1
|
Lynn MB, Geddes SD, Chahrour M, Maillé S, Caya-Bissonnette L, Harkin E, Harvey-Girard É, Haj-Dahmane S, Naud R, Béïque JC. Nonlinear recurrent inhibition through facilitating serotonin release in the raphe. Nat Neurosci 2025:10.1038/s41593-025-01912-7. [PMID: 40175691 DOI: 10.1038/s41593-025-01912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/06/2025] [Indexed: 04/04/2025]
Abstract
Serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) receive a constellation of long-range inputs, yet guiding principles of local circuit organization and underlying computations in this nucleus are largely unknown. Using inputs from the lateral habenula to interrogate the processing features of the mouse DRN, we uncovered 5-HT1A receptor-mediated recurrent connections between 5-HT neurons, refuting classical theories of autoinhibition. Cellular electrophysiology and imaging of a genetically encoded 5-HT sensor revealed that these recurrent inhibitory connections spanned the raphe, were slow, stochastic, strongly facilitating and gated spike output. These features collectively conveyed highly nonlinear dynamics to this network, generating excitation-driven inhibition and winner-take-all computations. In vivo optogenetic activation of lateral habenula inputs to DRN, at frequencies where these computations are predicted to ignite, transiently disrupted expression of a reward-conditioned response in an auditory conditioning task. Together, these data identify a core computation supported by an unsuspected slow serotonergic recurrent inhibitory network.
Collapse
Affiliation(s)
- Michael B Lynn
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sean D Geddes
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mohamad Chahrour
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sébastien Maillé
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Léa Caya-Bissonnette
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Emerson Harkin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Érik Harvey-Girard
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Richard Naud
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, STEM Complex, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Centre for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada.
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
2
|
Zacks O, Jablonka E. The evolutionary origins of the Global Neuronal Workspace in vertebrates. Neurosci Conscious 2023; 2023:niad020. [PMID: 37711313 PMCID: PMC10499063 DOI: 10.1093/nc/niad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023] Open
Abstract
The Global Neuronal Workspace theory of consciousness offers an explicit functional architecture that relates consciousness to cognitive abilities such as perception, attention, memory, and evaluation. We show that the functional architecture of the Global Neuronal Workspace, which is based mainly on human studies, corresponds to the cognitive-affective architecture proposed by the Unlimited Associative Learning theory that describes minimal consciousness. However, we suggest that when applied to basal vertebrates, both models require important modifications to accommodate what has been learned about the evolution of the vertebrate brain. Most importantly, comparative studies suggest that in basal vertebrates, the Global Neuronal Workspace is instantiated by the event memory system found in the hippocampal homolog. This proposal has testable predictions and implications for understanding hippocampal and cortical functions, the evolutionary relations between memory and consciousness, and the evolution of unified perception.
Collapse
Affiliation(s)
- Oryan Zacks
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Ramat Aviv 6934525, Israel
| | - Eva Jablonka
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Ramat Aviv 6934525, Israel
- CPNSS, London School of Economics, Houghton St., London WC2A 2AE, United Kingdom
| |
Collapse
|
3
|
Triki Z, Fong S, Amcoff M, Vàsquez-Nilsson S, Kolm N. Experimental expansion of relative telencephalon size improves the main executive function abilities in guppy. PNAS NEXUS 2023; 2:pgad129. [PMID: 37346268 PMCID: PMC10281379 DOI: 10.1093/pnasnexus/pgad129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/14/2023] [Accepted: 04/07/2023] [Indexed: 06/23/2023]
Abstract
Executive functions are a set of cognitive control processes required for optimizing goal-directed behavior. Despite more than two centuries of research on executive functions, mostly in humans and nonhuman primates, there is still a knowledge gap in what constitutes the mechanistic basis of evolutionary variation in executive function abilities. Here, we show experimentally that size changes in a forebrain structure (i.e. telencephalon) underlie individual variation in executive function capacities in a fish. For this, we used male guppies (Poecilia reticulata) issued from artificial selection lines with substantial differences in telencephalon size relative to the rest of the brain. We tested fish from the up- and down-selected lines not only in three tasks for the main core executive functions: cognitive flexibility, inhibitory control, and working memory, but also in a basic conditioning test that does not require executive functions. Individuals with relatively larger telencephalons outperformed individuals with smaller telencephalons in all three executive function assays but not in the conditioning assay. Based on our findings, we propose that the telencephalon is the executive brain in teleost fish. Together, it suggests that selective enlargement of key brain structures with distinct functions, like the fish telencephalon, is a potent evolutionary pathway toward evolutionary enhancement of advanced cognitive abilities in vertebrates.
