1
|
Mostajo-Radji MA, Leon WRM, Breevoort A, Gonzalez-Ferrer J, Schweiger HE, Lehrer J, Zhou L, Schmitz MT, Perez Y, Mukhtar T, Robbins A, Chu J, Andrews MG, Sullivan FN, Tejera D, Choy EC, Paredes MF, Teodorescu M, Kriegstein AR, Alvarez-Buylla A, Pollen AA. Fate plasticity of interneuron specification. iScience 2025; 28:112295. [PMID: 40264797 PMCID: PMC12013500 DOI: 10.1016/j.isci.2025.112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/21/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Neuronal subtype generation in the mammalian central nervous system is governed by competing genetic programs. The medial ganglionic eminence (MGE) produces two major cortical interneuron (IN) populations, somatostatin (Sst) and parvalbumin (Pvalb), which develop on different timelines. The extent to which external signals influence these identities remains unclear. Pvalb-positive INs are crucial for cortical circuit regulation but challenging to model in vitro. We grafted mouse MGE progenitors into diverse 2D and 3D co-culture systems, including mouse and human cortical, MGE, and thalamic models. Strikingly, only 3D human corticogenesis models promoted efficient, non-autonomous Pvalb differentiation, characterized by upregulation of Pvalb maturation markers, downregulation of Sst-specific markers, and the formation of perineuronal nets. Additionally, lineage-traced postmitotic Sst-positive INs upregulated Pvalb when grafted onto human cortical models. These findings reveal unexpected fate plasticity in MGE-derived INs, suggesting that their identities can be dynamically shaped by the environment.
Collapse
Affiliation(s)
- Mohammed A. Mostajo-Radji
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Walter R. Mancia Leon
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arnar Breevoort
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jesus Gonzalez-Ferrer
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hunter E. Schweiger
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Julian Lehrer
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Li Zhou
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew T. Schmitz
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yonatan Perez
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tanzila Mukhtar
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ash Robbins
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Julia Chu
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Madeline G. Andrews
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Dario Tejera
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eric C. Choy
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mercedes F. Paredes
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mircea Teodorescu
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Arnold R. Kriegstein
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arturo Alvarez-Buylla
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alex A. Pollen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Joyce MKP, Datta D, Arellano JI, Duque A, Morozov YM, Morrison JH, Arnsten AFT. Contrasting patterns of extrasynaptic NMDAR-GluN2B expression in macaque subgenual cingulate and dorsolateral prefrontal cortices. Front Neuroanat 2025; 19:1553056. [PMID: 40255911 PMCID: PMC12006084 DOI: 10.3389/fnana.2025.1553056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
Expression of the N-methyl-D-aspartate receptor, particularly when containing the GluN2B subunit (NMDAR-GluN2B), varies across the prefrontal cortex (PFC). In humans, the subgenual cingulate cortex (SGC) contains among the highest levels of NMDAR-GluN2B expression, while the dorsolateral prefrontal cortex (dlPFC) exhibits a more moderate level of NMDAR-GluN2B expression. NMDAR-GluN2B are commonly associated with ionotropic synaptic function and plasticity and are essential to the neurotransmission underlying working memory in the macaque dlPFC in the layer III circuits, which in humans are afflicted in schizophrenia. However, NMDAR-GluN2B can also be found at extrasynaptic sites, where they may trigger distinct events, including some linked to neurodegenerative processes. The SGC is an early site of tau pathology in sporadic Alzheimer's disease (sAD), which mirrors its high NMDAR-GluN2B expression. Additionally, the SGC is hyperactive in depression, which can be treated with NMDAR antagonists. Given the clinical relevance of NMDAR in the SGC and dlPFC, the current study used immunoelectron microscopy (immunoEM) to quantitatively compare the synaptic and extrasynaptic expression patterns of NMDAR-GluN2B across excitatory and inhibitory neuron dendrites in rhesus macaque layer III SGC and dlPFC. We found a larger population of extrasynaptic NMDAR-GluN2B in dendrites of putative pyramidal neurons in SGC as compared to the dlPFC, while the dlPFC had a higher proportion of synaptic NMDAR-GluN2B. In contrast, in putative inhibitory dendrites from both areas, extrasynaptic expression of NMDAR-GluN2B was far more frequently observed over synaptic expression. These findings may provide insight into varying cortical vulnerability to alterations in excitability and neurodegenerative forces.
