1
|
Moradicheghamahi J, Goswami D. Impact of Vein Wall Hyperelasticity and Blood Flow Turbulence on Hemodynamic Parameters in the Inferior Vena Cava with a Filter. MICROMACHINES 2024; 16:51. [PMID: 39858706 PMCID: PMC11767820 DOI: 10.3390/mi16010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025]
Abstract
Inferior vena cava (IVC) filters are vital in preventing pulmonary embolism (PE) by trapping large blood clots, especially in patients unsuitable for anticoagulation. In this study, the accuracy of two common simplifying assumptions in numerical studies of IVC filters-the rigid wall assumption and the laminar flow model-is examined, contrasting them with more realistic hyperelastic wall and turbulent flow models. Using fluid-structure interaction (FSI) and computational fluid dynamics (CFD) techniques, the investigation focuses on three hemodynamic parameters: time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT). Simulations are conducted with varying sizes of clots captured in the filter. The findings show that, in regions of high wall shear stress, the rigid wall model predicted higher TAWSS values, suggesting an increased disease risk compared to the hyperelastic model. However, the laminar and turbulent flow models did not show significant differences in TAWSS predictions. Conversely, in areas of low wall shear stress, the rigid wall model indicated lower OSI and RRT, hinting at a reduced risk compared to the hyperelastic model, with this discrepancy being more evident with larger clots. While the predictions for OSI and TAWSS were closely aligned for both laminar and turbulent flows, divergences in RRT predictions became apparent, especially in scenarios with very large clots.
Collapse
Affiliation(s)
- Jafar Moradicheghamahi
- Liryc-Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33604 Pessac, France;
- Institute of Mathematics of Bordeaux, University of Bordeaux, 33400 Talence, France
| | - Debkalpa Goswami
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Feng H, Li C, Feng H. Numerical simulation and in vitro experimental study of thrombus capture efficiency of a new retrievable vena cava filter. Comput Methods Biomech Biomed Engin 2023; 26:2034-2046. [PMID: 36625716 DOI: 10.1080/10255842.2022.2163849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
The vena cava filter is a filtering device to prevent pulmonary embolism caused by thrombosis from lower limbs and pelvis. A new retrievable vena cava filter was evaluated in this paper. To evaluate the hemodynamic performance and thrombus capture efficiency after transplantation, numerical simulation of computational fluid dynamics was performed. In this paper, the two-phase flow model of computational fluid dynamics software was used to analyze the outlet blood flow velocity, inlet-outlet pressure difference, filter wall shear stress, the ratio of area with wall shear stress, and the thrombus capture efficiency with the thrombus diameter of 5 mm, 10 mm, 15 mm and the thrombus content of 10%, 20%, 30%, respectively. Additionally, in vitro experimental test was performed to compare its thrombus capture efficiency with Denali and Aegisy Filters. The Denali Filter showed the least interference with the blood flow, followed by the new filter and the Aegisy Filter. The results indicated that the new filter had a higher capture rate in capturing 5mm small-diameter thrombus. This research certain theoretical significance and reference value for the research and development of the new vena cava filters as well as the evaluation of the thrombus capture efficiency of the filters.