Collapse
Affiliation(s)
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm 106 91, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm 106 91, Sweden
| | | | | |
Collapse
|
4
|
Mirmiran C, Fraser M, Maler L. Finding food in the dark: how trajectories of a gymnotiform fish change with spatial learning. J Exp Biol 2022; 225:285892. [PMID: 36366924 DOI: 10.1242/jeb.244590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
We analyzed the trajectories of freely foraging Gymnotus sp., a pulse-type gymnotiform weakly electric fish, swimming in a dark arena. For each fish, we compared the its initial behavior as it learned the relative location of landmarks and food with its behavior after learning was complete, i.e. after time/distance to locate food had reached a minimal asymptotic level. During initial exploration when the fish did not know the arena layout, trajectories included many sharp angle head turns that occurred at nearly completely random intervals. After spatial learning was complete, head turns became far smoother. Interestingly, the fish still did not take a stereotyped direct route to the food but instead took smooth but variable curved trajectories. We also measured the fish's heading angle error (heading angle - heading angle towards food). After spatial learning, the fish's initial heading angle errors were strongly biased to zero, i.e. the fish mostly turned towards the food. As the fish approached closer to the food, they switched to a random search strategy with a more uniform distribution of heading angle errors.
Collapse
Affiliation(s)
- Camille Mirmiran
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Maia Fraser
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada, K1N 6N5.,Centre for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada, K1H 8M5.,Centre for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
5
|
Demski LS, Beaver JA. The Cytoarchitecture of the Tectal-Related Pallium of Squirrelfish, Holocentrus sp. Front Neuroanat 2022; 16:819365. [PMID: 35573443 PMCID: PMC9095963 DOI: 10.3389/fnana.2022.819365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
The squirrelfish, which live in visually complex coral reefs, have very large eyes and a special dual-system “day and night vision” retina. They also have atypical expansions of brain areas involved in processing visual information. The midbrain tectum sends information via diencephalic relay to two enlarged dorsal telencephalic regions. The latter include a superficial dorsal/lateral “cortex-like area” of small to medium-sized cells [area dorsalis telencephali, pars lateralis-dorsal region (dorsal segment); Dld1] which projects to an underlying dorsocentral region of relatively large cells (the area dorsalis telencephali, pars centralis-dorsal region; Dcd) which in turn reconnects with the tectum. Additionally, the cerebellum is also involved in this pathway. The hypertrophied pallial regions, termed the tectal-related pallium (TRP), most likely exert major influences on a variety of visually-related sensorimotor systems. This research aimed at better establishing the cellular structures and possible connections within the TRP. Nissl and rapid Golgi staining, biotinylated dextran amine tracing and cell-filling, and electron microscopy were used in this study. For gross observation of the pallial areas and plotting of the study sites, a mini-atlas of transverse and horizontal sections was constructed. This research better documented the known cellular elements of the TRP and defined two novel cell types. Species differences in the TRP may be related to possible differences in behavior and ecology.
Collapse
|
6
|
ERRATUM. J Comp Neurol 2021; 530:1739. [PMID: 34724202 DOI: 10.1002/cne.25255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Güntürkün O, von Eugen K, Packheiser J, Pusch R. Avian pallial circuits and cognition: A comparison to mammals. Curr Opin Neurobiol 2021; 71:29-36. [PMID: 34562800 DOI: 10.1016/j.conb.2021.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022]
Abstract
Cognitive functions are similar in birds and mammals. So, are therefore pallial cellular circuits and neuronal computations also alike? In search of answers, we move in from bird's pallial connectomes, to cortex-like sensory canonical circuits and connections, to forebrain micro-circuitries and finally to the avian "prefrontal" area. This voyage from macro- to micro-scale networks and areas reveals that both birds and mammals evolved similar neural and computational properties in either convergent or parallel manner, based upon circuitries inherited from common ancestry. Thus, these two vertebrate classes evolved separately within 315 million years with highly similar pallial architectures that produce comparable cognitive functions.