Collapse
Affiliation(s)
- Mary Kate P. Joyce
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| | - Dibyadeep Datta
- Department of Psychiatry, Yale Medical School, New Haven, CT, United States
| | - Jon I. Arellano
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| | - Alvaro Duque
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| | - Yury M. Morozov
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| | - John H. Morrison
- Department of Neurology, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Amy F. T. Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, CT, United States
| |
Collapse
|
3
|
Koch NA, Corrigan BW, Feyerabend M, Gulli RA, Jimenez-Sosa MS, Abbass M, Sunstrum JK, Matovic S, Roussy M, Luna R, Mestern SA, Mahmoudian B, Vijayraghavan S, Igarashi H, Pradeepan KS, Assis WJ, Pruszynski JA, Tripathy S, Staiger JF, Gonzalez-Burgos G, Neef A, Treue S, Everling S, Inoue W, Khadra A, Martinez-Trujillo JC. Spike frequency adaptation in primate lateral prefrontal cortex neurons results from interplay between intrinsic properties and circuit dynamics. Cell Rep 2025; 44:115159. [PMID: 39772396 DOI: 10.1016/j.celrep.2024.115159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cortical neurons in brain slices display intrinsic spike frequency adaptation (I-SFA) to constant current inputs, while extracellular recordings show extrinsic SFA (E-SFA) during sustained visual stimulation. Inferring how I-SFA contributes to E-SFA during behavior is challenging due to the isolated nature of slice recordings. To address this, we recorded macaque lateral prefrontal cortex (LPFC) neurons in vivo during a visually guided saccade task and in vitro in brain slices. Broad-spiking (BS) putative pyramidal cells and narrow-spiking (NS) putative inhibitory interneurons exhibit both E-SFA and I-SFA. Developing a data-driven hybrid circuit model comprising NS model neurons receiving BS input reveals that NS model neurons exhibit longer SFA than observed in vivo; however, adding feedforward inhibition corrects this in a manner dependent on I-SFA. Identification of this circuit motif shaping E-SFA in LPFC highlights the roles of both intrinsic and network mechanisms in neural activity underlying behavior.
Collapse
Affiliation(s)
- Nils A Koch
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Benjamin W Corrigan
- Department of Biology, York University, Toronto, ON, Canada; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael Feyerabend
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Roberto A Gulli
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | | | - Mohamad Abbass
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Julia K Sunstrum
- Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada; Neuroscience Graduate Program, Western University, London, ON, Canada
| | - Sara Matovic
- Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Megan Roussy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Rogelio Luna
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Samuel A Mestern
- Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Borna Mahmoudian
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Susheel Vijayraghavan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Hiroyuki Igarashi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada; Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kartik S Pradeepan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| | - William J Assis
- Western Institute for Neuroscience, Western University, London, ON, Canada
| | - J Andrew Pruszynski
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Shreejoy Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Jochen F Staiger
- Department of Neuroanatomy, University Medical Center, Georg-August-University, Göttingen, Germany
| | | | - Andreas Neef
- Campus Institute for Dynamics of Biological Networks, Göttingen, Germany; Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz ScienceCampus, Primate Cognition, Göttingen, Germany
| | - Stefan Everling
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Wataru Inoue
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Anmar Khadra
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Physiology, McGill University, Montreal, QC, Canada.
| | - Julio C Martinez-Trujillo
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada
| |
Collapse
|
4
|
Matthews EA, Russ JB, Qian Y, Zhao S, Thompson P, Methani M, Vestal ML, Josh Huang Z, Southwell DG. RNA-programmable cell type monitoring and manipulation in the human cortex with CellREADR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626590. [PMID: 39677799 PMCID: PMC11642864 DOI: 10.1101/2024.12.03.626590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Reliable and systematic experimental access to diverse cell types is necessary for understanding the neural circuit organization, function, and pathophysiology of the human brain. Methods for targeting human neural populations are scarce and currently center around identifying and engineering transcriptional enhancers and viral capsids. Here we demonstrate the utility of CellREADR, a programmable RNA sensor-effector technology that couples cellular RNA sensing to effector protein translation, for accessing, monitoring, and manipulating specific neuron types in ex vivo human cortical tissues. We designed CellREADR constructs to target two distinct human neuron types, CALB2+ (calretinin) GABAergic interneurons and FOXP2+ (forkhead box protein P2) glutamatergic projection neurons, and validated cell targeting using histological, electrophysiological, and transcriptomic methods. CellREADR-mediated expression of optogenetic effectors and genetically-encoded calcium indicators allowed us to manipulate and monitor these neuronal populations in cortical microcircuits. We further demonstrate that AAV-based CellREADR and enhancer vectors can be jointly used to target different subpopulations in the same preparation. By demonstrating specific, reliable, and programmable experimental access to targeted cell types, our results highlight CellREADR's potential for studying human neural circuits and treating brain disorders with cell type resolution.
