1
|
Rolland M, Zai AT, Hahnloser RHR, Del Negro C, Giret N. Visually-guided compensation of deafening-induced song deterioration. Front Psychol 2025; 16:1521407. [PMID: 39981385 PMCID: PMC11839652 DOI: 10.3389/fpsyg.2025.1521407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Human language learning and maintenance depend primarily on auditory feedback but are also shaped by other sensory modalities. Individuals who become deaf after learning to speak (post-lingual deafness) experience a gradual decline in their language abilities. A similar process occurs in songbirds, where deafness leads to progressive song deterioration. However, songbirds can modify their songs using non-auditory cues, challenging the prevailing assumption that auditory feedback is essential for vocal control. In this study, we investigated whether deafened birds could use visual cues to prevent or limit song deterioration. We developed a new metric for assessing syllable deterioration called the spectrogram divergence score. We then trained deafened birds in a behavioral task where the spectrogram divergence score of a target syllable was computed in real-time, triggering a contingent visual stimulus based on the score. Birds exposed to the contingent visual stimulus-a brief light extinction-showed more stable song syllables than birds that received either no light extinction or randomly triggered light extinction. Notably, this effect was specific to the targeted syllable and did not influence other syllables. This study demonstrates that deafness-induced song deterioration in birds can be partially mitigated with visual cues.
Collapse
Affiliation(s)
- Manon Rolland
- Institut des Neurosciences Paris Saclay, CNRS, Université Paris Saclay, Saclay, France
| | - Anja T. Zai
- Institute of Neuroinformatics, ETH Zurich and UZH, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Richard H. R. Hahnloser
- Institute of Neuroinformatics, ETH Zurich and UZH, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Catherine Del Negro
- Institut des Neurosciences Paris Saclay, CNRS, Université Paris Saclay, Saclay, France
| | - Nicolas Giret
- Institut des Neurosciences Paris Saclay, CNRS, Université Paris Saclay, Saclay, France
| |
Collapse
|
2
|
Liao DA, Moll FW, Nieder A. Bridging the fields of cognition and birdsong with corvids. Curr Opin Neurobiol 2025; 90:102965. [PMID: 39754886 DOI: 10.1016/j.conb.2024.102965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/06/2025]
Abstract
Corvids, readily adaptable across social and ecological contexts, successfully inhabit almost the entire world. They are seen as highly intelligent birds, and current research examines their cognitive abilities. Despite being songbirds with a complete 'song system', corvids have historically received less attention in studies of song production, learning, and perception compared to non-corvid songbirds. However, recent neurobiological studies have demonstrated that songbird vocal production and its neuronal representations are regularly influenced by environmental and cognitive factors. This opinion article discusses the literature on 'corvid song' before introducing other flexible vocal behaviors of corvids in both the wild and controlled laboratory studies. We suggest corvids with their flexible vocal control as promising model species to study the links between brain networks for cognition and vocalization. Studying corvid vocal flexibility and associated cognitive processes in both ecological and lab settings offers complementary insights, crucial for bridging the fields of cognition and birdsong.
Collapse
Affiliation(s)
- Diana A Liao
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.
| | - Felix W Moll
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.
| |
Collapse
|
3
|
Moll FW, Kersten Y, Erdle S, Nieder A. Exploring Anatomical Links Between the Crow's Nidopallium Caudolaterale and Its Song System. J Comp Neurol 2025; 533:e70028. [PMID: 39921575 PMCID: PMC11806514 DOI: 10.1002/cne.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 02/10/2025]
Abstract
Crows are corvid songbirds that exhibit remarkable cognitive control, including their ability to vocalize on command. The activity of single neurons from the crow's associative telencephalic structure nidopallium caudolaterale (NCL) is correlated with the execution of this vocal and many non-vocal behaviors. However, whether anatomical connections directly link the crow NCL to its "song system" remains unclear. To address this, we used fluorescent tracers along with histological staining methods to characterize the connectivity of the crow's NCL in relation to its song system. Consistent with previous findings in other songbirds, we found that the NCL sends dense projections into the dorsal intermediate arcopallium (AID) directly adjacent to the song system's telencephalic motor output, the robust nucleus of the arcopallium (RA). Similarly, we demonstrate dense NCL projections into the striatum engulfing the basal ganglia song nucleus "area X." Both of these descending projections mirror the projections of the nidopallial song nucleus HVC (proper name) into RA and area X, with extremely sparse NCL fibers extending into area X. Furthermore, we characterized the distribution of cells projecting from the lateral part of the magnocellular nucleus of the anterior nidopallium (MAN) to NCL. Notably, a separate medial population of MAN cells projects to HVC. These two sets of connections-MAN to NCL and MAN to HVC-run in parallel but do not overlap. Taken together, our findings support the hypothesis that the NCL is part of a "general motor system" that parallels the song system but exhibits only minimal monosynaptic interconnections with it.