Collapse
Affiliation(s)
- Haiquan Feng
- College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot, P.R. China
| | - Changsheng Li
- College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot, P.R. China
| | - Haoxiang Feng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China
| |
Collapse
|
3
|
Jiang XD, Ye SL, Zhang M, Li XQ, Sun LL. Clinical implications of hemodynamic analysis for the three-dimension iliac vein model with different stenosis. Heliyon 2023; 9:e13681. [PMID: 36865449 PMCID: PMC9971184 DOI: 10.1016/j.heliyon.2023.e13681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Background The aim of this study was to perform hemodynamic simulations of a three-dimension ideal inferior vena cava-iliac vein model with artificial stenosis to determine the degree of stenosis that requires clinical intervention. Methods Four three-dimension stenosis models (30%, 50%, 70%, and 90% stenosis) were constructed using commercial software (Solidworks). The inlet flow rates were acquired from previous literatures to perform the hemodynamic simulations. Changes in the old blood volume fraction, as well conventional hemodynamic parameters including pressure, differential pressure, wall shear stress, and flow patterns, over time were recorded. The pressure at the telecentric region of the stenosis increased with increasing degree of stenosis. Results For the 70% stenosis model, the pressure at the telecentric region of the stenosis reached 341 Pa, and the differential pressure between the two ends of the stenosis was 363 Pa (approximately 2.7 mmHg). Moreover, in the 70% and 90% stenosis models, there was a marked change in wall shear stress in the stenosis and the proximal end region, and the flow patterns began to show the phenomenon of flow separation. Blood stasis analysis showed that the 70% stenosis model had the slowest decrease in old blood volume fraction, while the proximal end region had the largest blood residue (15%). Conclusion Iliac vein stenosis of approximately 70% is associated with clinically relevant hemodynamic changes, and is more closely related to DVT than other degrees of stenosis.
Collapse
Affiliation(s)
| | | | | | - Xiao-Qiang Li
- Corresponding author. Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Li-Li Sun
- Corresponding author. Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
4
|
Li M, Wang J, Huang W, Zhou Y, Song X. Evaluation of hemodynamic effects of different inferior vena cava filter heads using computational fluid dynamics. Front Bioeng Biotechnol 2022; 10:1034120. [PMID: 36299290 PMCID: PMC9589238 DOI: 10.3389/fbioe.2022.1034120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Inferior vena cava (IVC) filters are used to prevent pulmonary embolism in patients with deep vein thrombosis for whom anticoagulation is unresponsive. The head is a necessary structure for an Inferior vena cava filter (IVCF) in clinic use. At present, there are various head configurations for IVCFs. However, the effect of head pattern on the hemodynamics of IVCF is still a matter of unclear. In this study, computational fluid dynamics is used to simulate non-Newtonian blood flows around four IVCFs with different heads inside an IVC model, in which the Denali filter with a solid and hooked head is employed as a prototype, and three virtual variants are reconstructed either with a no-hook head or with a through-hole head for comparison. The simulation results show that the through-hole head can effectively avoid the recirculation region and weaken the blood flow stasis closely downstream the IVCF head. The shape change of the filter head has no significant effect on the blood flow acceleration inside the IVCF cone as well as little influence on the wall shear stress (WSS) distribution on the filter wire surface and IVC wall. The structure pattern of filter head greatly affects the flow resistance of its own. However, the flow drag of filter head only occupies a small proportion of the total resistance of IVCF. Therefore, to reduce the flow resistance of an IVCF should optimize its whole structure.
Collapse
Affiliation(s)
- Mingrui Li
- School of Energy and Power Engineering, Shandong University, Jinan, China
| | - Jingying Wang
- School of Energy and Power Engineering, Shandong University, Jinan, China
