marker; 4) PIK3CA may predict a poorer tumor response to trastuzumab-based therapies, but its impact on disease-free survival and overall survival is uncertain; and 5) based on reports of early clinical trials, PIK3CA mutations do not guarantee a dramatic response to PI3K inhibitors. Collectively, there is currently no sufficient evidence to recommend routine genotyping of PIK3CA in clinical practice. Given that PIK3CA-mutant breast cancer appears to have a distinct tumor biology, development of more individualized targeted therapies based on the PIK3CA genotype is awaited.
Collapse
Affiliation(s)
- Toru Mukohara
- Cancer Center and Division of Medical Oncology/Hematology, Kobe University Hospital, Kobe, Japan
| |
Collapse
|
35
|
Cuesta Fernandez AE, Moroose RL. Lifestyle and Breast Cancer Incidence and Survival. Am J Lifestyle Med 2015. [DOI: 10.1177/1559827613508367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recently reported SEER data revealing an increase in the number of younger women who present with advanced breast cancer at diagnosis has led to much speculation regarding epidemiological factors that play a role in breast cancer risk and that may be modifiable by lifestyle. Molecular genomics has identified biological pathways that affect breast cancer prognosis and inform treatment decisions. Depending on menopausal status and breast cancer subtype, evidence is emerging that lifestyle could be implicated not only in the risk for breast cancer but also outcomes following breast cancer diagnosis. Several biologic mechanisms have been explored explaining the physiologic role of lifestyle and cancer risk and survival. In this report, we explore the interaction between lifestyle, breast cancer phenotype, and outcomes and review potential molecular mechanisms linking lifestyle to risk and prognosis in order to establish a platform for future exploration. The cost of breast cancer treatment and breast cancer morbidity and mortality during a woman’s productive years impose a psychosocial and socioeconomic burden on our nation. Efforts to ease that burden through lifestyle modification should be embraced and supported as we reevaluate and scrutinize the allocation of health care resources in our nation.
Collapse
|
36
|
Ho-Yen CM, Jones JL, Kermorgant S. The clinical and functional significance of c-Met in breast cancer: a review. Breast Cancer Res 2015; 17:52. [PMID: 25887320 PMCID: PMC4389345 DOI: 10.1186/s13058-015-0547-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/05/2015] [Indexed: 02/05/2023] Open
Abstract
c-Met is a receptor tyrosine kinase that upon binding of its ligand, hepatocyte growth factor (HGF), activates downstream pathways with diverse cellular functions that are important in organ development and cancer progression. Anomalous c-Met signalling has been described in a variety of cancer types, and the receptor is regarded as a novel therapeutic target. In breast cancer there is a need to develop new treatments, particularly for the aggressive subtypes such as triple-negative and basal-like cancer, which currently lack targeted therapy. Over the last two decades, much has been learnt about the functional role of c-Met signalling in different models of breast development and cancer. This work has been complemented by clinical studies, establishing the prognostic significance of c-Met in tissue samples of breast cancer. While the clinical trials of anti-c-Met therapy in advanced breast cancer progress, there is a need to review the existing evidence so that the potential of these treatments can be better appreciated. The aim of this article is to examine the role of HGF/c-Met signalling in in vitro and in vivo models of breast cancer, to describe the mechanisms of aberrant c-Met signalling in human tissues, and to give a brief overview of the anti-c-Met therapies currently being evaluated in breast cancer patients. We will show that the HGF/c-Met pathway is associated with breast cancer progression and suggest that there is a firm basis for continued development of anti-c-Met treatment, particularly for patients with basal-like and triple-negative breast cancer.
Collapse
Affiliation(s)
- Colan M Ho-Yen
- Department of Cellular Pathology, St George's Healthcare NHS Trust, Blackshaw Road, Tooting, London, SW17 0QT, UK.