Collapse
Affiliation(s)
- Felix W. Moll
- Animal Physiology Unit, Institute of NeurobiologyUniversity of TübingenTübingenGermany
| | - Ylva Kersten
- Animal Physiology Unit, Institute of NeurobiologyUniversity of TübingenTübingenGermany
| | - Saskia Erdle
- Animal Physiology Unit, Institute of NeurobiologyUniversity of TübingenTübingenGermany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of NeurobiologyUniversity of TübingenTübingenGermany
| |
Collapse
|
4
|
Savoy A, Anderson KL, Gogola JV. The songbird connectome (OSCINE-NET.ORG): structure-function organization beyond the canonical vocal control network. BMC Neurosci 2024; 25:79. [PMID: 39731002 DOI: 10.1186/s12868-024-00919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/12/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Understanding the neural basis of behavior requires insight into how different brain systems coordinate with each other. Existing connectomes for various species have highlighted brain systems essential to various aspects of behavior, yet their application to complex learned behaviors remains limited. Research on vocal learning in songbirds has extensively focused on the vocal control network, though recent work implicates a variety of circuits in contributing to important aspects of vocal behavior. Thus, a more comprehensive understanding of brain-wide connectivity is essential to further assess the totality of circuitry underlying this complex learned behavior. RESULTS We present the Oscine Structural Connectome for Investigating NEural NETwork ORGanization (OSCINE-NET.ORG), the first interactive mesoscale connectome for any vocal learner. This comprehensive digital map includes all known connectivity data, covering major brain superstructures and functional networks. Our analysis reveals that the songbird brain exhibits small-world properties, with highly connected communities functionally designated as motor, visual, associative, vocal, social, and auditory. Moreover, there is a small set of significant connections across these communities, including from social and auditory sub-communities to vocal sub-communities, which highlight ethologically relevant facets of vocal learning and production. Notably, the vocal community contains the majority of the canonical vocal control network, as well as a variety of other nodes that are highly interconnected with it, meriting further evaluation for their inclusion in this network. A subset of nodes forms a "rich broker club," highly connected across the brain and forming a small circuit amongst themselves, indicating they may play a key role in information transfer broadly. Collectively, their bidirectional connectivity with multiple communities indicates they may act as liaisons across multiple functional circuits for a variety of complex behaviors. CONCLUSIONS OSCINE-NET.ORG offers unprecedented access to detailed songbird connectivity data, promoting insight into the neural circuits underlying complex behaviors. This data emphasizes the importance of brain-wide integration in vocal learning, facilitating a potential reevaluation of the canonical vocal control network. Furthermore, we computationally identify a small, previously unidentified circuit-one which may play an impactful role in brain-wide coordination of multiple complex behaviors.
Collapse
Affiliation(s)
- Andrew Savoy
- Department of Psychology, Integrative Neuroscience Program, University of Chicago, 5848 S University Ave, Chicago, IL, 60637, USA.
| | - Katherine L Anderson
- Department of Molecular, Cellular, and Developmental Biology, The City University of New York Graduate Center, 365 5th Ave, New York, NY, 10016, USA.
