1
|
Ambagaspitiya TD, Garza DJC, Skelton E, Kubacki E, Knight A, Bergmeier SC, Cimatu KLA. Using the pH sensitivity of switchable surfactants to understand the role of the alkyl tail conformation and hydrogen bonding at a molecular level in elucidating emulsion stability. J Colloid Interface Sci 2025; 678:164-175. [PMID: 39186896 DOI: 10.1016/j.jcis.2024.08.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
HYPOTHESIS The monoalkyl diamine surfactant, N-dodecylpropane-1,3-diamine (DPDA), is expected to exhibit a pH-dependent charge switchability. In response to pH changes, the interfacial self-assembly of DPDA becomes an intermediary constituent that can potentially modify the interfacial interactions and structural assembly of both the oil and water phases. Hence, we hypothesize that as we change the pH, DPDA will respond to it by changing its charge and alkyl tail conformation as well as the conformation of adjacent phases at the molecular level, consequently affecting emulsion formation and stability. A neutral pH, resulting in a mono-cationic dialkyl amine, affects the conformation, driving an ordered self-assembly and stable emulsion. EXPERIMENTS The pH-sensitivity and interfacial activity of DPDA were evaluated through pH titration and interfacial tension measurements. Subsequently, a molecular-level study of DPDA, as a pH-sensitive switchable surfactant, was performed at the dodecane-water interface using SFG spectroscopy. The interpretation of the vibrational spectra was further reinforced by determining the gauche defects in the interfacial alkyl chain organization and the extent of hydrogen (H) bonding between the interfacial water molecules. FINDINGS By adjusting the pH of water, the charge of the adsorbed DPDA molecules, their self-assembly, the organization of interfacial molecules, and ultimately the stability of the emulsion were tuned. At pH 7.0, the SFG spectra of DPDA showed that the interfacial alkyl chains were relatively well-ordered, while water molecules also had stronger H-bonding interactions. As a result, the oil-water emulsion showed improved stability. When water was at a high pH, the water molecules had fewer H-bonding interactions and relatively disordered alkyl chains at the interface, providing desirable conditions for demulsification. These observations were compatible with the observation in bulk emulsion preparation, confirming that alkyl chain packing and water H-bonding interactions at the interface contribute to overall emulsion stability.
Collapse
Affiliation(s)
- Tharushi D Ambagaspitiya
- Department of Chemistry and Biochemistry, Ohio University, 133 University Terrace, Chemistry Building, Athens, OH 45701-2979, United States.
| | - Danielle John C Garza
- Department of Chemistry and Biochemistry, Ohio University, 133 University Terrace, Chemistry Building, Athens, OH 45701-2979, United States.
| | - Eli Skelton
- Department of Chemistry and Biochemistry, Ohio University, 133 University Terrace, Chemistry Building, Athens, OH 45701-2979, United States.
| | - Emma Kubacki
- Department of Chemistry and Biochemistry, Ohio University, 133 University Terrace, Chemistry Building, Athens, OH 45701-2979, United States.
| | - Alanna Knight
- Department of Chemistry and Biochemistry, Ohio University, 133 University Terrace, Chemistry Building, Athens, OH 45701-2979, United States.
| | - Stephen C Bergmeier
- Department of Chemistry and Biochemistry, Ohio University, 133 University Terrace, Chemistry Building, Athens, OH 45701-2979, United States.
| | - Katherine Leslee Asetre Cimatu
- Department of Chemistry and Biochemistry, Ohio University, 133 University Terrace, Chemistry Building, Athens, OH 45701-2979, United States.