Collapse
Affiliation(s)
- Elizabeth A. Matthews
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC USA
| | - Jeffrey B. Russ
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC USA
- Department of Pediatrics, Division of Neurology, Duke University School of Medicine, Durham, NC USA
| | - Yongjun Qian
- Department of Neurobiology, Duke University School of Medicine, Durham, NC USA
- Current affiliation: College of Future technology, Peking-Tsinghua Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Center of RNA Biology (BEACON), Peking University, China
| | - Shengli Zhao
- Department of Neurobiology, Duke University School of Medicine, Durham, NC USA
| | - Peyton Thompson
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC USA
| | - Muhib Methani
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC USA
| | - Matthew L. Vestal
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC USA
- Current affiliation: Department of Neurosurgery, Dartmouth University, Dartmouth, MA USA
| | - Z. Josh Huang
- Department of Neurobiology, Duke University School of Medicine, Durham, NC USA
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC USA
| | - Derek G. Southwell
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC USA
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC USA
| |
Collapse
|
5
|
Federer F, Balsor J, Ingold A, Babcock DP, Dimidschstein J, Angelucci A. Laminar specificity and coverage of viral-mediated gene expression restricted to GABAergic interneurons and their parvalbumin subclass in marmoset primary visual cortex. eLife 2024; 13:RP97673. [PMID: 39297605 PMCID: PMC11412690 DOI: 10.7554/elife.97673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
In the mammalian neocortex, inhibition is important for dynamically balancing excitation and shaping the response properties of cells and circuits. The various computational functions of inhibition are thought to be mediated by different inhibitory neuron types, of which a large diversity exists in several species. Current understanding of the function and connectivity of distinct inhibitory neuron types has mainly derived from studies in transgenic mice. However, it is unknown whether knowledge gained from mouse studies applies to the non-human primate, the model system closest to humans. The lack of viral tools to selectively access inhibitory neuron types has been a major impediment to studying their function in the primate. Here, we have thoroughly validated and characterized several recently developed viral vectors designed to restrict transgene expression to GABAergic cells or their parvalbumin (PV) subtype, and identified two types that show high specificity and efficiency in marmoset V1. We show that in marmoset V1, AAV-h56D induces transgene expression in GABAergic cells with up to 91-94% specificity and 79% efficiency, but this depends on viral serotype and cortical layer. AAV-PHP.eB-S5E2 induces transgene expression in PV cells across all cortical layers with up to 98% specificity and 86-90% efficiency, depending on layer. Thus, these viral vectors are promising tools for studying GABA and PV cell function and connectivity in the primate cortex.
Collapse
Affiliation(s)
- Frederick Federer
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of UtahSalt Lake CityUnited States
| | - Justin Balsor
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of UtahSalt Lake CityUnited States
| | - Alexander Ingold
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of UtahSalt Lake CityUnited States
| | - David P Babcock
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of UtahSalt Lake CityUnited States
| | | | - Alessandra Angelucci
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of UtahSalt Lake CityUnited States
| |
Collapse
|
6
|
Miller JA, Constantinidis C. Timescales of learning in prefrontal cortex. Nat Rev Neurosci 2024; 25:597-610. [PMID: 38937654 DOI: 10.1038/s41583-024-00836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
The lateral prefrontal cortex (PFC) in humans and other primates is critical for immediate, goal-directed behaviour and working memory, which are classically considered distinct from the cognitive and neural circuits that support long-term learning and memory. Over the past few years, a reconsideration of this textbook perspective has emerged, in that different timescales of memory-guided behaviour are in constant interaction during the pursuit of immediate goals. Here, we will first detail how neural activity related to the shortest timescales of goal-directed behaviour (which requires maintenance of current states and goals in working memory) is sculpted by long-term knowledge and learning - that is, how the past informs present behaviour. Then, we will outline how learning across different timescales (from seconds to years) drives plasticity in the primate lateral PFC, from single neuron firing rates to mesoscale neuroimaging activity patterns. Finally, we will review how, over days and months of learning, dense local and long-range connectivity patterns in PFC facilitate longer-lasting changes in population activity by changing synaptic weights and recruiting additional neural resources to inform future behaviour. Our Review sheds light on how the machinery of plasticity in PFC circuits facilitates the integration of learned experiences across time to best guide adaptive behaviour.
Collapse
Affiliation(s)
- Jacob A Miller
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA.