- Department of Biology, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA.
| | - Joseph V Gogola
- Department of Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Kersten Y, Moll FW, Erdle S, Nieder A. Input and Output Connections of the Crow Nidopallium Caudolaterale. eNeuro 2024; 11:ENEURO.0098-24.2024. [PMID: 38684368 PMCID: PMC11064124 DOI: 10.1523/eneuro.0098-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024] Open
Abstract
The avian telencephalic structure nidopallium caudolaterale (NCL) functions as an analog to the mammalian prefrontal cortex. In crows, corvid songbirds, it plays a crucial role in higher cognitive and executive functions. These functions rely on the NCL's extensive telencephalic connections. However, systematic investigations into the brain-wide connectivity of the NCL in crows or other songbirds are lacking. Here, we studied its input and output connections by injecting retrograde and anterograde tracers into the carrion crow NCL. Our results, mapped onto a published carrion crow brain atlas, confirm NCL multisensory connections and extend prior pigeon findings by identifying a novel input from the hippocampal formation. Furthermore, we analyze crow NCL efferent projections to the arcopallium and report newly identified arcopallial neurons projecting bilaterally to the NCL. These findings help to clarify the role of the NCL as central executive hub in the corvid songbird brain.
Collapse
Affiliation(s)
- Ylva Kersten
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Felix W Moll
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Saskia Erdle
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
6
|
Liao K, Xiang Y, Huang F, Huang M, Xu W, Lin Y, Liao P, Wang Z, Yang L, Tian X, Chen D, Wang Z, Liu S, Zhuang Z. Spatial and single-nucleus transcriptomics decoding the molecular landscape and cellular organization of avian optic tectum. iScience 2024; 27:109009. [PMID: 38333704 PMCID: PMC10850779 DOI: 10.1016/j.isci.2024.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
The avian optic tectum (OT) has been studied for its diverse functions, yet a comprehensive molecular landscape at the cellular level has been lacking. In this study, we applied spatial transcriptome sequencing and single-nucleus RNA sequencing (snRNA-seq) to explore the cellular organization and molecular characteristics of the avian OT from two species: Columba livia and Taeniopygia guttata. We identified precise layer structures and provided comprehensive layer-specific signatures of avian OT. Furthermore, we elucidated diverse functions in different layers, with the stratum griseum periventriculare (SGP) potentially playing a key role in advanced functions of OT, like fear response and associative learning. We characterized detailed neuronal subtypes and identified a population of FOXG1+ excitatory neurons, resembling those found in the mouse neocortex, potentially involved in neocortex-related functions and expansion of avian OT. These findings could contribute to our understanding of the architecture of OT, shedding light on visual perception and multifunctional association.
Collapse
Affiliation(s)
- Kuo Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- BGI Research, Hangzhou 310030, China
| | - Ya Xiang
- BGI Research, Hangzhou 310030, China
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Fubaoqian Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- BGI Research, Hangzhou 310030, China
| | - Maolin Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenbo Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Youning Lin
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Pingfang Liao
- BGI Research, Hangzhou 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zishi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinmao Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Duoyuan Chen
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Zhenkun Zhuang
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| |
Collapse
|
7
|
Gaede AH, Gutiérrez-Ibáñez C, Wu PH, Pilon MC, Altshuler DL, Wylie DR. Topography of visual and somatosensory inputs to the pontine nuclei in zebra finches (Taeniopygia guttata). J Comp Neurol 2024; 532:e25556. [PMID: 37938923 DOI: 10.1002/cne.25556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/25/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Birds have a comprehensive network of sensorimotor projections extending from the forebrain and midbrain to the cerebellum via the pontine nuclei, but the organization of these circuits in the pons is not thoroughly described. Inputs to the pontine nuclei include two retinorecipient areas, nucleus lentiformis mesencephali (LM) and nucleus of the basal optic root (nBOR), which are important structures for analyzing optic flow. Other crucial regions for visuomotor control include the retinorecipient ventral lateral geniculate nucleus (GLv), and optic tectum (TeO). These visual areas, together with the somatosensory area of the anterior (rostral) Wulst, which is homologous to the primary somatosensory cortex in mammals, project to the medial and lateral pontine nuclei (PM, PL). In this study, we used injections of fluorescent tracers to study the organization of these visual and somatosensory inputs to the pontine nuclei in zebra finches. We found a topographic organization of inputs to PM and PL. The PM has a lateral subdivision that predominantly receives projections from the ipsilateral anterior Wulst. The medial PM receives bands of inputs from the ipsilateral GLv and the nucleus laminaris precommisulis, located medial to LM. We also found that the lateral PL receives a strong ipsilateral projection from TeO, while the medial PL and region between the PM and PL receive less prominent projections from nBOR, bilaterally. We discuss these results in the context of the organization of pontine inputs to the cerebellum and possible functional implications of diverse somato-motor and visuomotor inputs and parcellation in the pontine nuclei.