Collapse
Affiliation(s)
- Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Kaya von Eugen
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Julian Packheiser
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Roland Pusch
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
8
|
Linking active sensing and spatial learning in weakly electric fish. Curr Opin Neurobiol 2021; 71:1-10. [PMID: 34392168 DOI: 10.1016/j.conb.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/17/2021] [Accepted: 07/11/2021] [Indexed: 11/24/2022]
Abstract
Weakly electric fish can learn the spatial layout of their environment using only their short-range electric sense. During spatial learning, active sensing motions are used to memorize landmark locations so that they can serve as anchors for idiothetic-based navigation. A hindbrain feedback circuit selectively amplifies the electrosensory input arising from these motions. The ascending electrolocation pathway preferentially transmits this information to the pallial regions involved in spatial learning and navigation. Similarities in both behavioral patterns and hindbrain circuitry of gymnotiform and mormyrid fish, two families that independently evolved their electrosense, suggest that amplification and transmission of active sensing motion inputs are fundamental mechanisms for spatial memory acquisition.
Collapse
|
9
|
Rodríguez F, Quintero B, Amores L, Madrid D, Salas-Peña C, Salas C. Spatial Cognition in Teleost Fish: Strategies and Mechanisms. Animals (Basel) 2021; 11:2271. [PMID: 34438729 PMCID: PMC8388456 DOI: 10.3390/ani11082271] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 01/25/2023] Open
Abstract
Teleost fish have been traditionally considered primitive vertebrates compared to mammals and birds in regard to brain complexity and behavioral functions. However, an increasing amount of evidence suggests that teleosts show advanced cognitive capabilities including spatial navigation skills that parallel those of land vertebrates. Teleost fish rely on a multiplicity of sensory cues and can use a variety of spatial strategies for navigation, ranging from relatively simple body-centered orientation responses to allocentric or "external world-centered" navigation, likely based on map-like relational memory representations of the environment. These distinct spatial strategies are based on separate brain mechanisms. For example, a crucial brain center for egocentric orientation in teleost fish is the optic tectum, which can be considered an essential hub in a wider brain network responsible for the generation of egocentrically referenced actions in space. In contrast, other brain centers, such as the dorsolateral telencephalic pallium of teleost fish, considered homologue to the hippocampal pallium of land vertebrates, seem to be crucial for allocentric navigation based on map-like spatial memory. Such hypothetical relational memory representations endow fish's spatial behavior with considerable navigational flexibility, allowing them, for example, to perform shortcuts and detours.
Collapse
Affiliation(s)
| | | | | | | | | | - Cosme Salas
- Laboratorio de Psicobiología, Universidad de Sevilla, 41018 Sevilla, Spain; (F.R.); (B.Q.); (L.A.); (D.M.); (C.S.-P.)
| |
Collapse
|
10
|
Metzen MG, Chacron MJ. Population Coding of Natural Electrosensory Stimuli by Midbrain Neurons. J Neurosci 2021; 41:3822-3841. [PMID: 33687962 PMCID: PMC8084312 DOI: 10.1523/jneurosci.2232-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
Natural stimuli display spatiotemporal characteristics that typically vary over orders of magnitude, and their encoding by sensory neurons remains poorly understood. We investigated population coding of highly heterogeneous natural electrocommunication stimuli in Apteronotus leptorhynchus of either sex. Neuronal activities were positively correlated with one another in the absence of stimulation, and correlation magnitude decayed with increasing distance between recording sites. Under stimulation, we found that correlations between trial-averaged neuronal responses (i.e., signal correlations) were positive and higher in magnitude for neurons located close to another, but that correlations between the trial-to-trial variability (i.e., noise correlations) were independent of physical distance. Overall, signal and noise correlations were independent of stimulus waveform as well as of one another. To investigate how neuronal populations encoded natural electrocommunication stimuli, we considered a nonlinear decoder for which the activities were combined. Decoding performance was best for a timescale of 6 ms, indicating that midbrain neurons transmit information via precise spike timing. A simple summation of neuronal activities (equally weighted sum) revealed that noise correlations limited decoding performance by introducing redundancy. Using an evolution algorithm to optimize performance when considering instead unequally weighted sums of neuronal activities revealed much greater performance values, indicating that midbrain neuron populations transmit information that reliably enable discrimination between different stimulus waveforms. Interestingly, we found that different weight combinations gave rise to similar discriminability, suggesting robustness. Our results have important implications for understanding how natural stimuli are integrated by downstream brain areas to give rise to behavioral responses.SIGNIFICANCE STATEMENT We show that midbrain electrosensory neurons display correlations between their activities and that these can significantly impact performance of decoders. While noise correlations limited discrimination performance by introducing redundancy, considering unequally weighted sums of neuronal activities gave rise to much improved performance and mitigated the deleterious effects of noise correlations. Further analysis revealed that increased discriminability was achieved by making trial-averaged responses more separable, as well as by reducing trial-to-trial variability by eliminating noise correlations. We further found that multiple combinations of weights could give rise to similar discrimination performances, which suggests that such combinatorial codes could be achieved in the brain. We conclude that the activities of midbrain neuronal populations can be used to reliably discriminate between highly heterogeneous stimulus waveforms.
