1
|
Vishnyakova PA, Moiseev KY, Porseva VV, Pankrasheva LG, Budnik AF, Nozdrachev AD, Masliukov PM. Somatostatin-Expressing Neurons in the Tuberal Region of Rat Hypothalamus during Aging. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Singh S, Somvanshi RK, Panda V, Kumar U. Comparative distribution of somatostatin and somatostatin receptors in PTU-induced hypothyroidism. Endocrine 2020; 70:92-106. [PMID: 32335798 DOI: 10.1007/s12020-020-02309-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Propylthiouracil (PTU)-induced hypothyroidism is a well-established model for assessing hormonal and morphological changes in thyroid as well as other central and peripheral tissues. Somatostatin (SST) is known to regulate hormonal secretion and synthesis in endocrine tissues; however, nothing is currently known about the distribution of SST and its receptor in hypothyroidism. METHOD In the present study, the comparative immunohistochemical distribution of SST and somatostatin receptors (SSTRs) were analyzed in PTU-induced hypothyroid rats. Rats were treated with PTU for 15 days followed by a co-administration of levothyroxine (LVT) for 15 days. After PTU and LVT treatments (day 30), rats were further administered LVT alone for 15 more days (day 45). The subcellular distribution of SST and SSTR subtypes was determined by peroxidase immunohistochemistry in the thyroid gland collected from control and treated rats. RESULTS SST and SSTR subtypes were found to be moderately expressed in control thyroid tissues. SST and SSTR subtypes like immunoreactivity increased significantly in follicular and parafollicular epithelial cells in the thyroid of PTU-treated rats. The PTU-induced changes in the expression of SST and SSTR subtypes were suppressed by the administration of the LVT. In addition to thyroid tissues, SST and SSTRs expression was also changed in non-follicular tissues including blood vessels, smooth muscle cells, and connective tissue following treatments. CONCLUSION The present study revealed a distinct subcellular distribution of SST and SSTR subtypes in the thyroid and provides a new insight for the role of SST and SSTR subtypes in hypothyroidism in addition to its well-established role in negative regulation of hormonal secretion.
Collapse
Affiliation(s)
- Sneha Singh
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Rishi K Somvanshi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Vandana Panda
- Department of Pharmacology & Toxicology, Principal K. M. Kundnani College of Pharmacy, Colaba, Mumbai, India
| | - Ujendra Kumar
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Kumar U, Singh S. Role of Somatostatin in the Regulation of Central and Peripheral Factors of Satiety and Obesity. Int J Mol Sci 2020; 21:ijms21072568. [PMID: 32272767 PMCID: PMC7177963 DOI: 10.3390/ijms21072568] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is one of the major social and health problems globally and often associated with various other pathological conditions. In addition to unregulated eating behaviour, circulating peptide-mediated hormonal secretion and signaling pathways play a critical role in food intake induced obesity. Amongst the many peptides involved in the regulation of food-seeking behaviour, somatostatin (SST) is the one which plays a determinant role in the complex process of appetite. SST is involved in the regulation of release and secretion of other peptides, neuronal integrity, and hormonal regulation. Based on past and recent studies, SST might serve as a bridge between central and peripheral tissues with a significant impact on obesity-associated with food intake behaviour and energy expenditure. Here, we present a comprehensive review describing the role of SST in the modulation of multiple central and peripheral signaling molecules. In addition, we highlight recent progress and contribution of SST and its receptors in food-seeking behaviour, obesity (orexigenic), and satiety (anorexigenic) associated pathways and mechanism.
Collapse
|
4
|
Somatostatin receptors (SSTR1-5) on inhibitory interneurons in the barrel cortex. Brain Struct Funct 2019; 225:387-401. [PMID: 31873798 PMCID: PMC6957562 DOI: 10.1007/s00429-019-02011-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
Inhibitory interneurons in the cerebral cortex contain specific proteins or peptides characteristic for a certain interneuron subtype. In mice, three biochemical markers constitute non-overlapping interneuron populations, which account for 80–90% of all inhibitory cells. These interneurons express parvalbumin (PV), somatostatin (SST), or vasoactive intestinal peptide (VIP). SST is not only a marker of a specific interneuron subtype, but also an important neuropeptide that participates in numerous biochemical and signalling pathways in the brain via somatostatin receptors (SSTR1-5). In the nervous system, SST acts as a neuromodulator and neurotransmitter affecting, among others, memory, learning, and mood. In the sensory cortex, the co-localisation of GABA and SST is found in approximately 30% of interneurons. Considering the importance of interactions between inhibitory interneurons in cortical plasticity and the possible GABA and SST co-release, it seems important to investigate the localisation of different SSTRs on cortical interneurons. Here, we examined the distribution of SSTR1-5 on barrel cortex interneurons containing PV, SST, or VIP. Immunofluorescent staining using specific antibodies was performed on brain sections from transgenic mice that expressed red fluorescence in one specific interneuron subtype (PV-Ai14, SST-Ai14, and VIP-Ai14 mice). SSTRs expression on PV, SST, and VIP interneurons varied among the cortical layers and we found two patterns of SSTRs distribution in L4 of barrel cortex. We also demonstrated that, in contrast to other interneurons, PV cells did not express SSTR2, but expressed other SSTRs. SST interneurons, which were not found to make chemical synapses among themselves, expressed all five SSTR subtypes.