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Stephanie Kermorgant
- Centre for Tumour Biology, Barts Cancer Institute, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
37
|
Cross-laboratory validation of the OncoScan® FFPE Assay, a multiplex tool for whole genome tumour profiling. BMC Med Genomics 2015; 8:5. [PMID: 25889064 PMCID: PMC4342810 DOI: 10.1186/s12920-015-0079-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/30/2015] [Indexed: 01/03/2023] Open
Abstract
Background Adoption of new technology in both basic research and clinical settings requires rigorous validation of analytical performance. The OncoScan® FFPE Assay is a multiplexing tool that offers genome-wide copy number and loss of heterozygosity detection, as well as identification of frequently tested somatic mutations. Methods In this study, 162 formalin fixed paraffin embedded samples, representing six different tumour types, were profiled in triplicate across three independent laboratories. OncoScan® formalin fixed paraffin embedded assay data was then analysed for reproducibility of genome-wide copy number, loss of heterozygosity and somatic mutations. Where available, somatic mutation data was compared to data from orthogonal technologies (pyro/sanger sequencing). Results Cross site comparisons of genome-wide copy number and loss of heterozygosity profiles showed greater than 95% average agreement between sites. Somatic mutations pre-validated by orthogonal technologies showed greater than 90% agreement with OncoScan® somatic mutation calls and somatic mutation concordance between sites averaged 97%. Conclusions Reproducibility of whole-genome copy number, loss of heterozygosity and somatic mutation data using the OncoScan® assay has been demonstrated with comparatively low DNA inputs from a range of highly degraded formalin fixed paraffin embedded samples. In addition, our data shows examples of clinically-relevant aberrations that demonstrate the potential utility of the OncoScan® assay as a robust clinical tool for guiding tumour therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0079-z) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Li D, Li F, Wu Y, Zhou D, Chen H. Quantification of serum MET in non-small-cell lung cancer and its clinical significance. Clin Biochem 2015; 48:110-4. [DOI: 10.1016/j.clinbiochem.2014.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/01/2014] [Accepted: 11/29/2014] [Indexed: 01/02/2023]
|
39
|
Sueta A, Yamamoto Y, Yamamoto-Ibusuki M, Hayashi M, Takeshita T, Yamamoto S, Iwase H. An integrative analysis of PIK3CA mutation, PTEN, and INPP4B expression in terms of trastuzumab efficacy in HER2-positive breast cancer. PLoS One 2014; 9:e116054. [PMID: 25542038 PMCID: PMC4277449 DOI: 10.1371/journal.pone.0116054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/03/2014] [Indexed: 11/19/2022] Open
Abstract
The phosphoinositide-3-kinase (PI3K) pathway is commonly deregulated in breast cancer through several mechanisms, including PIK3CA mutation and loss of phosphatase and tensin homolog (PTEN) and inositol polyphosphate 4-phosphatase-II (INPP4B). We aimed to evaluate the predictive relevance of these biomarkers to trastuzumab efficacy in HER2-positive disease. We evaluated the effect of trastuzumab in 43 breast cancer patients with HER2-overexpression who received neoadjuvant treatment. PIK3CA mutation was examined by direct sequencing and digital PCR assay, and PIK3CA copy number was assessed by digital PCR assay of pretreatment tissues. PTEN, pAkt, and INPP4B were assessed by immunohistochemistry. Direct sequencing detected mutant DNA in 21% of all patients, but the incidence increased to 49% using digital PCR. The pathological complete response (pCR) rate in patients with PIK3CA mutations was 29% compared with 67% for those without PIK3CA mutations (P = 0.093), when the mutation was defined as positive if the mutant proportion was more than 10% of total genetic content by digital PCR. Low PTEN expression was associated with less pCR compared to high expression (33% versus 72%, P = 0.034). There were no significant associations of PIK3CA copy number, pAKt, or INPP4B with trastuzumab efficacy. In multivariate analysis, activation of the PI3K pathway due to either PIK3CA mutation or low PTEN were related to poorer response to trastuzumab (OR of predictive pCR was 0.11, 95%CI; 0.03–0.48). In conclusion, activating the PI3K pathway is associated with low pCR to trastuzumab-based treatment in HER2-positive breast cancer. Combined analysis of PIK3CA mutation and PTEN expression may serve as critical indicators to identify patients unlikely to respond to trastuzumab.