Collapse
Affiliation(s)
- Andrea H Gaede
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | | | - Pei-Hsuan Wu
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Madison C Pilon
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas L Altshuler
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Giret N, Rolland M, Del Negro C. Multisensory processes in birds: from single neurons to the influence of social interactions and sensory loss. Neurosci Biobehav Rev 2022; 143:104942. [DOI: 10.1016/j.neubiorev.2022.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
|
9
|
Gutiérrez-Ibáñez C, Pilon MC, Wylie DR. Pretecto- and ponto-cerebellar pathways to the pigeon oculomotor cerebellum follow a zonal organization. J Comp Neurol 2021; 530:817-833. [PMID: 34587295 DOI: 10.1002/cne.25247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 11/05/2022]
Abstract
Both birds and mammals have relatively large forebrains and cerebella. In mammals, there are extensive sensory-motor projections to the cerebellum through the pontine nuclei originating from several parts of the cerebral cortex. Similar forebrain-to-cerebellum pathways exist in birds, but the organization of this circuitry has not been studied extensively. Birds have two nuclei at the base of the brainstem that are thought to be homologous to the pontine nuclei of mammals, the medial and lateral pontine nuclei (PM, PL). Additionally, birds are unique in that they have a pretectal nucleus called the medial spiriform nucleus (SpM) that, like the pontine nuclei, also receives projections from the forebrain and projects to the oculomotor cerebellum (OCb; folia VI to VIII). The OCb also receives input from the pretectal nucleus lentiformis mesencephali (LM), which analyzes visual optic flow information resulting from self-movement. In this study, we used single or double injections of fluorescent tracers to study the organization of these inputs from PM, PL, SpM and LM to the OCb in pigeons. We found that these inputs follow a zonal organization. The most medial zone in the OCb, zone A1, receives bilateral inputs from the lateral SpM, PL and LM. Zones A2 and C receive a bilateral projection from the medial SpM, and a mostly contralateral projection from PM and LM. We discuss how the pathway to zone A1 processes mainly visuo-motor information to spinal premotor areas, whereas the pathways to zone A2/C processes somato-motor and visuo-motor information and may have a feedback/modulatory role.
Collapse
Affiliation(s)
| | - Madison C Pilon
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Bloch S, Hagio H, Thomas M, Heuzé A, Hermel JM, Lasserre E, Colin I, Saka K, Affaticati P, Jenett A, Kawakami K, Yamamoto N, Yamamoto K. Non-thalamic origin of zebrafish sensory nuclei implies convergent evolution of visual pathways in amniotes and teleosts. eLife 2020; 9:e54945. [PMID: 32896272 PMCID: PMC7478893 DOI: 10.7554/elife.54945] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Ascending visual projections similar to the mammalian thalamocortical pathway are found in a wide range of vertebrate species, but their homology is debated. To get better insights into their evolutionary origin, we examined the developmental origin of a thalamic-like sensory structure of teleosts, the preglomerular complex (PG), focusing on the visual projection neurons. Similarly to the tectofugal thalamic nuclei in amniotes, the lateral nucleus of PG receives tectal information and projects to the pallium. However, our cell lineage study in zebrafish reveals that the majority of PG cells are derived from the midbrain, unlike the amniote thalamus. We also demonstrate that the PG projection neurons develop gradually until late juvenile stages. Our data suggest that teleost PG, as a whole, is not homologous to the amniote thalamus. Thus, the thalamocortical-like projections evolved from a non-forebrain cell population, which indicates a surprising degree of variation in the vertebrate sensory systems.