Collapse
Affiliation(s)
- Michael G Metzen
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Maurice J Chacron
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
11
|
Marquez MM, Chacron MJ. Serotonergic Modulation of Sensory Neuron Activity and Behavior in Apteronotus albifrons. Front Integr Neurosci 2020; 14:38. [PMID: 32733214 PMCID: PMC7358949 DOI: 10.3389/fnint.2020.00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/15/2020] [Indexed: 01/12/2023] Open
Abstract
Organisms must constantly adapt to changes in their environment to survive. It is thought that neuromodulators such as serotonin enable sensory neurons to better process input encountered during different behavioral contexts. Here, we investigated how serotonergic innervation affects neural and behavioral responses to behaviorally relevant envelope stimuli in the weakly electric fish species Apteronotus albifrons. Under baseline conditions, we found that exogenous serotonin application within the electrosensory lateral line lobe increased sensory neuron excitability, thereby promoting burst firing. We found that serotonin enhanced the responses to envelope stimuli of pyramidal cells within the lateral segment of the electrosensory lateral line lobe (ELL) by increasing sensitivity, with the increase more pronounced for stimuli with higher temporal frequencies (i.e., >0.2 Hz). Such increases in neural sensitivity were due to increased burst firing. At the organismal level, bilateral serotonin application within the ELL lateral segment enhanced behavioral responses to sensory input through increases in sensitivity. Similar to what was observed for neural responses, increases in behavioral sensitivity were more pronounced for higher (i.e., >0.2 Hz) temporal frequencies. Surprisingly, a comparison between our results and previous ones obtained in the closely related species A. leptorhynchus revealed that, while serotonin application gave rise to similar effects on neural excitability and responses to sensory input, serotonin application also gave rise to marked differences in behavior. Specifically, behavioral responses in A. leptorhynchus were increased primarily for lower (i.e., ≤0.2 Hz) rather than for higher temporal frequencies. Thus, our results strongly suggest that there are marked differences in how sensory neural responses are processed downstream to give rise to behavior across both species. This is even though previous results have shown that the behavioral responses of both species to envelope stimuli were identical when serotonin is not applied.