Collapse
|
5
|
Somatostatin and cannabinoid receptors crosstalk in protection of huntingtin knock-in striatal neuronal cells in response to quinolinic acid. Neurochem Int 2019; 129:104518. [DOI: 10.1016/j.neuint.2019.104518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2019] [Accepted: 07/28/2019] [Indexed: 12/20/2022]
|
6
|
Pritchard R, Chen H, Romoli B, Spitzer NC, Dulcis D. Photoperiod-induced neurotransmitter plasticity declines with aging: An epigenetic regulation? J Comp Neurol 2019; 528:199-210. [PMID: 31343079 DOI: 10.1002/cne.24747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
Abstract
Neuroplasticity has classically been understood to arise through changes in synaptic strength or synaptic connectivity. A newly discovered form of neuroplasticity, neurotransmitter switching, involves changes in neurotransmitter identity. Chronic exposure to different photoperiods alters the number of dopamine (tyrosine hydroxylase, TH+) and somatostatin (SST+) neurons in the paraventricular nucleus (PaVN) of the hypothalamus of adult rats and results in discrete behavioral changes. Here, we investigate whether photoperiod-induced neurotransmitter switching persists during aging and whether epigenetic mechanisms of histone acetylation and DNA methylation may contribute to this neurotransmitter plasticity. We show that this plasticity in rats is robust at 1 and at 3 months but reduced in TH+ neurons at 12 months and completely abolished in both TH+ and SST+ neurons by 18 months. De novo expression of DNMT3a catalyzing DNA methylation and anti-AcetylH3 assessing histone 3 acetylation were observed following short-day photoperiod exposure in both TH+ and SST+ neurons at 1 and 3 months while an overall increase in DNMT3a in SST+ neurons paralleled neuroplasticity reduction at 12 and 18 months. Histone acetylation increased in TH+ neurons and decreased in SST+ neurons following short-day exposure at 3 months while the total number of anti-AcetylH3+ PaVN neurons remained constant. Reciprocal histone acetylation in TH+ and SST+ neurons indicates the importance of studying epigenetic regulation at the circuit level for identified cell phenotypes. The findings may be useful for developing approaches for noninvasive treatment of disorders characterized by neurotransmitter dysfunction.
Collapse
Affiliation(s)
- Rory Pritchard
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California.,Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California
| | - Helene Chen
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| | - Ben Romoli
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| | - Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California
| | - Davide Dulcis
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
7
|
Somvanshi RK, Jhajj A, Heer M, Kumar U. Characterization of somatostatin receptors and associated signaling pathways in pancreas of R6/2 transgenic mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:359-373. [DOI: 10.1016/j.bbadis.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/22/2017] [Accepted: 11/01/2017] [Indexed: 01/12/2023]
|
8
|
Zou S, Somvanshi RK, Kumar U. Somatostatin receptor 5 is a prominent regulator of signaling pathways in cells with coexpression of Cannabinoid receptors 1. Neuroscience 2016; 340:218-231. [PMID: 27984180 DOI: 10.1016/j.neuroscience.2016.10.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 11/30/2022]
Abstract
Endocannabinoids and somatostatin (SST) play critical roles in several pathophysiological conditions via binding to different receptor subtypes. Cannabinoid receptor 1 (CB1R) and somatostatin receptors (SSTRs) are expressed in several brain regions and share overlapping functions. Whether these two prominent members of G-protein-coupled receptor (GPCR) family interact with each other and constitute a functional receptor complex is not known. In the present study, we investigated the colocalization of CB1R and SSTR5 in rat brain, and studied receptor internalization, interaction and signal transduction pathways in HEK-293 cells cotransfected with human cannabinoid receptor 1 (hCB1R) and hSSTR5. Our results showed that CB1R and SSTR5 colocalized in rat brain cortex, striatum, and hippocampus. CB1R was expressed in SSTR5 immunoprecipitate prepared from the brain tissue lysate, indicating their association in a system where these receptors are endogenously expressed. In cotransfected HEK-293 cells, SSTR5 and CB1R existed in a constitutive heteromeric complex under basal condition, which was disrupted upon agonist treatments. Furthermore, concurrent receptor activation led to preferential formation of SSTR5 homodimer and dissociation of CB1R homodimer. We also discovered that second messenger cyclic adenosine monophosphate and downstream signaling pathways were modulated in a SSTR5-dominant and concentration-dependent manner in the presence of receptor-specific agonist. In conclusion, with predominant role of SSTR5, the functional consequences of crosstalk between SSTR5 and CB1R resulting in the regulation of receptor trafficking and signal transduction pathways open new therapeutic avenue in cancer biology and excitotoxicity.
