1
|
Kaczmarek-Szczepańska B, Grabska-Zielińska S. Biopolymeric Scaffolds with Melatonin for Tissue Engineering-A Review. Int J Mol Sci 2025; 26:2520. [PMID: 40141163 PMCID: PMC11942045 DOI: 10.3390/ijms26062520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Melatonin, a natural hormone with antioxidant, anti-inflammatory, and regenerative properties, has gained increasing attention in tissue engineering for its ability to enhance the therapeutic potential of biopolymeric scaffolds. These scaffolds, designed to mimic the extracellular matrix, provide structural support and a bioactive environment for tissue regeneration. By integrating melatonin, researchers aim to create multifunctional scaffolds that promote cell proliferation, modulate inflammatory responses, and improve wound healing outcomes. Challenges in utilizing melatonin include maintaining its stability under light, heat, and oxygen exposure, and optimizing its release profile for sustained therapeutic effects. Innovative fabrication methods, such as electrospinning, 3D printing, and lyophilization, have enabled precise control over scaffold architecture and melatonin delivery. These techniques ensure enhanced interactions with target tissues and tailored regeneration processes. Combining melatonin with growth factors, cytokines, and antimicrobial agents offers the potential for multifunctional applications, from chronic wound management to bone and nerve regeneration. Continued research in this field promises transformative solutions in regenerative medicine, expanding the clinical applicability of melatonin-enriched scaffolds. This review highlights the current progress, challenges, and opportunities associated with harnessing melatonin's therapeutic potential within tissue engineering frameworks.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Laboratory for Functional Polymeric Materials, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Toruń, Poland
| | - Sylwia Grabska-Zielińska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
2
|
Unalan I, Slavik B, Buettner A, Boccaccini AR. Phytotherapeutic Hierarchical PCL-Based Scaffolds as a Multifunctional Wound Dressing: Combining 3D Printing and Electrospinning. Macromol Biosci 2024; 24:e2400253. [PMID: 39254603 DOI: 10.1002/mabi.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/10/2024] [Indexed: 09/11/2024]
Abstract
This study focuses on developing hybrid scaffolds incorporating phytotherapeutic agents via a combination of three-dimensional (3D) printing and electrospinning to enhance mechanical properties and provide antibacterial activity, in order to address the limitations of traditional antibiotics. In this regard, 3D-printed polycaprolactone (PCL) struts are first fabricated using fused deposition modeling (FDM). Then, alkaline surface treatment is applied to improve the adhesion of electrospun nanofibers. Finally, peppermint oil (PEP) or clove oil (CLV)-incorporated PCL-gelatin (GEL) electrospun nanofibers are collected on top of the 3D-printed PCL scaffolds by electrospinning. Incorporating PEP or CLV into PCL-GEL electrospun nanofibers enhances the scaffold's layer detachment and adhesion force. In addition, the DPPH free radical scavenging activity assay indicates that incorporating PEP or CLV improves the antioxidant properties of the scaffolds. Further, antibacterial activity results reveal that PEP or CLV incorporated scaffolds exhibit inhibition against Staphylococcus aureus and Escherichia coli bacteria. Moreover, anti-inflammatory assays show that scaffolds reduce the concentration of nitric oxide (NO) released from Raw 264.7 macrophage-like cells. On the other hand, the phytotherapeutic hierarchical scaffolds have no toxic effect on normal human dermal fibroblast (NHDF) cells, and PEP or CLV enhance cell attachment and proliferation. Overall, incorporating natural phytotherapeutic agents into hierarchical scaffolds shows promise for advancing wound healing applications.