- *Correspondence: Jingying Wang, ; Wen Huang,
| | - Wen Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jingying Wang, ; Wen Huang,
| | - Yue Zhou
- School of Aeronautical Science and Engineering, Beihang University, Beijing, China
| | - Xue Song
- School of Energy and Power Engineering, Shandong University, Jinan, China
- Jinan Central Hospital, Jinan, China
| |
Collapse
|
5
|
Parker LP, Svensson Marcial A, Brismar TB, Broman LM, Prahl Wittberg L. Impact of Altered Vena Cava Flow Rates on Right Atrium Flow Characteristics. J Appl Physiol (1985) 2022; 132:1167-1178. [PMID: 35271411 PMCID: PMC9054263 DOI: 10.1152/japplphysiol.00649.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The right atrium (RA) combines the superior (SVC) and inferior vena cava (IVC) flows. Treatments like extracorporeal membrane oxygenation (ECMO) and hemodialysis by catheter alter IVC/SVC flows. Here we assess how altered IVC/SVC flow contributions impact RA flow. Four healthy volunteers were imaged with CT, reconstructed and combined into a patient-averaged model. Large Eddy Simulations (LES) were performed for a range of IVC/SVC flow contributions (30-70% each, increments of 5%) and common flow metrics were recorded. Model sensitivity to reconstruction domain extent, constant/pulsatile inlets and hematocrit was also assessed. Consistent with literature, a single vortex occupied the central RA across all flowrates with a smaller counter-rotating vortex, not previously reported, in the auricle. Vena cava flow was highly helical. RA turbulent kinetic energy (TKE) (P=0.027) and time-averaged wall shear stress (WSS) (P<0.001) increased with SVC flow. WSS was lower in the auricle (2 Pa, P<0.001). WSS in the vena cava were equal at IVC/SVC =65/35%. The model was highly sensitive to the reconstruction domain with cropped geometries lacking helicity in the vena cavae, altering RA flow. RA flow was not significantly affected by constant inlets or hematocrit. The rotational flow conventionally described in the RA is confirmed however a new, smaller vortex was also recorded in the auricle. When IVC flow dominates, as is normal, TKE in the RA is reduced and WSS in the vena cavae equalize. Significant helicity exists in the vena cava, a result of distal geometry and this geometry appears crucial to accurately simulating RA flow.
Collapse
Affiliation(s)
- Louis P Parker
- FLOW and BioMEx, Department of Engineering Mechanics, Royal Institute of Technology, KTH, Stockholm, Sweden
| | - Anders Svensson Marcial
- Department of Clinical Science, Intervention and Technology at Karolinska Institute, Division of Medical Imaging and Technology, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital in Huddinge, Stockholm, Sweden
| | - Torkel B Brismar
- Department of Clinical Science, Intervention and Technology at Karolinska Institute, Division of Medical Imaging and Technology, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital in Huddinge, Stockholm, Sweden
| | - Lars Mikael Broman
- ECMO Centre Karolinska, Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa Prahl Wittberg
- FLOW and BioMEx, Department of Engineering Mechanics, Royal Institute of Technology, KTH, Stockholm, Sweden
| |
Collapse
|
6
|
Rajan A, S Makary M, D Martyn T, D Dowell J. Computational evaluation of inferior vena cava filters through computational fluid dynamics methods. ACTA ACUST UNITED AC 2021; 27:116-121. [PMID: 33252333 DOI: 10.5152/dir.2020.19435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerical simulation is growing in its importance toward the design, testing and evaluation of medical devices. Computational fluid dynamics and finite element analysis allow improved calculation of stress, heat transfer, and flow to better understand the medical device environment. Current research focuses not only on improving medical devices, but also on improving the computational tools themselves. As methods and computer technology allow for faster simulation times, iterations and trials can be performed faster to collect more data. Given the adverse events associated with long-term inferior vena cava (IVC) filter placement, IVC filter design and device evaluation are of paramount importance. This work reviews computational methods used to develop, test, and improve IVC filters to ultimately serve the needs of the patient.