Collapse
Affiliation(s)
- Shenglong Zou
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Rishi K Somvanshi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Colocalization of cannabinoid receptor 1 with somatostatin and neuronal nitric oxide synthase in rat brain hippocampus. Brain Res 2015; 1622:114-26. [DOI: 10.1016/j.brainres.2015.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023]
|
10
|
Zou S, Somvanshi RK, Paik S, Kumar U. Colocalization of cannabinoid receptor 1 with somatostatin and neuronal nitric oxide synthase in rat brain hypothalamus. J Mol Neurosci 2014; 55:480-91. [PMID: 25001005 DOI: 10.1007/s12031-014-0369-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 06/26/2014] [Indexed: 12/19/2022]
Abstract
Despite several overlapping functions of cannabinoid receptor 1 (CB1 receptor), somatostatin (SST), and neuronal nitric oxide synthase (nNOS) in the hypothalamus, nothing is currently known whether CB1 receptor-positive neurons coexpress SST and nNOS. In the present study, we describe the colocalization of CB1 receptor with SST and nNOS in the rat brain hypothalamus. In the hypothalamus, the distributional patterns and colocalization of CB1 receptor with SST and nNOS were selective and region specific. CB1 receptor and SST exhibited comparable colocalization (<60%) in paraventricular nucleus (PVN) and periventricular nucleus (PeVN), followed by 20% colocalization in ventromedial hypothalamic nucleus (VMH). Neurons showing colocalization between CB1 receptor and nNOS in PeVN constituted >80%, followed by 60 and 30% in PVN and VMH, respectively. In contrast, SST- and nNOS-positive neurons displayed comparable colocalization (>55%) in PeVN and VMH, followed by PVN (~20%). In the median eminence, CB1 receptor-, SST-, and nNOS-like immunoreactivity was mostly confined to the nerve fibers. The morphological colocalization of CB1 receptor with SST and nNOS shed new light on the understanding of their roles in regulation of physiological and pharmacological response to certain stimuli in hypothalamic nuclei specifically in food intake and energy balance.
Collapse
Affiliation(s)
- Shenglong Zou
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | | | | | |
Collapse
|
11
|
Logan RW, Williams WP, McClung CA. Circadian rhythms and addiction: mechanistic insights and future directions. Behav Neurosci 2014; 128:387-412. [PMID: 24731209 DOI: 10.1037/a0036268] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Circadian rhythms are prominent in many physiological and behavioral functions. Circadian disruptions either by environmental or molecular perturbation can have profound health consequences, including the development and progression of addiction. Both animal and humans studies indicate extensive bidirectional relationships between the circadian system and drugs of abuse. Addicted individuals display disrupted rhythms, and chronic disruption or particular chronotypes may increase the risk for substance abuse and relapse. Moreover, polymorphisms in circadian genes and an evening chronotype have been linked to mood and addiction disorders, and recent efforts suggest an association with the function of reward neurocircuitry. Animal studies are beginning to determine how altered circadian gene function results in drug-induced neuroplasticity and behaviors. Many studies suggest a critical role for circadian rhythms in reward-related pathways in the brain and indicate that drugs of abuse directly affect the central circadian pacemaker. In this review, we highlight key findings demonstrating the importance of circadian rhythms in addiction and how future studies will reveal important mechanistic insights into the involvement of circadian rhythms in drug addiction.
Collapse
Affiliation(s)
- Ryan W Logan
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Wilbur P Williams
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine
| |
Collapse
|
12
|
Somvanshi RK, Kumar U. δ-opioid receptor and somatostatin receptor-4 heterodimerization: possible implications in modulation of pain associated signaling. PLoS One 2014; 9:e85193. [PMID: 24416361 PMCID: PMC3885706 DOI: 10.1371/journal.pone.0085193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 12/01/2013] [Indexed: 01/13/2023] Open
Abstract
Pain relief is the principal action of opioids. Somatostatin (SST), a growth hormone inhibitory peptide is also known to alleviate pain even in cases when opioids fail. Recent studies have shown that mice are prone to sustained pain and devoid of analgesic effect in the absence of somatostatin receptor 4 (SSTR4). In the present study, using brain slices, cultured neurons and HEK-293 cells, we showed that SSTR4 and δ-Opioid receptor (δOR) exist in a heteromeric complex and function in synergistic manner. SSTR4 and δOR co-expressed in cortical/striatal brain regions and spinal cord. Using cultured neuronal cells, we describe the heterogeneous complex formation of SSTR4 and δOR at neuronal cell body and processes. Cotransfected cells display inhibition of cAMP/PKA and co-activation of SSTR4 and δOR oppose receptor trafficking induced by individual receptor activation. Furthermore, downstream signaling pathways either associated with withdrawal or pain relief are modulated synergistically with a predominant role of SSTR4. Inhibition of cAMP/PKA and activation of ERK1/2 are the possible cellular adaptations to prevent withdrawal induced by chronic morphine use. Our results reveal direct intra-membrane interaction between SSTR4 and δOR and provide insights for the molecular mechanism for the anti-nociceptive property of SST in combination with opioids as a potential therapeutic approach to avoid undesirable withdrawal symptoms.