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Federer F, Balsor J, Ingold A, Babcock DP, Dimidschstein J, Angelucci A. Laminar specificity and coverage of viral-mediated gene expression restricted to GABAergic interneurons and their parvalbumin subclass in marmoset primary visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583998. [PMID: 38915672 PMCID: PMC11195055 DOI: 10.1101/2024.03.07.583998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In the mammalian neocortex, inhibition is important for dynamically balancing excitation and shaping the response properties of cells and circuits. The various computational functions of inhibition are thought to be mediated by different inhibitory neuron types of which a large diversity exists in several species. Current understanding of the function and connectivity of distinct inhibitory neuron types has mainly derived from studies in transgenic mice. However, it is unknown whether knowledge gained from mouse studies applies to the non-human primate, the model system closest to humans. The lack of viral tools to selectively access inhibitory neuron types has been a major impediment to studying their function in the primate. Here, we have thoroughly validated and characterized several recently-developed viral vectors designed to restrict transgene expression to GABAergic cells or their parvalbumin (PV) subtype, and identified two types that show high specificity and efficiency in marmoset V1. We show that in marmoset V1 AAV-h56D induces transgene expression in GABAergic cells with up to 91-94% specificity and 79% efficiency, but this depends on viral serotype and cortical layer. AAV-PHP.eB-S5E2 induces transgene expression in PV cells across all cortical layers with up to 98% specificity and 86-90% efficiency, depending on layer. Thus, these viral vectors are promising tools for studying GABA and PV cell function and connectivity in the primate cortex.
Collapse
Affiliation(s)
- Frederick Federer
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT
| | - Justin Balsor
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT
| | - Alexander Ingold
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT
- Present address: Department of Electrical Engineering and Computer Science, University of Utah, Salt Lake City, UT
| | - David P. Babcock
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT
- Present address: Stritch School of Medicine, Loyola University, Chicago, IL
| | | | - Alessandra Angelucci
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
8
|
Magrou L, Joyce MKP, Froudist-Walsh S, Datta D, Wang XJ, Martinez-Trujillo J, Arnsten AFT. The meso-connectomes of mouse, marmoset, and macaque: network organization and the emergence of higher cognition. Cereb Cortex 2024; 34:bhae174. [PMID: 38771244 PMCID: PMC11107384 DOI: 10.1093/cercor/bhae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.
Collapse
Affiliation(s)
- Loïc Magrou
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Sean Froudist-Walsh
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, BS8 1QU, United Kingdom
| | - Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Xiao-Jing Wang
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Julio Martinez-Trujillo
- Departments of Physiology and Pharmacology, and Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
9
|
Joyce M, Yang S, Morin K, Duque A, Arellano J, Datta D, Wang M, Arnsten A. β1-adrenoceptor expression on GABAergic interneurons in primate dorsolateral prefrontal cortex: potential role in stress-induced cognitive dysfunction. Neurobiol Stress 2024; 30:100628. [PMID: 38550854 PMCID: PMC10973161 DOI: 10.1016/j.ynstr.2024.100628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 11/12/2024] Open
Abstract
Uncontrollable stress exposure impairs working memory and reduces the firing of dorsolateral prefrontal cortex (dlPFC) "Delay cells", involving high levels of norepinephrine and dopamine release. Previous work has focused on catecholamine actions on dlPFC pyramidal cells, but inhibitory interneurons may contribute as well. The current study combined immunohistochemistry and multi-scale microscopy with iontophoretic physiology and behavioral analyses to examine the effects of beta1-noradrenergic receptors (β1-ARs) on inhibitory neurons in layer III dlPFC. We found β1-AR robustly expressed on different classes of inhibitory neurons labeled by the calcium-binding proteins calbindin (CB), calretinin (CR), and parvalbumin (PV). Immunoelectron microscopy confirmed β1-AR expression on the plasma membrane of PV-expressing dendrites. PV interneurons can be identified as fast-spiking (FS) in physiological recordings, and thus were studied in macaques performing a working memory task. Iontophoresis of a β1-AR agonist had a mixed effect, increasing the firing of a subset and decreasing the firing of others, likely reflecting loss of firing of the entire microcircuit. This loss of overall firing likely contributes to impaired working memory during stress, as pretreatment with the selective β1-AR antagonist, nebivolol, prevented stress-induced working memory deficits. Thus, selective β1-AR antagonists may be helpful in treating stress-related disorders.