Collapse
Affiliation(s)
- Solal Bloch
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRSGif-sur-YvetteFrance
| | - Hanako Hagio
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
- Institute for Advanced Research, Nagoya UniversityNagoyaJapan
| | - Manon Thomas
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRSGif-sur-YvetteFrance
| | - Aurélie Heuzé
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRSGif-sur-YvetteFrance
| | - Jean-Michel Hermel
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRSGif-sur-YvetteFrance
| | - Elodie Lasserre
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRSGif-sur-YvetteFrance
| | - Ingrid Colin
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRSGif-sur-YvetteFrance
| | - Kimiko Saka
- Laboratory of Molecular and Developmental Biology, National Institute of GeneticsMishimaJapan
| | - Pierre Affaticati
- TEFOR Paris-Saclay, CNRS UMS2010, INRA UMS1451, Université Paris-SaclayGif-sur-YvetteFrance
| | - Arnim Jenett
- TEFOR Paris-Saclay, CNRS UMS2010, INRA UMS1451, Université Paris-SaclayGif-sur-YvetteFrance
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of GeneticsMishimaJapan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies)MishimaJapan
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
| | - Kei Yamamoto
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRSGif-sur-YvetteFrance
| |
Collapse
|
11
|
Kloos M, Weigel S, Luksch H. Anatomy and Physiology of Neurons in Layer 9 of the Chicken Optic Tectum. Front Neural Circuits 2019; 13:63. [PMID: 31680877 PMCID: PMC6802604 DOI: 10.3389/fncir.2019.00063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/18/2019] [Indexed: 12/03/2022] Open
Abstract
Visual information in birds is to great extent processed in the optic tectum (TeO), a prominent laminated midbrain structure. Retinal input enters the TeO in its superficial layers, while output is limited to intermediate and deeper layers. In addition to visual information, the TeO receives multimodal input from the auditory and somatosensory pathway. The TeO gives rise to a major ascending tectofugal projection where neurons of tectal layer 13 project to the thalamic nucleus rotundus, which then projects to the entopallium. A second tectofugal projection system, called the accessory pathway, has however not been studied as thoroughly. Again, cells of tectal layer 13 form an ascending projection that targets a nucleus known as either the caudal part of the nucleus dorsolateralis posterior of the thalamus (DLPc) or nucleus uveaformis (Uva). This nucleus is known for multimodal integration and receives additional input from the lateral pontine nucleus (PL), which in turn receives projections from layer 8–15 of the TeO. Here, we studied a particular cell type afferent to the PL that consists of radially oriented neurons in layer 9. We characterized these neurons with respect to their anatomy, their retinal input, and the modulation of retinal input by local circuits. We found that comparable to other radial neurons in the tectum, cells of layer 9 have columnar dendritic fields and reach up to layer 2. Sholl analysis demonstrated that dendritic arborization concentrates on retinorecipient layers 2 and 4, with additional arborization in layers 9 and 10. All neurons recorded in layer 9 received retinal input via glutamatergic synapses. We analyzed the influence of modulatory circuits of the TeO by application of antagonists to γ-aminobutyric acid (GABA) and acetylcholine (ACh). Our data show that the neurons of layer 9 are integrated in a network under strong GABAergic inhibition, which is controlled by local cholinergic activation. Output to the PL and to the accessory tectofugal pathway thus appears to be under strict control of local tectal networks, the relevance of which for multimodal integration is discussed.
Collapse
Affiliation(s)
- Marinus Kloos
- Department of Animal Sciences, Chair of Zoology, Technical University of Munich, Freising, Germany.,Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Stefan Weigel
- Department of Animal Sciences, Chair of Zoology, Technical University of Munich, Freising, Germany
| | - Harald Luksch
- Department of Animal Sciences, Chair of Zoology, Technical University of Munich, Freising, Germany
| |
Collapse
|
12
|
Fernández M, Morales C, Durán E, Fernández‐Colleman S, Sentis E, Mpodozis J, Karten HJ, Marín GJ. Parallel organization of the avian sensorimotor arcopallium: Tectofugal visual pathway in the pigeon (
Columba livia
). J Comp Neurol 2019; 528:597-623. [DOI: 10.1002/cne.24775] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Máximo Fernández
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
| | - Cristian Morales
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
| | - Ernesto Durán
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
| | | | - Elisa Sentis
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
| | - Harvey J. Karten