| |
Collapse
|
2
|
Ozcelik HG, Bienek D, Hardt M, Glikman D, Braunschweig B, Heuer A. Photoswitchable Arylazopyrazole Surfactants at the Water-Air Interface: A Microscopic Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27183-27193. [PMID: 39686529 DOI: 10.1021/acs.langmuir.4c02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Surfactants play an important role in modifying the properties of water-air interfaces. Here, we combine information from molecular dynamics simulations, surface tensiometry, and vibrational sum-frequency generation spectroscopy to study the interfacial behavior of photoswitchable arylazopyrazole (AAP) surfactants. This combination of the experimental techniques allows a direct relation between surface tension and surface concentration rather than just the bulk concentration. Specifically, we conducted a comparison between two derivatives, one with an octyl terminal group (O-AAP) and the other without this group (H-AAP), focusing on their respective E and Z isomers. From the simulations of these four systems, we see that those with a stronger cluster formation, likely resulting from higher intermolecular attractive interactions, display higher surface tensions for the intermediate surface excess. In some cases, even a small but noticeable maximum in the surface tension isotherm is observed for systems with strong cluster formation. Such a maximum is not observed in the experiments, although such an observation would be compatible with the general properties of the Frumkin isotherm. We exclude that the peak is due to the finite width of the simulation box. Apart from this effect, the general features of the surface tension are consistent between the experiment and simulation. Evidence is also provided that it is primarily the interaction of the aromatic rings that determines the strength of the surfactant interactions.
Collapse
Affiliation(s)
- H Gokberk Ozcelik
- University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany
| | - David Bienek
- University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany
| | - Michael Hardt
- University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany
| | - Dana Glikman
- University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany
| | - Björn Braunschweig
- University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany
| | - Andreas Heuer
- University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany
| |
Collapse
|
3
|
Ambagaspitiya TD, Garza DJC, Zuercher A, Asetre Cimatu KL. Investigating the self-assembly of pH-sensitive switchable diamine surfactant using sum frequency generation spectroscopy and molecular dynamics simulations. J Chem Phys 2024; 161:164709. [PMID: 39450732 DOI: 10.1063/5.0230410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
The responses of the N-alkyl diamine groups to variations in pH affect their conformations and surface activities, making them relevant to applications relying on interfacial interactions, such as controlled emulsification and mineral flotation. An in-depth understanding of interfacial self-assembly is crucial. Herein, a molecular-level study was performed to investigate the adsorption and self-assembly of N-dodecylpropane-1,3-diamine (DPDA) at the air-water (A/W) interface using sum frequency generation (SFG) spectroscopy and molecular dynamics (MD) simulations. The SFG spectra of DPDA, acquired under three pH conditions, suggest that the protonation of the DPDA diamine group influences the alkyl chain arrangement at a varying degree at the A/W interface. Analysis of the di-cationic DPDA SFG spectrum at a low pH showed fewer gauche defects at low concentration, as indicated by the relatively higher intensity ratio (ICH3SS/ICH2SS) of 18.1 ± 0.6. The density profiles from MD simulations at different surface areas per molecule and pH conditions, showing varying degrees of packing, support the observation of gauche defects in SFG. With MD simulation, the radial distribution factor for di-cationic species has the highest probability of forming hydrogen bonds compared to mono-cationic and non-ionic species. These g(r) probability results conform with observations obtained from SFG spectroscopy, where we observed a strong hydrogen bond interaction at low pH conditions with di-cationic species, forming tetrahedrally arranged water molecules at the A/W interface. Overall, comprehensive insights will facilitate the visualization of alkyl diamines and their potential derivatives at the A/W interface, enabling a better understanding of their behavior across various applications.