Collapse
Affiliation(s)
- M.K.P. Joyce
- Dept. Neuroscience, Yale Medical School, New Haven, CT, 06510, USA
| | - S. Yang
- Dept. Neuroscience, Yale Medical School, New Haven, CT, 06510, USA
| | - K. Morin
- Dept. Neuroscience, Yale Medical School, New Haven, CT, 06510, USA
| | - A. Duque
- Dept. Neuroscience, Yale Medical School, New Haven, CT, 06510, USA
| | - J. Arellano
- Dept. Neuroscience, Yale Medical School, New Haven, CT, 06510, USA
| | - D. Datta
- Dept. Neuroscience, Yale Medical School, New Haven, CT, 06510, USA
| | - M. Wang
- Dept. Neuroscience, Yale Medical School, New Haven, CT, 06510, USA
| | - A.F.T. Arnsten
- Dept. Neuroscience, Yale Medical School, New Haven, CT, 06510, USA
| |
Collapse
|
10
|
Herrera B, Schall JD, Riera JJ. Agranular frontal cortical microcircuit underlying cognitive control in macaques. Front Neural Circuits 2024; 18:1389110. [PMID: 38601266 PMCID: PMC11005916 DOI: 10.3389/fncir.2024.1389110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
The error-related negativity and an N2-component recorded over medial frontal cortex index core functions of cognitive control. While they are known to originate from agranular frontal areas, the underlying microcircuit mechanisms remain elusive. Most insights about microcircuit function have been derived from variations of the so-called canonical microcircuit model. These microcircuit architectures are based extensively on studies from granular sensory cortical areas in monkeys, cats, and rodents. However, evidence has shown striking cytoarchitectonic differences across species and differences in the functional relationships across cortical layers in agranular compared to granular sensory areas. In this minireview, we outline a tentative microcircuit model underlying cognitive control in the agranular frontal cortex of primates. The model incorporates the main GABAergic interneuron subclasses with specific laminar arrangements and target regions on pyramidal cells. We emphasize the role of layer 5 pyramidal cells in error and conflict detection. We offer several specific questions necessary for creating a specific intrinsic microcircuit model of the agranular frontal cortex.
Collapse
Affiliation(s)
- Beatriz Herrera
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Jeffrey D. Schall
- Centre for Vision Research, Centre for Integrative & Applied Neuroscience, Department of Biology and Psychology, York University, Toronto, ON, Canada
| | - Jorge J. Riera
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| |
Collapse
|
11
|
Beerendonk L, Mejías JF, Nuiten SA, de Gee JW, Fahrenfort JJ, van Gaal S. A disinhibitory circuit mechanism explains a general principle of peak performance during mid-level arousal. Proc Natl Acad Sci U S A 2024; 121:e2312898121. [PMID: 38277436 PMCID: PMC10835062 DOI: 10.1073/pnas.2312898121] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 01/28/2024] Open
Abstract
Perceptual decision-making is highly dependent on the momentary arousal state of the brain, which fluctuates over time on a scale of hours, minutes, and even seconds. The textbook relationship between momentary arousal and task performance is captured by an inverted U-shape, as put forward in the Yerkes-Dodson law. This law suggests optimal performance at moderate levels of arousal and impaired performance at low or high arousal levels. However, despite its popularity, the evidence for this relationship in humans is mixed at best. Here, we use pupil-indexed arousal and performance data from various perceptual decision-making tasks to provide converging evidence for the inverted U-shaped relationship between spontaneous arousal fluctuations and performance across different decision types (discrimination, detection) and sensory modalities (visual, auditory). To further understand this relationship, we built a neurobiologically plausible mechanistic model and show that it is possible to reproduce our findings by incorporating two types of interneurons that are both modulated by an arousal signal. The model architecture produces two dynamical regimes under the influence of arousal: one regime in which performance increases with arousal and another regime in which performance decreases with arousal, together forming an inverted U-shaped arousal-performance relationship. We conclude that the inverted U-shaped arousal-performance relationship is a general and robust property of sensory processing. It might be brought about by the influence of arousal on two types of interneurons that together act as a disinhibitory pathway for the neural populations that encode the available sensory evidence used for the decision.
Collapse
Affiliation(s)
- Lola Beerendonk
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam1001NK, The Netherlands
| | - Jorge F. Mejías
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098XH, The Netherlands
| | - Stijn A. Nuiten
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Universitäre Psychiatrische Kliniken Basel, Wilhelm Klein-Strasse 27, Basel4002, Switzerland
| | - Jan Willem de Gee
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098XH, The Netherlands
| | - Johannes J. Fahrenfort
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam1081HV, The Netherlands
- Department of Applied and Experimental Psychology, Vrije Universiteit Amsterdam, Amsterdam1081HV, The Netherlands
| | - Simon van Gaal
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam1001NK, The Netherlands
| |
Collapse
|