Collapse
Affiliation(s)
- Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Benedikt Slavik
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestraße 9, 91054, Erlangen, Germany
| | - Andrea Buettner
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestraße 9, 91054, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| |
Collapse
|
3
|
Asadzadeh F, Ghorbanzadeh S, Poursattar Marjani A, Gholami R, Asadzadeh F, Lotfollahi L. Assessing polylactic acid nanofibers with cellulose and chitosan nanocapsules loaded with chamomile extract for treating gram-negative infections. Sci Rep 2024; 14:22336. [PMID: 39333220 PMCID: PMC11437081 DOI: 10.1038/s41598-024-72398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
This study presents the development and characterization of a novel nanocomposite wound dressing material based on polylactic acid (PLA) nanofibers incorporating chitosan nanocapsules loaded with chamomile extract and cellulose nanoparticles. The nanofibers were fabricated using a three-step synthesis and electrospinning techniques, resulting in uniform, bead-free fibers with an average diameter of 186 ± 56 nm. Fourier-transform infrared spectroscopy confirmed the successful incorporation of all components, while tensile strength tests demonstrated improved mechanical properties by adding nanoparticles. Water contact angle measurements revealed enhanced surface wettability of the PLA-Cellulose-Chitosan complex compared to pure PLA nanofibers. In vitro biocompatibility assessments using MTT assays showed excellent cell viability and proliferation, with the optimized composite exhibiting the best performance. Scanning electron microscopy imaging confirmed robust cell adhesion and interaction with the nanofibers. The nanocomposite demonstrated significant antimicrobial activity against Escherichia coli, with a 20 mm inhibition zone observed for chamomile extract-loaded samples. Additionally, the material showed superior hemostatic ability compared to commercial gauze and high hemocompatibility. These comprehensive results indicate that the developed nanocomposite is a promising candidate for advanced wound management applications, offering a multifunctional approach to wound healing by combining antimicrobial activity, cell compatibility, and hemostatic properties.
Collapse
Affiliation(s)
- Fatemeh Asadzadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Sadegh Ghorbanzadeh
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | | | - Reza Gholami
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, IUST, Tehran, Iran
| | - Faezeh Asadzadeh
- Haj Muhammad Talaaie Scientific Research Institute, Nanotechnology Research Institute, Salmas, Iran
| | - Lida Lotfollahi
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Starcea IM, Lupu A, Nistor AM, Mocanu MA, Bogos RA, Azoicai A, Cira D, Beldie M, Lupu VV, Morariu ID, Munteanu V, Tepordei RT, Ioniuc I. A cutting-edge new framework for the pain management in children: nanotechnology. Front Mol Neurosci 2024; 17:1391092. [PMID: 39318422 PMCID: PMC11420925 DOI: 10.3389/fnmol.2024.1391092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Pain is a subjective concept which is ever-present in the medical field. Health professionals are confronted with a variety of pain types and sources, as well as the challenge of managing a patient with acute or chronic suffering. An even bigger challenge is presented in the pediatric population, which often cannot quantify pain in a numerical scale like adults. Infants and small children especially show their discomfort through behavioral and physiological indicators, leaving the health provider with the task of rating the pain. Depending on the pathophysiology of it, pain can be classified as neuropathic or nociceptive, with the first being defined by an irregular signal processing in the nervous system and the second appearing in cases of direct tissue damage or prolonged contact with a certain stimulant. The approach is generally either pharmacological or non-pharmacological and it can vary from using NSAIDs, local anesthetics, opiates to physical and psychological routes. Unfortunately, some pathologies involve either intense or chronic pain that cannot be managed with traditional methods. Recent studies have involved nanoparticles with special characteristics such as small dimension and large surface area that can facilitate carrying treatments to tissues and even offer intrinsic analgesic properties. Pediatrics has benefited significantly from the application of nanotechnology, which has enabled the development of novel strategies for drug delivery, disease diagnosis, and tissue engineering. This narrative review aims to evaluate the role of nanotechnology in current pain therapy, with emphasis on pain in children.