Collapse
Affiliation(s)
- Mariana M Marquez
- Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada
| | - Maurice J Chacron
- Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Fernández M, Morales C, Durán E, Fernández‐Colleman S, Sentis E, Mpodozis J, Karten HJ, Marín GJ. Parallel organization of the avian sensorimotor arcopallium: Tectofugal visual pathway in the pigeon (
Columba livia
). J Comp Neurol 2019; 528:597-623. [DOI: 10.1002/cne.24775] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Máximo Fernández
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
| | - Cristian Morales
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
| | - Ernesto Durán
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
| | | | - Elisa Sentis
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
| | - Harvey J. Karten
- Department of Neurosciences, School of MedicineUniversity of California San Diego California
| | - Gonzalo J. Marín
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
- Facultad de MedicinaUniversidad Finis Terrae Santiago Chile
| |
Collapse
|
13
|
Cellular and Network Mechanisms May Generate Sparse Coding of Sequential Object Encounters in Hippocampal-Like Circuits. eNeuro 2019; 6:ENEURO.0108-19.2019. [PMID: 31324676 PMCID: PMC6709220 DOI: 10.1523/eneuro.0108-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/11/2019] [Accepted: 07/12/2019] [Indexed: 11/21/2022] Open
Abstract
The localization of distinct landmarks plays a crucial role in encoding new spatial memories. In mammals, this function is performed by hippocampal neurons that sparsely encode an animal’s location relative to surrounding objects. Similarly, the dorsolateral pallium (DL) is essential for spatial learning in teleost fish. The DL of weakly electric gymnotiform fish receives both electrosensory and visual input from the preglomerular nucleus (PG), which has been hypothesized to encode the temporal sequence of electrosensory or visual landmark/food encounters. Here, we show that DL neurons in the Apteronotid fish and in the Carassius auratus (goldfish) have a hyperpolarized resting membrane potential (RMP) combined with a high and dynamic spike threshold that increases following each spike. Current-evoked spikes in DL cells are followed by a strong small-conductance calcium-activated potassium channel (SK)-mediated after-hyperpolarizing potential (AHP). Together, these properties prevent high frequency and continuous spiking. The resulting sparseness of discharge and dynamic threshold suggest that DL neurons meet theoretical requirements for generating spatial memory engrams by decoding the landmark/food encounter sequences encoded by PG neurons. Thus, DL neurons in teleost fish may provide a promising, simple system to study the core cell and network mechanisms underlying spatial memory.
Collapse
|
14
|
Abstract
The dramatic evolutionary expansion of the neocortex, together with a proliferation of specialized cortical areas, is believed to underlie the emergence of human cognitive abilities. In a broader phylogenetic context, however, neocortex evolution in mammals, including humans, is remarkably conservative, characterized largely by size variations on a shared six-layered neuronal architecture. By contrast, the telencephalon in non-mammalian vertebrates, including reptiles, amphibians, bony and cartilaginous fishes, and cyclostomes, features a great variety of very different tissue structures. Our understanding of the evolutionary relationships of these telencephalic structures, especially those of basally branching vertebrates and invertebrate chordates, remains fragmentary and is impeded by conceptual obstacles. To make sense of highly divergent anatomies requires a hierarchical view of biological organization, one that permits the recognition of homologies at multiple levels beyond neuroanatomical structure. Here we review the origin and diversification of the telencephalon with a focus on key evolutionary innovations shaping the neocortex at multiple levels of organization.
Collapse
Affiliation(s)
- Steven D Briscoe
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Clifton W Ragsdale
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Fotowat H, Lee C, Jun JJ, Maler L. Neural activity in a hippocampus-like region of the teleost pallium is associated with active sensing and navigation. eLife 2019; 8:44119. [PMID: 30942169 PMCID: PMC6469930 DOI: 10.7554/elife.44119] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 01/13/2023] Open
Abstract
Most vertebrates use active sensing strategies for perception, cognition and control of motor activity. These strategies include directed body/sensor movements or increases in discrete sensory sampling events. The weakly electric fish, Gymnotus sp., uses its active electric sense during navigation in the dark. Electric organ discharge rate undergoes transient increases during navigation to increase electrosensory sampling. Gymnotus also use stereotyped backward swimming as an important form of active sensing that brings objects toward the electroreceptor dense fovea-like head region. We wirelessly recorded neural activity from the pallium of freely swimming Gymnotus. Spiking activity was sparse and occurred only during swimming. Notably, most units tended to fire during backward swims and their activity was on average coupled to increases in sensory sampling. Our results provide the first characterization of neural activity in a hippocampal (CA3)-like region of a teleost fish brain and connects it to active sensing of spatial environmental features.