Collapse
Affiliation(s)
- Rishi K. Somvanshi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
13
|
Kharmate G, Rajput PS, Lin YC, Kumar U. Inhibition of tumor promoting signals by activation of SSTR2 and opioid receptors in human breast cancer cells. Cancer Cell Int 2013; 13:93. [PMID: 24059654 PMCID: PMC3852783 DOI: 10.1186/1475-2867-13-93] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/23/2013] [Indexed: 12/31/2022] Open
Abstract
Background Somatostatin receptors (SSTRs) and opioid receptors (ORs) belong to the superfamily of G-protein coupled receptors and function as negative regulators of cell proliferation in breast cancer. In the present study, we determined the changes in SSTR subtype 2 (SSTR2) and μ, δ and κ-ORs expression, signaling cascades and apoptosis in three different breast cancer cells namely MCF-7, MDA-MB231 and T47D. Methods Immunocytochemistry and western blot analysis were employed to study the colocalization and changes in MAPKs (ERK1/2 and p38), cell survival pathway (PI3K/AKT) and tumor suppressor proteins (PTEN and p53) in breast cancer cell lines. The nature of cell death upon activation of SSTR2 or OR was analysed using flow cytometry analysis. Results The activation of SSTR2 and ORs modulate MAPKs (ERK1/2 and p38) in cell dependent and possibly estrogen receptor (ER) dependent manner. The activation of tumor suppressor proteins phosphatase and tensin homolog (PTEN) and p53 antagonized the PI3K/AKT cell survival pathway. Flow cytometry analyses reveal increased necrosis as opposed to apoptosis in MCF-7 and T47D cells when compared to ER negative MDA-MB231 cells. Furthermore, receptor and agonist dependent expression of ORs in SSTR2 immunoprecipitate suggest that SSTR2 and ORs might interact as heterodimers and inhibit epidermal growth factor receptor phosphorylation. Conclusion Taken together, findings indicate a new role for SSTR2/ORs in modulation of signaling pathways involved in cancer progression and provide novel therapeutic approaches in breast cancer treatment.
Collapse
Affiliation(s)
- Geetanjali Kharmate
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T1Z3, Canada.
| | | | | | | |
Collapse
|
14
|
Dulcis D, Jamshidi P, Leutgeb S, Spitzer NC. Neurotransmitter switching in the adult brain regulates behavior. Science 2013; 340:449-53. [PMID: 23620046 DOI: 10.1126/science.1234152] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurotransmitters have been thought to be fixed throughout life, but whether sensory stimuli alter behaviorally relevant transmitter expression in the mature brain is unknown. We found that populations of interneurons in the adult rat hypothalamus switched between dopamine and somatostatin expression in response to exposure to short- and long-day photoperiods. Changes in postsynaptic dopamine receptor expression matched changes in presynaptic dopamine, whereas somatostatin receptor expression remained constant. Pharmacological blockade or ablation of these dopaminergic neurons led to anxious and depressed behavior, phenocopying performance after exposure to the long-day photoperiod. Induction of newly dopaminergic neurons through exposure to the short-day photoperiod rescued the behavioral consequences of lesions. Natural stimulation of other sensory modalities may cause changes in transmitter expression that regulate different behaviors.
Collapse
Affiliation(s)
- Davide Dulcis
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, University of California-San Diego, La Jolla, CA 92093-0357, USA.
| | | | | | | |
Collapse
|
15
|
Immunohistochemical Distribution of Somatostatin and Somatostatin Receptor Subtypes (SSTR1–5) in Hypothalamus of ApoD Knockout Mice Brain. J Mol Neurosci 2012; 48:684-95. [DOI: 10.1007/s12031-012-9792-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/26/2012] [Indexed: 01/09/2023]
|
16
|
Rajput PS, Kharmate G, Kumar U. Colocalization of Somatostatin Receptors with DARPP-32 in Cortex and Striatum of Rat Brain. J Mol Neurosci 2011; 48:696-705. [DOI: 10.1007/s12031-011-9678-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/10/2011] [Indexed: 10/15/2022]
|
17
|
Rajput PS, Kharmate G, Norman M, Liu SH, Sastry BR, Brunicardi CF, Kumar U. Somatostatin receptor 1 and 5 double knockout mice mimic neurochemical changes of Huntington's disease transgenic mice. PLoS One 2011; 6:e24467. [PMID: 21912697 PMCID: PMC3166321 DOI: 10.1371/journal.pone.0024467] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 08/10/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Selective degeneration of medium spiny neurons and preservation of medium sized aspiny interneurons in striatum has been implicated in excitotoxicity and pathophysiology of Huntington's disease (HD). However, the molecular mechanism for the selective sparing of medium sized aspiny neurons and vulnerability of projection neurons is still elusive. The pathological characteristic of HD is an extensive reduction of the striatal mass, affecting caudate putamen. Somatostatin (SST) positive neurons are selectively spared in HD and Quinolinic acid/N-methyl-D-aspartic acid induced excitotoxicity, mimic the model of HD. SST plays neuroprotective role in excitotoxicity and the biological effects of SST are mediated by five somatostatin receptor subtypes (SSTR1-5). METHODS AND FINDINGS To delineate subtype selective biological responses we have here investigated changes in SSTR1 and 5 double knockout mice brain and compared with HD transgenic mouse model (R6/2). Our study revealed significant loss of dopamine and cAMP regulated phosphoprotein of 32 kDa (DARPP-32) and comparable changes in SST, N-methyl-D-aspartic acid receptors subtypes, calbindin and brain nitric oxide synthase expression as well as in key signaling proteins including calpain, phospho-extracellular-signal-regulated kinases1/2, synapsin-IIa, protein kinase C-α and calcineurin in SSTR1/5(-/-) and R6/2 mice. Conversely, the expression of somatostatin receptor subtypes, enkephalin and phosphatidylinositol 3-kinases were strain specific. SSTR1/5 appears to be important in regulating NMDARs, DARPP-32 and signaling molecules in similar fashion as seen in HD transgenic mice. CONCLUSIONS This is the first comprehensive description of disease related changes upon ablation of G- protein coupled receptor gene. Our results indicate that SST and SSTRs might play an important role in regulation of neurodegeneration and targeting this pathway can provide a novel insight in understanding the pathophysiology of Huntington's disease.