Collapse
Affiliation(s)
- Iuliana Magdalena Starcea
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Nephrology Division, St. Mary’s Emergency Children Hospital, Iasi, Romania
| | - Ancuta Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ana Maria Nistor
- Nephrology Division, St. Mary’s Emergency Children Hospital, Iasi, Romania
| | - Maria Adriana Mocanu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Roxana Alexandra Bogos
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alice Azoicai
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Diana Cira
- Nephrology Division, St. Mary’s Emergency Children Hospital, Iasi, Romania
| | - Madalina Beldie
- Nephrology Division, St. Mary’s Emergency Children Hospital, Iasi, Romania
| | - Vasile Valeriu Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Valentin Munteanu
- Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Razvan Tudor Tepordei
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ileana Ioniuc
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
5
|
Ghosh A, Saha K, Bhattacharya T, Sarkar S, Sengupta D, Maiti A, Ghoshal D, Dey S, Chattopadhyay D. Electrospun Cerium Oxide Nanoparticle/Aloe Vera Extract-Loaded Nanofibrous Poly(Ethylene Oxide)/Polyurethane Mats As Diabetic Wound Dressings. ACS APPLIED BIO MATERIALS 2024; 7:5268-5278. [PMID: 39093691 DOI: 10.1021/acsabm.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Currently the prevalence of diabetic wounds brings a huge encumbrance onto patients, causing high disability and mortality rates and a major medical challenge for society. Therefore, in this study, we are targeting to fabricate aloe vera extract infused biocompatible nanofibrous patches to facilitate the process of diabetic wound healing. Additionally, clindamycin has been adsorbed onto the surface of in-house synthesized ceria nanoparticles and again used separately to design a nanofibrous web, as nanoceria can act as a good drug delivery vehicle and exhibit both antimicrobial and antidiabetic properties. Various physicochemical characteristics such as morphology, porosity, and chemical composition of the produced nanofibrous webs were investigated. Bacterial growth inhibition and antibiofilm studies of the nanofibrous materials confirm its antibacterial and antibiofilm efficacy against Gram-positive and Gram-negative bacteria. An in vitro drug release study confirmed that the nanofibrous mat show a sustained drug release pattern (90% of drug in 96 h). The nanofibrous web containing drug loaded nanoceria not only showed superior in vitro performance but also promoted greater wound contraction (95 ± 2%) in diabetes-induced mice in just 7 days. Consequently, it efficaciously lowers the serum glucose level, inflammatory cytokines, oxidative stress, and hepatotoxicity markers as endorsed by various ex vivo tests. Conclusively, this in-house-fabricated biocompatible nanofibrous patch can act as a potential medicated suppository that can be used for treating diabetic wounds in the proximate future.
Collapse
Affiliation(s)
- Adrija Ghosh
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Kasturi Saha
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Tuhin Bhattacharya
- Department of Physiology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Sresha Sarkar
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Dipanjan Sengupta
- Department of Chemical Technology, Rajabazar Science College, University of Calcutta, Kolkata 700 009, India
| | - Anupam Maiti
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Debajyoti Ghoshal
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Sanjit Dey
- Department of Physiology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
- Department of Science and Technology (DST) for PURSE and UGC-CPEPA scheme granted to University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
- Center for Research in Nanoscience and Nanotechnology, Acharya Prafulla Chandra Roy Sikhsha Prangan, University of Calcutta, JD-2, Sector-III, Saltlake City, Kolkata 700098, India
| |
Collapse
|
6
|
Ge X, Zhang L, Wei X, Long X, Han Y. Plasma Surface Treatment and Application of Polyvinyl Alcohol/Polylactic Acid Electrospun Fibrous Hemostatic Membrane. Polymers (Basel) 2024; 16:1635. [PMID: 38931986 PMCID: PMC11207798 DOI: 10.3390/polym16121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, an improved PVA/PLA fibrous hemostatic membrane was prepared by electrospinning technology combined with air plasma modification. The plasma treatment was used to modify PLA to enhance the interlayer bonding between the PVA and PLA fibrous membranes first, then modify the PVA to improve the hemostatic capacity. The surfaces of the PLA and PVA were oxidized after air plasma treatment, the fibrous diameter was reduced, and roughness was increased. Plasma treatment enhanced the interfacial bond strength of PLA/PVA composite fibrous membrane, and PLA acted as a good mechanical support. Plasma-treated PVA/PLA composite membranes showed an increasing liquid-enrichment capacity of 350% and shortened the coagulation time to 258 s. The hemostatic model of the liver showed that the hemostatic ability of plasma-treated PVA/PLA composite membranes was enhanced by 79% compared to untreated PVA membranes, with a slight improvement over commercially available collagen. The results showed that the plasma-treated PVA/PLA fibers were able to achieve more effective hemostasis, which provides a new strategy for improving the hemostatic performance of hemostatic materials.