Collapse
Affiliation(s)
- Anand Rajan
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mina S Makary
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | | - Joshua D Dowell
- Northwest Radiology and St. Vincent Health, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Riley JM, Price NS, Saaid HM, Good BC, Aycock KI, Craven BA, Manning KB. In Vitro Clot Trapping Efficiency of the FDA Generic Inferior Vena Cava Filter in an Anatomical Model: An Experimental Fluid-Structure Interaction Benchmark. Cardiovasc Eng Technol 2021; 12:339-352. [PMID: 33683671 DOI: 10.1007/s13239-021-00524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Robust experimental data for performing validation of fluid-structure interaction (FSI) simulations of the transport of deformable solid bodies in internal flow are currently lacking. This in vitro experimental study characterizes the clot trapping efficiency of a new generic conical-type inferior vena cava (IVC) filter in a rigid anatomical model of the IVC with carefully characterized test conditions, fluid rheological properties, and clot mechanical properties. METHODS Various sizes of spherical and cylindrical clots made of synthetic materials (nylon and polyacrylamide gel) and bovine blood are serially injected into the anatomical IVC model under worst-case exercise flow conditions. Clot trapping efficiencies and their uncertainties are then quantified for each combination of clot shape, size, and material. RESULTS Experiments reveal the clot trapping efficiency increases with increasing clot diameter and length, with trapping efficiencies ranging from as low as approximately 42% for small 3.2 mm diameter spherical clots up to 100% for larger clot sizes. Because of the asymmetry of the anatomical IVC model, the data also reveal the iliac vein of clot origin influences the clot trapping efficiency, with the trapping efficiency for clots injected into the left iliac vein up to a factor of 7.5 times greater than that for clots injected into the right iliac (trapping efficiencies of approximately 10% versus 75%, respectively). CONCLUSION Overall, this data set provides a benchmark for validating simulations predicting IVC filter clot trapping efficiency and, more generally, low-Reynolds number FSI modeling.
Collapse
Affiliation(s)
- J M Riley
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802, USA
| | - N S Price
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802, USA
| | - H M Saaid
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802, USA
| | - B C Good
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802, USA
| | - K I Aycock
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
| | - B A Craven
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
| | - K B Manning
- Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802, USA. .,Department of Surgery, Penn State Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
8
|
Reid L. An Introduction to Biomedical Computational Fluid Dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1334:205-222. [PMID: 34476751 DOI: 10.1007/978-3-030-76951-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Computational fluid dynamics (CFD) is a tool that has been used by engineers for over 50 years to analyse heat transfer and fluid flow phenomena. In recent years, there have been rapid developments in biomedical and health research applications of CFD. It has been used to evaluate drug delivery systems, analyse physiological flows (e.g. laryngeal jet flow), facilitate surgical planning (e.g. management of intracranial aneurysms), and develop medical devices (e.g. vascular stents and valve prostheses). Due to the complexity of these fluid flows, it demands an interdisciplinary approach consisting of engineers, computer scientists, and mathematicians to develop the computer programs and software used to solve the mathematical equations. Advances in technology and decreases in computational cost are allowing CFD to be more widely accessible and therefore used in more varied contexts. Cardiovascular medicine is the most common area of biomedical research in which CFD is currently being used, followed closely by upper and lower respiratory tract medicine. CFD is also being used in research investigating cerebrospinal fluid, synovial joints, and intracellular fluid. Although CFD can provide meaningful and aesthetically pleasing outputs, interpretation of the data can be challenging for those without a strong understanding of mathematical and engineering principles. Future development and evolution of computational medicine will therefore require close collaboration between experts in engineering, computer science, and biomedical research. This chapter aims to introduce computational fluid dynamics and present the reader with the basics of biological fluid properties, the CFD method, and its applications within biomedical research through published examples, in hope of bridging knowledge gaps in this rapidly emerging method of biomedical analysis.