- Department of Neurosciences, School of MedicineUniversity of California San Diego California
| | - Gonzalo J. Marín
- Departamento de Biología, Facultad de CienciasUniversidad de Chile Santiago Chile
- Facultad de MedicinaUniversidad Finis Terrae Santiago Chile
| |
Collapse
|
13
|
Behroozi M, Billings BK, Helluy X, Manger PR, Güntürkün O, Ströckens F. Functional MRI in the Nile crocodile: a new avenue for evolutionary neurobiology. Proc Biol Sci 2019; 285:rspb.2018.0178. [PMID: 29695446 DOI: 10.1098/rspb.2018.0178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/29/2018] [Indexed: 01/12/2023] Open
Abstract
Crocodilians are important for understanding the evolutionary history of amniote neural systems as they are the nearest extant relatives of modern birds and share a stem amniote ancestor with mammals. Although the crocodilian brain has been investigated anatomically, functional studies are rare. Here, we employed functional magnetic resonance imaging (fMRI), never tested in poikilotherms, to investigate crocodilian telencephalic sensory processing. Juvenile Crocodylus niloticus were placed in a 7 T MRI scanner to record blood oxygenation level-dependent (BOLD) signal changes during the presentation of visual and auditory stimuli. Visual stimulation increased BOLD signals in rostral to mid-caudal portions of the dorso-lateral anterior dorsal ventricular ridge (ADVR). Simple auditory stimuli led to signal increase in the rostromedial and caudocentral ADVR. These activation patterns are in line with previously described projection fields of diencephalic sensory fibres. Furthermore, complex auditory stimuli activated additional regions of the caudomedial ADVR. The recruitment of these additional, presumably higher-order, sensory areas reflects observations made in birds and mammals. Our results indicate that structural and functional aspects of sensory processing have been likely conserved during the evolution of sauropsids. In addition, our study shows that fMRI can be used to investigate neural processing in poikilotherms, providing a new avenue for neurobiological research in these critical species.
Collapse
Affiliation(s)
- Mehdi Behroozi
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Universitätsstraße 150, 44780, Bochum, Germany
| | - Brendon K Billings
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Xavier Helluy
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Universitätsstraße 150, 44780, Bochum, Germany.,Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Onur Güntürkün
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Universitätsstraße 150, 44780, Bochum, Germany.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| | - Felix Ströckens
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Universitätsstraße 150, 44780, Bochum, Germany
| |
Collapse
|
14
|
Paterson AK, Bottjer SW. Cortical inter-hemispheric circuits for multimodal vocal learning in songbirds. J Comp Neurol 2017; 525:3312-3340. [PMID: 28681379 DOI: 10.1002/cne.24280] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 02/02/2023]
Abstract
Vocal learning in songbirds and humans is strongly influenced by social interactions based on sensory inputs from several modalities. Songbird vocal learning is mediated by cortico-basal ganglia circuits that include the SHELL region of lateral magnocellular nucleus of the anterior nidopallium (LMAN), but little is known concerning neural pathways that could integrate multimodal sensory information with SHELL circuitry. In addition, cortical pathways that mediate the precise coordination between hemispheres required for song production have been little studied. In order to identify candidate mechanisms for multimodal sensory integration and bilateral coordination for vocal learning in zebra finches, we investigated the anatomical organization of two regions that receive input from SHELL: the dorsal caudolateral nidopallium (dNCLSHELL ) and a region within the ventral arcopallium (Av). Anterograde and retrograde tracing experiments revealed a topographically organized inter-hemispheric circuit: SHELL and dNCLSHELL , as well as adjacent nidopallial areas, send axonal projections to ipsilateral Av; Av in turn projects to contralateral SHELL, dNCLSHELL , and regions of nidopallium adjacent to each. Av on each side also projects directly to contralateral Av. dNCLSHELL and Av each integrate inputs from ipsilateral SHELL with inputs from sensory regions in surrounding nidopallium, suggesting that they function to integrate multimodal sensory information with song-related responses within LMAN-SHELL during vocal learning. Av projections share this integrated information from the ipsilateral hemisphere with contralateral sensory and song-learning regions. Our results suggest that the inter-hemispheric pathway through Av may function to integrate multimodal sensory feedback with vocal-learning circuitry and coordinate bilateral vocal behavior.