Collapse
Affiliation(s)
- Aiko Sueta
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Molecular-Targeting Therapy for Breast Cancer, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yutaka Yamamoto
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Molecular-Targeting Therapy for Breast Cancer, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- * E-mail:
| | - Mutsuko Yamamoto-Ibusuki
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Mitsuhiro Hayashi
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takashi Takeshita
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Satoko Yamamoto
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hirotaka Iwase
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| |
Collapse
|
40
|
Combined analysis of copy number alterations by single-nucleotide polymorphism array and MYC status in non-metastatic breast cancer patients: comparison according to the circulating tumor cell status. Tumour Biol 2014; 36:711-8. [PMID: 25286758 DOI: 10.1007/s13277-014-2668-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022] Open
Abstract
Recent technological advances have made it possible to detect circulating tumor cells (CTCs) as a prognostic marker in operable breast cancer patients. Whether the presence of CTCs in cancer patients correlates with molecular alterations in the primary tumor has not been widely explored. We identified 14 primary breast cancer specimens with known CTC status, in order to evaluate the presence of differential genetic aberrations by using SNP array assay. There was a global increase of altered genome, CNA, and copy-neutral loss of heterozygosity (cn-LOH) observed in the CTC-positive (CTC(+)) versus CTC-negative (CTC(-)) cases. As the preliminary results showed a higher proportion of copy number alteration (CNA) at 8q24 (MYC loci) and the available evidence supporting the role of MYC in the processes cancer metastases is conflicting, MYC status was determined in tissue microarray sections in a larger series of patients (n = 49) with known CTC status using FISH. MYC was altered in 62% (16/26) CTC(+) patients and in 43% (6/14) CTC(-) patients (p = 0.25). Based on the observation in our study, future studies involving a larger number of patients should be performed in order to definitively define if this correlation exists.
Collapse
|
41
|
Abramson VG, Cooper Lloyd M, Ballinger T, Sanders ME, Du L, Lai D, Su Z, Mayer I, Levy M, LaFrance DR, Vnencak-Jones CL, Shyr Y, Dahlman KB, Pao W, Arteaga CL. Characterization of breast cancers with PI3K mutations in an academic practice setting using SNaPshot profiling. Breast Cancer Res Treat 2014; 145:389-99. [PMID: 24722917 DOI: 10.1007/s10549-014-2945-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 01/09/2023]
Abstract
Mutations in the PIK3CA gene are common in breast cancer and represent a clinically useful therapeutic target. Several larger, population-based studies have shown a positive prognostic significance associated with these mutations. This study aims to further identify characteristics of patients harboring PIK3CA mutations while evaluating the clinical impact of genomic testing for these mutations. Tumors from 312 patients at Vanderbilt-Ingram Cancer Center were analyzed for PIK3CA mutations using a multiplex screening assay (SNaPshot). Mutation rates, receptor status, histopathologic characteristics, and time to recurrence were assessed. The number of patients participating in clinical trials, specifically trials relating to the PIK3CA mutation, was examined. Statistically significant differences between wild-type and mutated tumors were determined using the Wilcoxon, Pearson, and Fischer exact tests. The PIK3CA mutation was found in 25 % of tumors tested. Patients with PIK3CA mutations were significantly more likely to express hormone receptors, be of lower combined histological grade, and have a reduced time to recurrence. Patients found to have a PIK3CA mutation were significantly more likely to enter a PIK3CA-specific clinical trial. In addition to confirming previously established positive prognostic characteristics of tumors harboring PIK3CA mutations, this study demonstrates the feasibility and utility of mutation profiling in a clinical setting. PIK3CA mutation testing impacted treatment and resulted in more patients entering mutation-specific clinical trials.