Collapse
Affiliation(s)
- Luke Reid
- Centre for Anatomy and Human Identification, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
9
|
Wang J, Huang W, Zhou Y, Han F, Ke D, Lee C. Hemodynamic Analysis of VenaTech Convertible Vena Cava Filter Using Computational Fluid Dynamics. Front Bioeng Biotechnol 2020; 8:556110. [PMID: 33195121 PMCID: PMC7661937 DOI: 10.3389/fbioe.2020.556110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/21/2020] [Indexed: 01/12/2023] Open
Abstract
The VenaTech convertible filter (VTCF) has been widely used as an inferior vena cava (IVC) filter to prevent fatal pulmonary embolism in patients. However, its hemodynamics that greatly affect the filter efficacy and IVC patency are still unclear. This paper uses computational fluid dynamics with the Carreau model to simulate the non-Newtonian blood flows around the VTCF respectively deployed in the normal, reverse and three converted states in an IVC model. The results show that the prothrombotic stagnation zones are observed downstream from the normal, reverse and small open VTCFs, with the streamwise length is nearly eight times the IVC diameter. The no-slip boundary conditions of the thin-wire VTCF arms lead to the “viscous block” effect. The viscous block accelerates the blood flow by 5–15% inside the IVC and enhances the filter wall shear stress up to nearly 20 times that of the IVC only, which contributes to clot capture and thrombus lysis. The relative flow resistance is defined to evaluate the filter-induced resistance on the IVC blood flow that can be regarded as an index of IVC patency with the filter deployment. The flow resistance of the normal VTCF deployment increases dramatically by more than 60% compared with that of the IVC only and is a little higher (6%) than that of the reverse case. As the VTCF converts to a fully open configuration, the flow resistance gradually decreases to that of no filter. This work shows that even very thin VTCF arms can result in the viscous block effect and may cause significant hemodynamic impacts on clot capture, potential thrombosis and flow impedance inside the IVC. The present study also shows that CFD is a valuable and feasible in silico tool for analyzing the IVC filter hemodynamics to complement in vivo clinical and in vitro experimental studies.
Collapse
Affiliation(s)
- Jingying Wang
- School of Energy and Power Engineering, Shandong University, Jinan, China
| | - Wen Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Zhou
- School of Aeronautical Science and Engineering, Beihang University, Beijing, China
| | - Fangzhou Han
- School of Energy and Power Engineering, Shandong University, Jinan, China
| | - Dong Ke
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunhian Lee
- School of Energy and Power Engineering, Shandong University, Jinan, China.,School of Aeronautical Science and Engineering, Beihang University, Beijing, China
| |
Collapse
|
10
|
López JM, Fortuny G, Puigjaner D, Herrero J, Marimon F. Hemodynamic effects of blood clots trapped by an inferior vena cava filter. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3343. [PMID: 32323487 DOI: 10.1002/cnm.3343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
The alteration of blood flow around an OPTEASE inferior vena cava filter with one or two blood clots attached was investigated by means of computational fluid dynamics. We used a patient-specific vein wall geometry, and we generated different clot models with shapes adapted to the filter and vein wall geometries. A total of eight geometries, with one or two clots and a total clot volume of 0.5 or 1 cm3 , were considered. A non-Newtonian model for blood viscosity was adopted and the possible development of turbulence was accounted for by means of a three-equation model. Two blood flow rates were considered for each case, representative for rest and exercise conditions. In exercise conditions, flow unsteadiness and even turbulence was detected in some cases. Pressure and wall shear stress (WSS) distributions were modified in all cases. Clots attached to the filter downstream basket considerably increased averaged WSS values by up to almost 50%. In all the cases a flow recirculation region appeared downstream of the clot. The degree of flow stagnation in these regions, an indicator of propensity to thrombogenesis, was estimated in terms of mean residence times and mean blood viscosity. High levels of flow stagnation were detected in rest conditions in the wake of those clots that were placed upstream from the filter. Our results suggest that one downstream placed big clot, showing a higher tendency to induce flow instabilities and turbulence, might be more harmful than two small clots placed in tandem.
Collapse
Affiliation(s)
- Josep M López
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Catalunya, Spain
| | - Gerard Fortuny
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Catalunya, Spain
| | - Dolors Puigjaner
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Catalunya, Spain
| | - Joan Herrero
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalunya, Spain
| | - Francesc Marimon
- Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Catalunya, Spain
| |
Collapse
|
11
|
Craven BA, Aycock KI, Manning KB. Steady Flow in a Patient-Averaged Inferior Vena Cava—Part II: Computational Fluid Dynamics Verification and Validation. Cardiovasc Eng Technol 2018; 9:654-673. [DOI: 10.1007/s13239-018-00392-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/27/2018] [Indexed: 12/31/2022]
|