Collapse
Affiliation(s)
| | | | | | | | - Yingchao Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; (X.G.); (L.Z.); (X.W.); (X.L.)
| |
Collapse
|
7
|
Liu Y, Xia B, Zhao R, Qin M, Weng X, Zeng Z, Deng K, Jiang H. Automatic in situ short-distance deposition of PLGA/PLLA composite nanofibrous membranes for personalized wound dressings. NANOSCALE 2024; 16:8546-8562. [PMID: 38596837 DOI: 10.1039/d3nr06376c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Improving the mechanical properties of wound dressings and achieving personalized automatic real-time in situ deposition are important for accelerating wound management and repair. In this study, we report a self-designed automatic in situ deposition device based on solution blow spinning (SBS) to prepare poly(lactic-co-glycolic acid) (PLGA) and poly-L-lactic acid (PLLA) composite (PLGA/PLLA) nanofibrous membranes for wound dressing at a short distance. Polymer solution and in situ deposition conditions, including air pressure, spinning distance, solvent extrusion rate, and spinning rate, were optimized using orthogonal experiments and characterized via dynamic mechanical analysis. The microscopic morphology and physical properties of the prepared PLGA/PLLA composite nanofibrous membranes show that their strength, adhesion, water vapor transmission rate (WVTR), water retention, water absorption, degradation, and other properties were sufficient for wound-dressing applications. To investigate the possibility of a biomedical wound-dressing material, tannic acid (TA) was incorporated into the PLGA/PLLA composite nanofibrous membranes. The resultant PLGA/PLLA/TA composite nanofibrous membranes exhibited good biocompatibility and exceptional antibacterial properties against both Escherichia coli and Staphylococcus aureus. A pilot animal study illustrated the potential of this in situ deposition of PLGA/PLLA/TA composite nanofibrous membranes across multiple applications in wound healing/repair by reducing wound scar tissue formation and fibroblast overactivation.
Collapse
Affiliation(s)
- Yuzhi Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bihan Xia
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Rui Zhao
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Endoscopy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610042, China
| | - Mei Qin
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Xuan Weng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Zhi Zeng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Kai Deng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hai Jiang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
8
|
Yang J, Xu L. Electrospun Nanofiber Membranes with Various Structures for Wound Dressing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6021. [PMID: 37687713 PMCID: PMC10488510 DOI: 10.3390/ma16176021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Electrospun nanofiber membranes (NFMs) have high porosity and a large specific surface area, which provide a suitable environment for the complex and dynamic wound healing process and a large number of sites for carrying wound healing factors. Further, the design of the nanofiber structure can imitate the structure of the human dermis, similar to the natural extracellular matrix, which better promotes the hemostasis, anti-inflammatory and healing of wounds. Therefore, it has been widely studied in the field of wound dressing. This review article overviews the development of electrospinning technology and the application of electrospun nanofibers in wound dressings. It begins with an introduction to the history, working principles, and transformation of electrospinning, with a focus on the selection of electrospun nanofiber materials, incorporation of functional therapeutic factors, and structural design of nanofibers and nanofiber membranes. Moreover, the wide application of electrospun NFMs containing therapeutic factors in wound healing is classified based on their special functions, such as hemostasis, antibacterial and cell proliferation promotion. This article also highlights the structural design of electrospun nanofibers in wound dressing, including porous structures, bead structures, core-shell structures, ordered structures, and multilayer nanofiber membrane structures. Finally, their advantages and limitations are discussed, and the challenges faced in their application for wound dressings are analyzed to promote further research in this field.
Collapse
Affiliation(s)
- Jiahao Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Re-Duction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| |
Collapse
|