Collapse
Affiliation(s)
- Haleh Fotowat
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Candice Lee
- Department of Cellular and Molecular Medicine, Brain and Mind Institute and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
| | - James Jaeyoon Jun
- Center for Computational Biology, Flatiron Institute, New York, United States
| | - Len Maler
- Department of Cellular and Molecular Medicine, Brain and Mind Institute and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
16
|
Wallach A, Harvey-Girard E, Jun JJ, Longtin A, Maler L. A time-stamp mechanism may provide temporal information necessary for egocentric to allocentric spatial transformations. eLife 2018; 7:36769. [PMID: 30465523 PMCID: PMC6264071 DOI: 10.7554/elife.36769] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 11/12/2018] [Indexed: 11/17/2022] Open
Abstract
Learning the spatial organization of the environment is essential for most animals’ survival. This requires the animal to derive allocentric spatial information from egocentric sensory and motor experience. The neural mechanisms underlying this transformation are mostly unknown. We addressed this problem in electric fish, which can precisely navigate in complete darkness and whose brain circuitry is relatively simple. We conducted the first neural recordings in the preglomerular complex, the thalamic region exclusively connecting the optic tectum with the spatial learning circuits in the dorsolateral pallium. While tectal topographic information was mostly eliminated in preglomerular neurons, the time-intervals between object encounters were precisely encoded. We show that this reliable temporal information, combined with a speed signal, can permit accurate estimation of the distance between encounters, a necessary component of path-integration that enables computing allocentric spatial relations. Our results suggest that similar mechanisms are involved in sequential spatial learning in all vertebrates. Finding their way around is an essential part of survival for many animals and helps them to locate food, mates and shelter. Animals have evolved the ability to form a 'map' or representation of their surroundings. For example, the electric fish Apteronotus leptorhynchus, is able to precisely learn the location of food and navigate there. It can do this in complete darkness by generating a weak electric field. As it swims, every object it encounters generates an ‘electric image’ that is detected on the skin and processed in the brain. However, all the cues the fish comes across are from its own point of view – the information about its environment is processed with respect to its location. And yet, the map that it generates needs to be independent of the fish’s position – it has to work regardless of where the animal is. The way animals translate ‘self-centered’ experiences to form a general representation of their surroundings is not yet fully understood. Now, Wallach et al. studied how internal brain maps are generated in A. leptorhynchus. Information about the fish's environment passes through a structure in the brain called the preglomerular complex. Measuring the activity of this region revealed that the preglomerular complex does not process much self-centered information. Instead, whenever the fish passed any object – regardless of where it was in relation to the fish – the event triggered a brief burst of preglomerular activity. The intensity of the activity depended on how recently the fish had encountered another object. This information, combined with the dynamics of the fish's movement, could be what allows the fish to convert a sequence of encounters into a general spatial map. These findings could help to inform research on learning and navigation. Further research could also reveal whether other species, including humans, generate their mental maps in a similar way. This may be relevant for people suffering from diseases such as Alzheimer’s, in which a sense of orientation has become impaired.
Collapse
Affiliation(s)
- Avner Wallach
- Department of Physics, University of Ottawa, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Erik Harvey-Girard
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - André Longtin
- Department of Physics, University of Ottawa, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Center for Neural Dynamics, Mind and Brain Research Institute, University of Ottawa, Ottawa, Canada
| | - Len Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Center for Neural Dynamics, Mind and Brain Research Institute, University of Ottawa, Ottawa, Canada
| |
Collapse
|
17
|
Nonstationary Stochastic Dynamics Underlie Spontaneous Transitions between Active and Inactive Behavioral States. eNeuro 2017; 4:eN-NWR-0355-16. [PMID: 28374017 PMCID: PMC5370279 DOI: 10.1523/eneuro.0355-16.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/16/2017] [Accepted: 02/22/2017] [Indexed: 11/21/2022] Open
Abstract
The neural basis of spontaneous movement generation is a fascinating open question. Long-term monitoring of fish, swimming freely in a constant sensory environment, has revealed a sequence of behavioral states that alternate randomly and spontaneously between periods of activity and inactivity. We show that key dynamical features of this sequence are captured by a 1-D diffusion process evolving in a nonlinear double well energy landscape, in which a slow variable modulates the relative depth of the wells. This combination of stochasticity, nonlinearity, and nonstationary forcing correctly captures the vastly different timescales of fluctuations observed in the data (∼1 to ∼1000 s), and yields long-tailed residence time distributions (RTDs) also consistent with the data. In fact, our model provides a simple mechanism for the emergence of long-tailed distributions in spontaneous animal behavior. We interpret the stochastic variable of this dynamical model as a decision-like variable that, upon reaching a threshold, triggers the transition between states. Our main finding is thus the identification of a threshold crossing process as the mechanism governing spontaneous movement initiation and termination, and to infer the presence of underlying nonstationary agents. Another important outcome of our work is a dimensionality reduction scheme that allows similar segments of data to be grouped together. This is done by first extracting geometrical features in the dataset and then applying principal component analysis over the feature space. Our study is novel in its ability to model nonstationary behavioral data over a wide range of timescales.