Collapse
Affiliation(s)
- Padmesh S. Rajput
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Geetanjali Kharmate
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Norman
- Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shi-He Liu
- Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bhagavatula R. Sastry
- Neuroscience Research Laboratory, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles F. Brunicardi
- Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ujendra Kumar
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
18
|
STENGEL A, GOEBEL-STENGEL M, WANG L, LUCKEY A, HU E, RIVIER J, TACHÉ Y. Central administration of pan-somatostatin agonist ODT8-SST prevents abdominal surgery-induced inhibition of circulating ghrelin, food intake and gastric emptying in rats. Neurogastroenterol Motil 2011; 23:e294-308. [PMID: 21569179 PMCID: PMC3117963 DOI: 10.1111/j.1365-2982.2011.01721.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Activation of brain somatostatin receptors (sst(1-5) ) with the stable pan-sst(1-5) somatostatin agonist, ODT8-SST blocks acute stress and central corticotropin-releasing factor (CRF)-mediated activation of endocrine and adrenal sympathetic responses. Brain CRF signaling is involved in delaying gastric emptying (GE) immediately post surgery. We investigated whether activation of brain sst signaling pathways modulates surgical stress-induced inhibition of gastric emptying and food intake. METHODS Fasted rats were injected intracisternally (i.c.) with somatostatin agonists and underwent laparotomy and 1-min cecal palpation. Gastric emptying of a non-nutrient solution and circulating acyl and desacyl ghrelin levels were assessed 50min post surgery. Food intake was monitored for 24 h. KEY RESULTS The abdominal surgery-induced inhibition of GE (65%), food intake (73% at 2h) and plasma acyl ghrelin levels (67%) was completely prevented by ODT8-SST (1μg per rat, i.c.). The selective sst(5) agonist, BIM-23052 prevented surgery-induced delayed GE, whereas selective sst(1) , sst(2) , or sst(4) agonists had no effect. However, the selective sst(2) agonist, S-346-011 (1μg per rat, i.c.) counteracted the abdominal surgery-induced inhibition of acyl ghrelin and food intake but not the delayed GE. The ghrelin receptor antagonist, [D-Lys(3) ]-GHRP-6 (0.93mg kg(-1) , intraperitoneal, i.p.) blocked i.p. ghrelin-induced increased GE, while not influencing i.c. ODT8-SST-induced prevention of delayed GE and reduced food intake after surgery. CONCLUSIONS & INFERENCES ODT8-SST acts in the brain to prevent surgery-induced delayed GE likely via activating sst(5) . ODT8-SST and the sst(2) agonist prevent the abdominal surgery-induced decrease in food intake and plasma acyl ghrelin indicating dissociation between brain somatostatin signaling involved in preventing surgery-induced suppression of GE and feeding response.
Collapse
Affiliation(s)
- A. STENGEL
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | - M. GOEBEL-STENGEL
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | - L. WANG
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | - A. LUCKEY
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | - E. HU
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | - J. RIVIER
- Peptide Biology Laboratories, Salk Institute, La Jolla, CA, USA
| | - Y. TACHÉ
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| |
Collapse
|
19
|
Iwanaga T, Miki T, Takahashi-Iwanaga H. Restricted expression of somatostatin receptor 3 to primary cilia in the pancreatic islets and adenohypophysis of mice. Biomed Res 2011; 32:73-81. [DOI: 10.2220/biomedres.32.73] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Goebel M, Stengel A, Wang L, Coskun T, Alsina-Fernandez J, Rivier J, Taché Y. Pattern of Fos expression in the brain induced by selective activation of somatostatin receptor 2 in rats. Brain Res 2010; 1351:150-164. [PMID: 20637739 DOI: 10.1016/j.brainres.2010.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/28/2010] [Accepted: 07/08/2010] [Indexed: 02/08/2023]
Abstract
Central activation of somatostatin (sst) receptors by oligosomatostatin analogs inhibits growth hormone and stress-related rise in catecholamine plasma levels while stimulating grooming, feeding behaviors, gastric transit and acid secretion, which can be mimicked by selective sst(2) receptor agonist. To evaluate the pattern of neuronal activation induced by peptide sst receptor agonists, we assessed Fos-expression in rat brain after intracerebroventricular (i.c.v.) injection of a newly developed selective sst(2) agonist compared to the oligosomatostatin ODT8-SST, a pan-sst(1-5) agonist. Ninety min after injection of vehicle (10 microl) or previously established maximal orexigenic dose of peptides (1 microg=1 nmol/rat), brains were assessed for Fos-immunohistochemistry and doublelabeling. Food and water were removed after injection. The sst(2) agonist and ODT8-SST induced a similar Fos distribution pattern except in the arcuate nucleus where only the sst(2) agonist increased Fos. Compared to ODT8-SST, the sst(2) agonist induced higher Fos-expression by 3.7-times in the basolateral amygdaloid nucleus, 1.2-times in the supraoptic nucleus (SON), 1.6-times in the magnocellular paraventricular hypothalamic nucleus (mPVN), 4.1-times in the external lateral parabrachial nucleus, and 2.6-times in both the inferior olivary nucleus and superficial layer of the caudal spinal trigeminal nucleus. Doublelabeling in the hypothalamus showed that ODT8-SST activates 36% of oxytocin, 63% of vasopressin and 79% of sst(2) immunoreactive neurons in the mPVN and 28%, 55% and 25% in the SON, respectively. Selective activation of sst(2) receptor results in a more robust neuronal activation than the pan-sst(1-5) agonist in various brain regions that may have relevance in sst(2) mediated alterations of behavioral, autonomic and endocrine functions.
