1
|
Cho YS, Mah W, Youn DH, Kim YS, Ko HG, Bae JY, Kim YS, Bae YC. Increase of glutamate in satellite glial cells of the trigeminal ganglion in a rat model of craniofacial neuropathic pain. Front Neuroanat 2023; 17:1302373. [PMID: 38164516 PMCID: PMC10758013 DOI: 10.3389/fnana.2023.1302373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Satellite glial cells (SGCs) that envelop the cell bodies of neurons in sensory ganglia have been shown to both release glutamate, and be activated by glutamate in the context of nociceptive signaling. However, little is known about the subpopulations of SGCs that are activated following nerve injury and whether glutamate mechanisms in the SGCs are involved in the pathologic pain. Methods To address this issue, we used light and electron microscopic immunohistochemistry to examine the change in the glutamate levels in the SGCs and the structural relationship between neighboring neurons in the trigeminal ganglion (TG) in a rat model of craniofacial neuropathic pain, CCI-ION. Results Administration of ionomycin, ATP and Bz-ATP induced an increase of extracellular glutamate concentration in cultured trigeminal SGCs, indicating a release of glutamate from SGCs. The level of glutamate immunostaining in the SGCs that envelop neurons of all sizes in the TG was significantly higher in rats with CCI-ION than in control rats, suggesting that SGCs enveloping nociceptive as well as non-nociceptive mechanosensitive neurons are activated following nerve injury, and that the glutamate release from SGCs increases in pathologic pain state. Close appositions between substance-P (SP)-immunopositive (+) or calcitonin gene-related peptide (CGRP)+, likely nociceptive neurons, between Piezo1+, likely non-nociceptive, mechanosensitive neurons and SP+ or CGRP+ neurons, and between SGCs of neighboring neurons were frequently observed. Discussion These findings suggest that glutamate in the trigeminal SGCs that envelop all types of neurons may play a role in the mechanisms of neuropathic pain, possibly via paracrine signaling.
Collapse
Affiliation(s)
- Yi Sul Cho
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Won Mah
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Ho Youn
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Yu Shin Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Programs in Integrated Biomedical Sciences, Translational Sciences, Biomedical Engineering, Radiological Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Hyoung-Gon Ko
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Young Bae
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Yun Sook Kim
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Chul Bae
- Department of Anatomy, Physiology and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Cho YS, Han HM, Jeong SY, Kim TH, Choi SY, Kim YS, Bae YC. Expression of Piezo1 in the Trigeminal Neurons and in the Axons That Innervate the Dental Pulp. Front Cell Neurosci 2022; 16:945948. [PMID: 35846568 PMCID: PMC9276962 DOI: 10.3389/fncel.2022.945948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
Information on the neurons and axons that express the mechanosensitive channel Piezo1 and its expression in axons innervating the dental pulp may help understand the nature of the Piezo1-mediated mechanosensation and the underlying mechanism of dentin sensitivity elicited by mechanical stimuli. For this, we here investigated the neurochemical properties of the neurons in the rat trigeminal ganglion (TG) and their axons in its sensory root that express Piezo1 and the expression of Piezo1 in the rat and human dental pulp by light and electron microscopic immunohistochemistry and quantitative analysis. Piezo1 was expressed mainly in medium-sized and large TG neurons. Piezo1-immunopositive (+) neurons frequently coexpressed the marker for neurons with myelinated axons, NF200, but rarely the markers for neurons with unmyelinated axons, CGRP or IB4. In the sensory root of TG, Piezo1 was expressed primarily in small myelinated axons (Aδ, 60.2%) but also in large myelinated (Aβ, 24.3%) and unmyelinated (C, 15.5%) axons. In the human dental pulp, Piezo1 was expressed in numerous NF200+ axons, which formed a network in the peripheral pulp and often “ascended” toward the dentin. Most Piezo1+ myelinated axons in the radicular pulp became unmyelinated in the peripheral pulp, where Piezo1 immunoreaction product was associated with the axonal plasma membrane, suggesting a functional role of Piezo1 in the peripheral pulp. These findings suggest that Piezo1 is involved primarily in mediating the acute pain elicited by high-threshold mechanical stimuli, and that the Piezo1-mediated dental mechanotransduction occurs primarily in the axons in the peripheral pulp.