Collapse
Affiliation(s)
- Amy K Paterson
- Program in Genetic, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sarah W Bottjer
- Section of Neurobiology, University of Southern California, Los Angeles, California
| |
Collapse
|
15
|
Wild JM. The ventromedial hypothalamic nucleus in the zebra finch (Taeniopygia guttata): Afferent and efferent projections in relation to the control of reproductive behavior. J Comp Neurol 2017; 525:2657-2676. [PMID: 28420031 DOI: 10.1002/cne.24225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 01/11/2023]
Abstract
Sex-specific mating behaviors occur in a variety of mammals, with the medial preoptic nucleus (POM) and the ventromedial hypothalamic nucleus (VMH) mediating control of male and female sexual behavior, respectively. In birds, likewise, POM is predominantly involved in the control of male reproductive behavior, but the degree to which VMH is involved in female reproductive behavior is unclear. Here, in male and female zebra finches, a combination of aromatase immunohistochemistry and conventional tract tracing facilitated the definition of two separate but adjacent nuclei in the basal hypothalamus: an oblique band of aromatase-positive (AR+) neurons, and ventromedial to this, an ovoid, aromatase-negative (AR-) nucleus. The AR- nucleus, but not the AR+ nucleus, was here shown to receive a projection from rostral parts of the thalamic auditory nucleus ovoidalis and from the nucleus of the tractus ovoidalis. The AR- nucleus also receives an overlapping, major projection from previously uncharted regions of the medial arcopallium and a minor projection from the caudomedial nidopallium. Both the AR- and the AR+ nuclei project to the intercollicular nucleus of the midbrain. No obvious sex differences in either the pattern of AR immunoreactivity or of the afferent projections to the AR- nucleus were observed. The significance of these results in terms of the acoustic control of avian reproductive behavior is discussed, and a comparison with the organization of VMH afferents in lizards suggests a homologous similarity of the caudal telencephalon in sauropsids.
Collapse
Affiliation(s)
- J Martin Wild
- Faculty of Medical and Health Sciences, Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Wild JM. Dorsal pallidal neurons directly link the nidopallium and midbrain in the zebra finch (Taeniopygia guttata). J Comp Neurol 2017; 525:1731-1742. [PMID: 28078738 DOI: 10.1002/cne.24174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/18/2016] [Accepted: 12/20/2016] [Indexed: 11/10/2022]
Abstract
The dorsal pallidum in birds is considered similar, if not homologous, to the globus pallidus (GP) of mammals. The dorsal pallidum projects to both thalamic and midbrain targets similar to the direct and indirect pathways arising from the internal and external segments of the GP. In the present study, retrograde and anterograde tracing studies revealed a previously undescribed projection of the avian dorsal pallidum. This arises from a specific dorsomedial component, which terminates in the intercollicular nucleus and partly surrounds the avian equivalent of the central nucleus of the inferior colliculus. The respiratory-vocal dorsomedial nucleus of the intercollicular complex, however, does not receive these projections. The somata of the pallidal neurons retrogradely labeled from injections in the intercollicular nucleus were large and generally multipolar and had extensive, sparsely branching central processes (presumptive dendrites) that together extended up to 2 mm dorsally into the intermediate and caudomedial nidopallium. The size and morphology of these neurons were similar to those of large pallidal neurons labeled by calretinin immunoreactivity, which could be co-localized to the same cells. Thus, rather than being directly involved in the control of movement, the large dorsomedial neurons of the caudal dorsal pallidum may be involved in sensory processing, in that they provide an unusual direct link between sensory (auditory/somatosensory) regions of the nidopallium and sensory regions of the intercollicular nucleus of the midbrain. J. Comp. Neurol. 525:1731-1742, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- J Martin Wild
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Elliott KC, Wu W, Bertram R, Hyson RL, Johnson F. Orthogonal topography in the parallel input architecture of songbird HVC. J Comp Neurol 2017; 525:2133-2151. [DOI: 10.1002/cne.24189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/26/2017] [Accepted: 02/05/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Kevin C. Elliott
- Program in Neuroscience and Department of PsychologyFlorida State UniversityTallahassee Florida
| | - Wei Wu
- Program in Neuroscience and Department of StatisticsFlorida State UniversityTallahassee Florida
| | - Richard Bertram
- Program in Neuroscience and Department of MathematicsFlorida State UniversityTallahassee Florida
| | - Richard L. Hyson
- Program in Neuroscience and Department of PsychologyFlorida State UniversityTallahassee Florida
| | - Frank Johnson
- Program in Neuroscience and Department of PsychologyFlorida State UniversityTallahassee Florida
| |
Collapse
|