Collapse
Affiliation(s)
- Miriam Goebel
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Lixin Wang
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Tamer Coskun
- Biotechnology Discovery Research, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Jean Rivier
- Peptide Biology Laboratories, Salk Institute, La Jolla, CA, USA
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.
| |
Collapse
|
21
|
Mori K, Kim J, Sasaki K. Electrophysiological effect of ghrelin and somatostatin on rat hypothalamic arcuate neurons in vitro. Peptides 2010; 31:1139-45. [PMID: 20338206 DOI: 10.1016/j.peptides.2010.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 03/16/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
Growth hormone (GH) secretion from the pituitary gland is partly regulated by GH releasing hormone (GHRH)-containing neurons located in the hypothalamic arcuate nucleus (ARC). GHRH-containing neurons express the GH secretagogue (GHS) receptor (GHS-R) and the somatostatin (SRIF) receptor. Recently, an endogenous ligand for the GHS-R named ghrelin was found. Therefore, it seems that both ghrelin and SRIF are involved in the hypothalamic regulation of GH release via GHRH-containing neurons in the ARC. In extracellular single unit recordings from in vitro hypothalamic slice preparations from rats, application of 100 nM ghrelin substantially excited ARC neurons (82.5%), whereas 1 microM SRIF substantially inhibited them (81.8%). The ghrelin-induced excitatory and SRIF-induced inhibitory effects on ARC neurons were dose-dependent and persisted during synaptic blockade using low-Ca(2+)/high-Mg(2+) solution. In addition, the effects were antagonized by [D-Lys(3)]-GHRP-6, a GHS-R antagonist, and CYN154806, a SRIF receptor subtype sst2 antagonist, respectively. When ghrelin and SRIF were sequentially applied to ARC neurons, 95.2% were excited by ghrelin and inhibited by SRIF. Similarly, 85.0% of ARC neuroendocrine cells that project to the median eminence were excited by ghrelin and inhibited by SRIF. These results indicate that ARC neuroendocrine cells projecting to the median eminence are dose-dependently, postsynaptically and oppositely regulated by ghrelin through GHS-R and SRIF via the SRIF sst2 receptor subtype. Our results also suggest that most of these ARC neuroendocrine cells are presumably GHRH-containing neurons and are involved in the cellular processes through which ghrelin and SRIF participate in the hypothalamic regulation of GH release.
Collapse
Affiliation(s)
- Kyohei Mori
- Division of Bio-Information Engineering, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555, Japan
| | | | | |
Collapse
|
22
|
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | | |
Collapse
|
23
|
Higgins SE, Ellestad LE, Trakooljul N, McCarthy F, Saliba J, Cogburn LA, Porter TE. Transcriptional and pathway analysis in the hypothalamus of newly hatched chicks during fasting and delayed feeding. BMC Genomics 2010; 11:162. [PMID: 20214824 PMCID: PMC2848243 DOI: 10.1186/1471-2164-11-162] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/09/2010] [Indexed: 11/29/2022] Open
Abstract
Background The hypothalamus plays a central role in regulating appetite and metabolism. However, the gene networks within the hypothalamus that regulate feed intake and metabolism, and the effects of fasting on those pathways are not completely understood in any species. The present experiment evaluated global hypothalamic gene expression in newly hatched chicks using microarray analysis to elucidate genes and pathways regulated by feeding, fasting, and delayed feeding. Ten groups of chicks were sampled over four days post-hatch, including fed, fasted, and 48 h fasted followed by access to feed for 4 h, 24 h, and 48 h. Hypothalamic samples were collected for microarray analysis (n = 4). Expression patterns of selected genes were confirmed by quantitative real-time PCR. Pathway analysis of the microarray results predicted a network of genes involved in neuropeptide or neurotransmitter signaling. To confirm the functionality of this predicted gene network, hypothalamic neurons from fed and fasted chicks were isolated and cultured in the presence of neuropeptide Y, somatostatin, α-melanocyte stimulating hormone, norepinephrine, and L-phospho-serine. Results confirmed functional relationships among members of the predicted gene network. Moreover, the effects observed were dependant upon the nutritional state of the animals (fed vs. fasted). Results Differences in gene expression (≥ 1.6 fold) were detected in 1,272 genes between treatments, and of those, 119 genes were significantly (P < 0.05) different. Pathway Miner analysis revealed that six genes (SSTR5, NPY5R, POMC, ADRB2, GRM8, and RLN3) were associated within a gene network. In vitro experiments with primary hypothalamic neurons confirmed that receptor agonists involved in this network regulated expression of other genes in the predicted network, and this regulation within the network was influenced by the nutritional status and age of the chick. Conclusions Microarray analysis of the hypothalamus during different nutritional states revealed that many genes are differentially regulated. We found that functional interactions exist among six differentially regulated genes associated within a putative gene network from this experiment. Considering that POMC, an important gene in controlling metabolism, was central to this network, this gene network may play an important role in regulation of feeding and metabolism in birds.