Collapse
Affiliation(s)
- Yi Sul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Hye Min Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Soon Youn Jeong
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Tae Heon Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - So Young Choi
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yun Sook Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
- *Correspondence: Yong Chul Bae
| |
Collapse
|
3
|
Cho YS, Ko HG, Han HM, Park SK, Moozhayil SJ, Choi SY, Bae YC. Vesicular glutamate transporter-immunopositive axons that coexpress neuropeptides in the rat and human dental pulp. Int Endod J 2020; 54:377-387. [PMID: 33090483 DOI: 10.1111/iej.13427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
AIM To examine the type of vesicular glutamate transporter (VGLUT)-immunopositive (+) axons that coexpress neuropeptides in the rat and human dental pulp, which may help understand peripheral mechanism of pulpal inflammatory pain in rats and humans. METHODOLOGY The trigeminal ganglia (TG) and the dental pulp of the maxillary molar teeth from three male Sprague-Dawley rats weighing 300-330 g and dental pulps of three healthy human (male) maxillary premolar teeth from three 16 to 28-year-old patients extracted for orthodontic treatment were used. The type of VGLUT + axons that coexpress substance P (SP)- and/or calcitonin gene-related peptide (CGRP) and parvalbumin in the rat TG and in the axons of the rat and the human dental pulp was examined by double fluorescence immunohistochemistry and quantitative analysis. Results were analyzed using one-way anova and the Kruskal-Wallis test. RESULTS SP and CGRP were expressed in many human VGLUT1 + pulpal axons but not in the rat VGLUT1 + TG neurons and pulpal axons (P < 0.05). SP and CGRP were expressed in a considerable number of human VGLUT2 + pulpal axons and also in many rat TG neurons and pulpal axons. The fraction of VGLUT1 + axons expressing parvalbumin was about three times higher in the rat than in the human dental pulp (P < 0.05). CONCLUSIONS These findings suggest that the types of VGLUT + axons, which release neuropeptides, may be different between the rat and the human dental pulp, raising a possibility that peripheral mechanism of pulpal inflammatory pain may be different between rats and humans.
Collapse
Affiliation(s)
- Y S Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - H G Ko
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - H M Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - S K Park
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - S J Moozhayil
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - S Y Choi
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Y C Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
4
|
Parvalbumin-, substance P- and calcitonin gene-related peptide-immunopositive axons in the human dental pulp differ in their distribution of varicosities. Sci Rep 2020; 10:10672. [PMID: 32606338 PMCID: PMC7327034 DOI: 10.1038/s41598-020-67804-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022] Open
Abstract
Information on the frequency and spatial distribution of axonal varicosities associated with release of neurotransmitters in the dental pulp is important to help elucidate the peripheral mechanisms of dental pain, mediated by myelinated versus unmyelinated fibers. For this, we investigated the distribution of axonal varicosities in the human dental pulp using light- and electron-microscopic immunohistochemistry for the vesicular glutamate transporter 2 (VGLUT2), which is involved in the glutamatergic transmission, and syntaxin-1 and synaptosomal nerve-associated protein 25 (SNAP-25), combined with parvalbumin (PV), which is expressed mostly in myelinated axons, and substance P (SP) and calcitonin gene-related peptide (CGRP), which are expressed mostly in unmyelinated axons. We found that the varicosities of the SP- and CGRP-immunopositive (+) axons were uniformly distributed throughout the dental pulp, whereas those of PV+ axons were only dense in the peripheral pulp, and that the expression of PV, VGLUT2, syntaxin-1, SNAP-25, SP and CGRP was significantly higher in the varicosities than in the axonal segments between them. These findings are consistent with the release of glutamate and neuropeptides by axonal varicosities of SP+ and CGRP+ unmyelinated fibers, involved in pulpal pain throughout the human dental pulp, and by varicosities of PV+ fibers, arising from parent myelinated fibers, and involved in dentin sensitivity primarily in the peripheral pulp.
Collapse
|
5
|
Affiliation(s)
- Yong-Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University
| |
Collapse
|
6
|
Characterization of sensory neuronal subtypes innervating mouse tongue. PLoS One 2018; 13:e0207069. [PMID: 30408082 PMCID: PMC6224080 DOI: 10.1371/journal.pone.0207069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
The tongue is uniquely exposed to water-soluble environmental chemicals that may lead to injury or tumorigenesis. However, comparatively little research has focused on the molecular and functional organization of trigeminal ganglia (TG) afferent neurons innervating the tongue. The current study identified and characterized lingual sensory neurons based on a neuronal subtype classification previously characterized in the dorsal root ganglion (DRG) neurons. We employed immunohistochemistry on transgenic reporter mouse lines as well as single-cell PCR of known markers of neuronal subtypes to characterize neuronal subtypes innervating the tongue. Markers expressed in retrogradely labeled TG neurons were evaluated for the proportion of neurons expressing each marker, intensity of expression, and overlapping genes. We found that tongue-innervating sensory neurons primarily expressed CGRP, TRPV1, TrkC, 5HT3A and Parvalbumin. These markers correspond to peptidergic and a subgroup of non-peptidergic C-nociceptors, peptidergic A nociceptors, proprioceptors and myelinated low-threshold mechanoreceptors (LTMRs). Interestingly, as reported previously, we also found several differences between TG and DRG neurons indicating the need for single-cell sequencing of neuronal types based on tissue type within all TG as well as DRG neurons.
Collapse
|