Collapse
|
18
|
Rodríguez-Cattaneo A, Aguilera PA, Caputi AA. Waveform sensitivity of electroreceptors in the pulse-type weakly electric fish Gymnotus omarorum. ACTA ACUST UNITED AC 2017; 220:1663-1673. [PMID: 28202586 DOI: 10.1242/jeb.153379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/13/2017] [Indexed: 11/20/2022]
Abstract
As in most sensory systems, electrosensory images in weakly electric fish are encoded in two parallel pathways, fast and slow. From work on wave-type electric fish, these fast and slow pathways are thought to encode the time and amplitude of electrosensory signals, respectively. The present study focuses on the primary afferents giving origin to the slow path of the pulse-type weakly electric fish Gymnotus omarorum We found that burst duration coders respond with a high-frequency train of spikes to each electric organ discharge. They also show high sensitivity to phase-frequency distortions of the self-generated local electric field. We explored this sensitivity by manipulating the longitudinal impedance of a probe cylinder to modulate the stimulus waveform, while extracellularly recording isolated primary afferents. Resistive loads only affect the amplitude of the re-afferent signals without distorting the waveform. Capacitive loads cause large waveform distortions aside from amplitude changes. Stepping from a resistive to a capacitive load in such a way that the stimulus waveform was distorted, without changing its total energy, caused strong changes in latency, inter-spike interval and number of spikes of primary afferent responses. These burst parameters are well correlated suggesting that they may contribute synergistically in driving downstream neurons. This correlation also suggests that each receptor encodes a single parameter in the stimulus waveform. The finding of waveform distortion sensitivity is relevant because it may contribute to: (a) enhance electroreceptive range in the peripheral 'electrosensory field', (b) a better identification of living prey at the 'foveal electrosensory field' and (c) detect the presence and orientation of conspecifics. Our results also suggest a revision of the classical view of amplitude and time encoding by fast and slow pathways in pulse-type electric fish.
Collapse
Affiliation(s)
- Alejo Rodríguez-Cattaneo
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, C.P 11600, Montevideo, Uruguay
| | - Pedro A Aguilera
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, C.P 11600, Montevideo, Uruguay
| | - Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, C.P 11600, Montevideo, Uruguay
| |
Collapse
|
19
|
Karten HJ. Vertebrate brains and evolutionary connectomics: on the origins of the mammalian 'neocortex'. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0060. [PMID: 26554047 DOI: 10.1098/rstb.2015.0060] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The organization of the non-mammalian forebrain had long puzzled neurobiologists. Unlike typical mammalian brains, the telencephalon is not organized in a laminated 'cortical' manner, with distinct cortical areas dedicated to individual sensory modalities or motor functions. The two major regions of the telencephalon, the basal ventricular ridge (BVR) and the dorsal ventricular ridge (DVR), were loosely referred to as being akin to the mammalian basal ganglia. The telencephalon of non-mammalian vertebrates appears to consist of multiple 'subcortical' groups of cells. Analysis of the nuclear organization of the avian brain, its connections, molecular properties and physiology, and organization of its pattern of circuitry and function relative to that of mammals, collectively referred to as 'evolutionary connectomics', revealed that only a restricted portion of the BVR is homologous to the basal ganglia of mammals. The remaining dorsal regions of the DVR, wulst and arcopallium of the avian brain contain telencephalic inputs and outputs remarkably similar to those of the individual layers of the mammalian 'neocortex', hippocampus and amygdala, with instances of internuclear connections strikingly similar to those found between cortical layers and within radial 'columns' in the mammalian sensory and motor cortices. The molecular properties of these 'nuclei' in birds and reptiles are similar to those of the corresponding layers of the mammalian neocortex. The fundamental pathways and cell groups of the auditory, visual and somatosensory systems of the thalamus and telencephalon are homologous at the cellular, circuit, network and gene levels, and are of great antiquity. A proposed altered migration of these homologous neurons and circuits during development is offered as a mechanism that may account for the altered configuration of mammalian telencephalae.