Collapse
Affiliation(s)
- Stacy E Higgins
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Dun SL, Brailoiu GC, Tica AA, Yang J, Chang JK, Brailoiu E, Dun NJ. Neuronostatin is co-expressed with somatostatin and mobilizes calcium in cultured rat hypothalamic neurons. Neuroscience 2010; 166:455-63. [PMID: 20056135 DOI: 10.1016/j.neuroscience.2009.12.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 12/23/2009] [Accepted: 12/23/2009] [Indexed: 10/20/2022]
Abstract
Neuronostatin (NST) is a newly identified peptide of 13-amino acids encoded by the somatostatin (SST) gene. Using a rabbit polyclonal antiserum against the human NST, neuronostatin-immunoreactive (irNST) cells comparable in number and intensity to somatostatin immunoreactive (irSST) cells were detected in the hypothalamic periventricular nucleus. Fewer and/or less intensely labeled irNST cells were noted in other regions such as the hippocampus, cortex, amygdala, and cerebellum. Double-labeling hypothalamic sections with NST- and SST-antiserum revealed an extensive overlapping of irNST and irSST cells in the periventricular nucleus. Pre-absorption of the NST-antiserum with NST (1 microg/ml) but not with SST (1 microg/ml) abrogated irNST and vice versa. The activity of NST on dissociated and cultured hypothalamic neurons was assessed by the Ca(2+) imaging method. NST (10, 100, 1000 nM) concentration-dependently elevated intracellular Ca(2+) concentrations [Ca(2+)](i) in a population of hypothalamic neurons with two distinct profiles: (1) a fast and transitory increase in [Ca(2+)](i), and (2) an oscillatory response. Whereas, SST (100 nM) reduced the basal [Ca(2+)](i) in 21 of 61 hypothalamic neurons examined; an increase was not observed in any of the cells. Optical imaging with a slow-responding voltage sensitive dye DiBAC(4)(3) showed that NST (100 nM) depolarized or hyperpolarized; whereas, SST (100 nM) hyperpolarized a population of hypothalamic neurons. The result shows that NST and SST, though derived from the same precursor protein, exert different calcium mobilizing effects on cultured rat hypothalamic neurons, resulting in diverse cellular activities.
Collapse
Affiliation(s)
- S L Dun
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Subcellular dynamics of somatostatin receptor subtype 1 in the rat arcuate nucleus: receptor localization and synaptic connectivity vary in parallel with the ultradian rhythm of growth hormone secretion. J Neurosci 2009; 29:8198-205. [PMID: 19553459 DOI: 10.1523/jneurosci.0336-09.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Growth hormone (GH) secretion in male rats exhibits a 3.3 h ultradian rhythm generated by the reciprocal interaction of GH-releasing hormone (GHRH) and somatostatin (SRIF). SRIF receptor subtypes sst(1) and sst(2) are highly expressed in GHRH neurons of the hypothalamic arcuate nucleus (ARC). We previously demonstrated an ultradian oscillation in binding of SRIF analogs to the ARC in relation to GH peaks and troughs. Here we tested the hypothesis that these ultradian changes in SRIF binding are due to differential plasma membrane targeting of sst(1) receptors in ARC neurons using immunocytochemistry and electron microscopy. We found that 87% of sst(1)-positive ARC neurons also synthesized GHRH. Subcellularly, 80% of sst(1) receptors were located intracellularly and 20% at the plasma membrane regardless of GH status. However, whereas 30% of the cell-surface sst(1) receptors were located perisynaptically or subsynaptically following exposure to high GH secretion, this fraction was increased to 42% following a GH trough period (p = 0.05). Furthermore, the relative abundance of symmetric and asymmetric synapses on sst(1)-positive dendrites also varied significantly, depending on the GH cycle, from approximately equal numbers following GH troughs to 70:30 in favor of symmetric, i.e., inhibitory, inputs after GH peaks (p < 0.02). These findings suggest that postsynaptic localization of sst(1) receptors and synaptic connectivity in the ARC undergo pronounced remodeling in parallel with the GH rhythm. Such synaptic plasticity may be an important mechanism by which sst(1) mediates SRIF's cyclical effects on ARC GHRH neurons to generate the ultradian rhythm of GH secretion.