Collapse
Affiliation(s)
- Vandana G Abramson
- Department of Medicine, Vanderbilt University School of Medicine, 2220 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
MET Copy number in triple negative breast cancers. Pathology 2014. [DOI: 10.1097/01.pat.0000443613.80012.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Cytokeratin 5/6, c-Met expressions, and PTEN loss prognostic indicators in triple-negative breast cancer. Med Oncol 2013; 31:801. [PMID: 24326984 DOI: 10.1007/s12032-013-0801-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/29/2013] [Indexed: 12/31/2022]
Abstract
In subgroups of breast cancer, the shortest disease-free and overall survival was observed in basaloid and human epidermal growth factor receptor-2 groups. CK5/6 expression is a marker used in diagnosing breast cancers in basaloid group and is associated with a poor prognosis. Similarly, loss of tumor suppressor gene PTEN and a high expression of c-Met has been associated with poor prognosis in breast cancer and many other cancers. In this study, we aimed to determine the effect of CK5/6 and c-Met expressions, and PTEN loss on the disease prognosis in triple-negative breast cancer patients. Ninety-seven patients pathologically diagnosed with triple-negative breast cancer were enrolled. The clinical and pathological characteristics of the patients were recorded. c-Met, PTEN, and CK5/6 expressions were evaluated with immunohistochemical methods from paraffin blocks. The median age of patients was 47 years. CK5/6 positivity was 50.5 %, PTEN loss was 44.3 %, and high c-Met expression was detected in 53.6 %. In multivariate analysis, predictors of the recurrence were loss of PTEN (HR = 2.99; P = 0.004), high c-Met expression (HR = 2.05; P = 0.06), CK5/6 expression (HR = 2.99; P = 0.02), increase in the number of metastatic lymph nodes (HR = 1.11; P = 0.001), and an increase in tumor size (HR = 1.226; P = 0.01). Also, PTEN loss (HR = 2.43; P = 0.05), CK5/6 expression (HR = 3.74; P = 0.01), and N2-3 tumors compared to negatives (HR = 3.63; P = 0.01) were associated with death. PTEN loss correlated with those of lymphovascular invasion. There was a correlation between CK5/6 expression and the number of metastatic lymph nodes. Also, a correlation was found among cancers with highly expressed levels of c-Met, T1-2 tumors, and high-grade tumors. The classical markers, lymph node involvement and tumor size, were found to be of prognostic value; however, high c-Met and CK5/6 expressions, and PTEN loss were found to increase risk of recurrence and death in patients with triple-negative breast cancer.
Collapse
|
44
|
High MET expression is an adverse prognostic factor in patients with triple-negative breast cancer. Br J Cancer 2013; 108:1100-5. [PMID: 23422757 PMCID: PMC3619063 DOI: 10.1038/bjc.2013.31] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: The mesenchymal–epithelial transition (MET) pathway is frequently altered in tumours. The purpose of our study was to determine the prognostic value of tumour MET expression levels in patients with triple-negative breast cancer (TNBC), in order to strengthen the rationale for targeted therapy of TNBC using MET inhibitors. Methods: We determined expression of MET in formalin-fixed paraffin-embedded surgical specimens of TNBC by immunohistochemistry. Recurrence-free and overall survival was analysed with Cox models adjusted for clinical and pathological factors. Results: Immunostaining for MET was classified as high in 89 of 170 (52%) tumours. MET expression was more frequently observed in G3 carcinomas (P=0.02) but was not significantly associated to any of the other clinical or pathological parameters. High MET expression predicted shorter survival of the patients. Multivariate Cox proportional hazards regression analyses identified MET to be an independent prognostic factor for recurrence (adjusted hazard ratio (HR) for recurrence 3.43; 95% confidence interval (CI) 1.65–7.12; P=0.001) and death (adjusted HR for death 3.74; 95% CI 1.65–8.46; P=0.002). Conclusion: These results provide further evidence that the MET pathway could be exploited as a target for TNBC.
Collapse
|