1
|
Telias M, Ben-Yosef D. Pharmacological Manipulation of Wnt/β-Catenin Signaling Pathway in Human Neural Precursor Cells Alters Their Differentiation Potential and Neuronal Yield. Front Mol Neurosci 2021; 14:680018. [PMID: 34421534 PMCID: PMC8371257 DOI: 10.3389/fnmol.2021.680018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
The canonical Wnt/β-catenin pathway is a master-regulator of cell fate during embryonic and adult neurogenesis and is therefore a major pharmacological target in basic and clinical research. Chemical manipulation of Wnt signaling during in vitro neuronal differentiation of stem cells can alter both the quantity and the quality of the derived neurons. Accordingly, the use of Wnt activators and blockers has become an integral part of differentiation protocols applied to stem cells in recent years. Here, we investigated the effects of the glycogen synthase kinase-3β inhibitor CHIR99021, which upregulates β-catenin agonizing Wnt; and the tankyrase-1/2 inhibitor XAV939, which downregulates β-catenin antagonizing Wnt. Both drugs and their potential neurogenic and anti-neurogenic effects were studied using stable lines human neural precursor cells (hNPCs), derived from embryonic stem cells, which can be induced to generate mature neurons by chemically-defined conditions. We found that Wnt-agonism by CHIR99021 promotes induction of neural differentiation, while also reducing cell proliferation and survival. This effect was not synergistic with those of pro-neural growth factors during long-term neuronal differentiation. Conversely, antagonism of Wnt by XAV939 consistently prevented neuronal progression of hNPCs. We show here how these two drugs can be used to manipulate cell fate and how self-renewing hNPCs can be used as reliable human in vitro drug-screening platforms.
Collapse
Affiliation(s)
- Michael Telias
- Wolfe PGD-SC Lab, Racine IVF Unit, Department of Cell and Developmental Biology, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Sackler Medical School, Tel-Aviv University, Tel Aviv, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD-SC Lab, Racine IVF Unit, Department of Cell and Developmental Biology, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Sackler Medical School, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Lee WJ, Lee JE, Hong YJ, Yoon SH, Song H, Park C, Hong K, Choi Y, Do JT. Generation of brain organoids from mouse ESCs via teratoma formation. Stem Cell Res 2020; 49:102100. [PMID: 33260068 DOI: 10.1016/j.scr.2020.102100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023] Open
Abstract
Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs), can differentiate into all cell types in the body; therefore, they are used in the study of development and regenerative medicine. Neural lineage differentiation from PSCs is the initial step to study neurodevelopment and in vitro disease modeling. Brain organoids, which are composed of neural stem cells (NSCs) and differentiated neural lineage cell population, are a powerful in vitro system to mimic the brain tissue. Here, we aimed to establish a new method to generate brain organoids efficiently in a mouse model. We applied the in vivo teratoma formation method as a new approach to generate brain organoids. We induced teratoma formation using Sox1-GFP transgenic ESCs, in which green fluorescence protein (GFP) is expressed under the control of the early NSC marker Sox1. Sox1-GFP-expressing early NSCs were isolated as clumps and further cultured to generate brain organoids. Sox1-GFP ESC-derived brain organoids, composed of multiple layers of distinct cellular components (ventricle, ventricular zone, and cortical layer), were formed within 3 weeks of in vitro culture. We also found that neighboring cells (Sox1-GFP-) surrounding the Sox1-GFP+ clumps are essential for the formation of brain organoids. Thus, in vivo and in vitro conjugated systems-initial commitment in vivo and further specialization in vitro-could be one of the promising platforms for organoid formation that are universally applicable.
Collapse
Affiliation(s)
- Won Ji Lee
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jeong Eon Lee
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yean Ju Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang Hoon Yoon
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
3
|
Hong YJ, Do JT. Neural Lineage Differentiation From Pluripotent Stem Cells to Mimic Human Brain Tissues. Front Bioeng Biotechnol 2019; 7:400. [PMID: 31867324 PMCID: PMC6908493 DOI: 10.3389/fbioe.2019.00400] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/22/2019] [Indexed: 01/22/2023] Open
Abstract
Recent advances in induced pluripotent stem cell (iPSC) research have turned limitations of prior and current research into possibilities. iPSCs can differentiate into the desired cell types, are easier to obtain than embryonic stem cells (ESCs), and more importantly, in case they are to be used in research on diseases, they can be obtained directly from the patient. With these advantages, differentiation of iPSCs into various cell types has been conducted in the fields of basic development, cell physiology, and cell therapy research. Differentiation of stem cells into nervous cells has been prevalent among all cell types studied. Starting with the monolayer 2D differentiation method where cells were attached to a dish, substantial efforts have been made to better mimic the in vivo environment and produce cells grown in vitro that closely resemble in vivo state cells. Having surpassed the stage of 3D differentiation, we have now reached the stage of creating tissues called organoids that resemble organs, rather than growing simple cells. In this review, we focus on the central nervous system (CNS) and describe the challenges faced in 2D and 3D differentiation research studies and the processes of overcoming them. We also discuss current studies and future perspectives on brain organoid researches.
Collapse
Affiliation(s)
- Yean Ju Hong
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, South Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, South Korea
| |
Collapse
|