Collapse
|
26
|
Expression of somatostatin and somatostatin receptor subtypes in Apolipoprotein D (ApoD) knockout mouse brain: An immunohistochemical analysis. J Chem Neuroanat 2009; 38:20-33. [PMID: 19465111 DOI: 10.1016/j.jchemneu.2009.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 04/30/2009] [Accepted: 05/12/2009] [Indexed: 01/08/2023]
Abstract
Apolipoprotein D (ApoD) is widely distributed in central and peripheral nervous system. ApoD expression has been shown to increase in several neurodegenerative and neuropsychiatric disorders, as well as during regeneration in the nervous system. Like ApoD, in the central nervous system somatostatin (SST) is widely present and functions as neurotransmitter and neuromodulator. The biological effects of SST are mediated via binding to five high-affinity G-protein coupled receptors termed SSTR1-5. Mice lacking ApoD exhibit reduced SST labeling in cortex and hippocampus and increased expression in striatum and amygdala without any noticeable changes in substantia nigra. Changes in SSTRs expressions have been described in several neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. In the present study, using SSTR1-5 receptor-specific antibodies, we mapped their distribution in wild type (wt) and ApoD knockout (ApoD(-/-)) mouse brain. SSTR1-5 expression was observed both as membrane and cytoplasmic protein and display regions and receptor specific differences between wt and ApoD(-/-) mice brains. In cortex and hippocampus, SSTR subtypes like immunoreactivity are decreased in ApoD(-/-) mice brain. Unlike cortex and hippocampus, in the striatum of ApoD(-/-) mice, projection neurons showed increased SSTR immunoreactivity, as compared to wt. Higher SSTR subtypes immunoreactivity is seen in substantia nigra pars compacta (SNpc) whereas lower in substantia nigra pars reticulata (SNpr) of ApoD(-/-) mice brains as compared to wt. Whereas, amygdala displayed SSTR subtypes changes in different nuclei of ApoD(-/-) mice in comparison to wt mice brain. Taken together, our results describe receptor and region specific changes in SST and SSTR subtypes expression in ApoD(-/-) mice brain, which may be linked to specific neurological disorders.
Collapse
|
27
|
Rajput PS, Kharmate G, Somvanshi RK, Kumar U. Colocalization of dopamine receptor subtypes with dopamine and cAMP-regulated phosphoprotein (DARPP-32) in rat brain. Neurosci Res 2009; 65:53-63. [PMID: 19465068 DOI: 10.1016/j.neures.2009.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 04/30/2009] [Accepted: 05/14/2009] [Indexed: 10/20/2022]
Abstract
In the present study using indirect immunofluorescence immunohistochemistry, co-immunoprecipitation and western blot analysis we determined the colocalization of dopamine receptors 1-5 and dopamine and cAMP-regulated phosphoprotein (DARPP-32) in rat brain cortex and striatum. All five DR subtypes and DARPP-32 were expressed in rat brain cortex and striatum. DARPP-32 positive neurons displayed comparative colocalization with DR1-5. In cingulate cortex, the colocalization of DR subtypes was greatly different from frontal or temporal cortex. D1R is one of the most predominant subtypes which colocalized with DARPP-32 in cortex as well as striatum and followed by D2R, D3R, D4R and D5R. Amongst all DR subtypes D5R was coexpressed the least with DARPP-32 positive neurons. Consistent with immunohistochemical data, western blot analysis also reveals comparable distribution of DR subtypes and DARPP-32 in cortex and striatum. Colocalization studies were also supported by using co-immunoprecipitate assay displaying DARPP-32 expression in DR immunoprecipitate from tissue lysate prepared from cortex and striatum. Taken together our data support receptor specific association of DARPP-32 with DR subtypes that might shed new information in drugs of abuse and pathophysiology of neurodegenerative diseases as well as neuropsychiatric disorders such as schizophrenia.
Collapse
Affiliation(s)
- Padmesh S Rajput
- Faculty of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
28
|
Kumar U. Somatostatin in medium-sized aspiny interneurons of striatum is responsible for their preservation in quinolinic acid and N-methyl-D-asparate-induced neurotoxicity. J Mol Neurosci 2008; 35:345-54. [PMID: 18483877 DOI: 10.1007/s12031-008-9093-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 04/18/2008] [Indexed: 11/26/2022]
Abstract
Somatostatin (SST) is a multifunctional peptide and involves in several neurodegenerative diseases. N-Methyl-D-asparate (NMDA) receptor agonist quinolinic acid (QUIN)-induced neurotoxicity mimics an experimental model of Huntington's disease that is characterized by the selective preservation of medium-sized aspiny interneurons and degeneration of medium-sized spiny projection neurons in striatum. In QUIN- and NMDA-induced neurotoxicity, increased expression of SST and messenger RNA levels along with SST release in culture medium is generally observed. However, the molecular mechanisms and the functional consequences of increased SST are still obscure. In the present study, the role of SST was determined using immunoneutralization and immunoblockade of SST in cultured striatal neurons upon QUIN- and NMDA-induced neurotoxicity. The immunoblockade of SST with antisense oligonucleotides and immunoabsorption of released SST with specific antibodies potentiate QUIN- and NMDA-induced neuronal cell death. NADPH-diaphorase positive neurons that are selectively spared in several processes of neurodegeneration result in severe damage upon immunoblockade or immunoabsorption of SST. In addition, exogenous SST along with QUIN and NMDA provides selective preservation of projection neurons, which are selectively susceptible in excitotoxicity. Neuroprotective effect of SST is completely blocked by pertussis toxins, suggesting the role of somatostatin receptors. Taken together, these results provide first evidence that the presence of SST is a unique feature for the selective sparing of medium sized aspiny interneurons in excitotoxicity.
Collapse
Affiliation(s)
- Ujendra Kumar
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada.
| |
Collapse
|