Collapse
Affiliation(s)
- Harvey J Karten
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
20
|
Schumacher S, Burt de Perera T, Thenert J, von der Emde G. Cross-modal object recognition and dynamic weighting of sensory inputs in a fish. Proc Natl Acad Sci U S A 2016; 113:7638-43. [PMID: 27313211 PMCID: PMC4941484 DOI: 10.1073/pnas.1603120113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most animals use multiple sensory modalities to obtain information about objects in their environment. There is a clear adaptive advantage to being able to recognize objects cross-modally and spontaneously (without prior training with the sense being tested) as this increases the flexibility of a multisensory system, allowing an animal to perceive its world more accurately and react to environmental changes more rapidly. So far, spontaneous cross-modal object recognition has only been shown in a few mammalian species, raising the question as to whether such a high-level function may be associated with complex mammalian brain structures, and therefore absent in animals lacking a cerebral cortex. Here we use an object-discrimination paradigm based on operant conditioning to show, for the first time to our knowledge, that a nonmammalian vertebrate, the weakly electric fish Gnathonemus petersii, is capable of performing spontaneous cross-modal object recognition and that the sensory inputs are weighted dynamically during this task. We found that fish trained to discriminate between two objects with either vision or the active electric sense, were subsequently able to accomplish the task using only the untrained sense. Furthermore we show that cross-modal object recognition is influenced by a dynamic weighting of the sensory inputs. The fish weight object-related sensory inputs according to their reliability, to minimize uncertainty and to enable an optimal integration of the senses. Our results show that spontaneous cross-modal object recognition and dynamic weighting of sensory inputs are present in a nonmammalian vertebrate.
Collapse
Affiliation(s)
| | | | - Johanna Thenert
- Institut für Zoologie, Universität Bonn, 53115 Bonn, Germany
| | | |
Collapse
|
21
|
Elliott SB, Harvey-Girard E, Giassi ACC, Maler L. Hippocampal-like circuitry in the pallium of an electric fish: Possible substrates for recursive pattern separation and completion. J Comp Neurol 2016; 525:8-46. [PMID: 27292574 DOI: 10.1002/cne.24060] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/12/2016] [Accepted: 06/09/2016] [Indexed: 12/17/2022]
Abstract
Teleost fish are capable of complex behaviors, including social and spatial learning; lesion studies show that these abilities require dorsal telencephalon (pallium). The teleost telencephalon has subpallial and pallial components. The subpallium is well described and highly conserved. In contrast, the teleost pallium is not well understood and its relation to that of other vertebrates remains controversial. Here we analyze the connectivity of the subdivisions of dorsal pallium (DD) of an electric gymnotiform fish, Apteronotus leptorhynchus: superficial (DDs), intermediate (DDi) and magnocellular (DDmg) components. The major pathways are recursive: the dorsolateral pallium (DL) projects strongly to DDi, with lesser inputs to DDs and DDmg. DDi in turn projects strongly to DDmg, which then feeds back diffusely to DL. Our quantitative analysis of DDi connectivity demonstrates that it is a global recurrent network. In addition, we show that the DD subnuclei have complex reciprocal connections with subpallial regions. Specifically, both DDi and DDmg are reciprocally connected to pallial interneurons within the misnamed rostral entopeduncular nucleus (Er). Based on DD connectivity, we illustrate the close similarity, and possible homology, between hippocampal and DD/DL circuitry. We hypothesize that DD/DL circuitry can implement the same pattern separation and completion computations ascribed to the hippocampal dentate gyrus and CA3 fields. We further contend that the DL to DDi to DDmg to DL feedback loop makes the pattern separation/completion operations recursive. We discuss our results with respect to recent studies on fear avoidance conditioning in zebrafish and attention and spatial learning in a pulse gymnotiform fish. J. Comp. Neurol. 525:8-46, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- S Benjamin Elliott
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada
| | - Erik Harvey-Girard
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada
| | - Ana C C Giassi
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada.,Center for Neural Dynamics, Brain and Mind Institute, University of Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Jun JJ, Longtin A, Maler L. Active sensing associated with spatial learning reveals memory-based attention in an electric fish. J Neurophysiol 2016; 115:2577-92. [PMID: 26961107 DOI: 10.1152/jn.00979.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/04/2016] [Indexed: 11/22/2022] Open
Abstract
Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp, a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark "maze" and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region.
Collapse
Affiliation(s)
- James J Jun
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; and Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| | - André Longtin
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; and Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; and Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|