Collapse
Affiliation(s)
- Tharushi D Ambagaspitiya
- Department of Chemistry and Biochemistry, Ohio University, 133 University Terrace, Chemistry Building, Athens, Ohio 45701-2979, USA
| | - Danielle John C Garza
- Department of Chemistry and Biochemistry, Ohio University, 133 University Terrace, Chemistry Building, Athens, Ohio 45701-2979, USA
| | - Aoife Zuercher
- Department of Chemistry and Biochemistry, Ohio University, 133 University Terrace, Chemistry Building, Athens, Ohio 45701-2979, USA
| | - Katherine Leslee Asetre Cimatu
- Department of Chemistry and Biochemistry, Ohio University, 133 University Terrace, Chemistry Building, Athens, Ohio 45701-2979, USA
| |
Collapse
|
4
|
Guitton-Spassky T, Junge F, Singh AK, Schade B, Achazi K, Maglione M, Sigrist S, Rashmi R, Haag R. Fluorinated dendritic amphiphiles, their stomatosome aggregates and application in enzyme encapsulation. NANOSCALE 2023; 15:7781-7791. [PMID: 37016756 DOI: 10.1039/d3nr00493g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Enzymes are more selective and efficient than synthetic catalysts but are limited by difficult recycling. This is overcome by immobilisation, namely through encapsulation, with the main drawback of this method being slow diffusion of products and reactants, resulting in effectively lowered enzyme activity. Fluorinated dendritic amphiphiles were reported to self-assemble into regularly perforated bilayer vesicles, so-called "stomatosomes". It was proposed that they could be promising novel reaction vessels due to their increased porosity while retaining larger biomolecules at the same time. Amphiphiles were synthesised and their aggregation was analysed by cryogenic transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS) in buffered conditions necessary for enzyme encapsulation. Urease and albumin were encapsulated using the thin-film hydration method and investigated by confocal and time-gated stimulated emission depletion microscopy (gSTED). Their release was then used to probe the selective retention of cargo by stomatosomes. Free and encapsulated enzyme activity were compared and their capacity to be reused was evaluated using the Berthelot method. Urease was successfully encapsulated, did not leak out at room temperature, and showed better activity in perforated vesicles than in closed vesicles without perforations. Encapsulated enzyme could be reused with retained activity over 8 cycles using centrifugation, while free enzyme had to be filtrated. These results show that stomatosomes may be used in enzyme immobilisation applications and present advantages over closed vesicles or free enzyme.
Collapse
Affiliation(s)
- Tiffany Guitton-Spassky
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195 Germany.
| | - Florian Junge
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195 Germany.
| | - Abhishek Kumar Singh
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195 Germany.
| | - Boris Schade
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, Berlin, 14195 Germany
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195 Germany.
| | - Marta Maglione
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195 Germany.
- Institute for Biology, Freie Universität Berlin, Takustraße 6, Berlin, 14195 Germany
| | - Stephan Sigrist
- Institute for Biology, Freie Universität Berlin, Takustraße 6, Berlin, 14195 Germany
| | - Rashmi Rashmi
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195 Germany.
| | - Rainer Haag
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195 Germany.
| |
Collapse
|
5
|
Reifarth M, Bekir M, Bapolisi AM, Titov E, Nußhardt F, Nowaczyk J, Grigoriev D, Sharma A, Saalfrank P, Santer S, Hartlieb M, Böker A. A Dual pH‐ and Light‐Responsive Spiropyran‐Based Surfactant: Investigations on Its Switching Behavior and Remote Control over Emulsion Stability. Angew Chem Int Ed Engl 2022; 61:e202114687. [PMID: 35178847 PMCID: PMC9400902 DOI: 10.1002/anie.202114687] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 11/10/2022]
Abstract
A cationic surfactant containing a spiropyran unit is prepared exhibiting a dual‐responsive adjustability of its surface‐active characteristics. The switching mechanism of the system relies on the reversible conversion of the non‐ionic spiropyran (SP) to a zwitterionic merocyanine (MC) and can be controlled by adjusting the pH value and via light, resulting in a pH‐dependent photoactivity: While the compound possesses a pronounced difference in surface activity between both forms under acidic conditions, this behavior is suppressed at a neutral pH level. The underlying switching processes are investigated in detail, and a thermodynamic explanation based on a combination of theoretical and experimental results is provided. This complex stimuli‐responsive behavior enables remote‐control of colloidal systems. To demonstrate its applicability, the surfactant is utilized for the pH‐dependent manipulation of oil‐in‐water emulsions.
Collapse
Affiliation(s)
- Martin Reifarth
- University of Potsdam Institute of Chemistry Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 14476 Potsdam Germany
| | - Marek Bekir
- University of Potsdam Institute of Physics and Astronomy Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Alain M. Bapolisi
- University of Potsdam Institute of Chemistry Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Evgenii Titov
- University of Potsdam Institute of Chemistry Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Fabian Nußhardt
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 14476 Potsdam Germany
| | - Julius Nowaczyk
- University of Potsdam Institute of Chemistry Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 14476 Potsdam Germany
| | - Dmitry Grigoriev
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 14476 Potsdam Germany
| | - Anjali Sharma
- University of Potsdam Institute of Physics and Astronomy Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Peter Saalfrank
- University of Potsdam Institute of Chemistry Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Svetlana Santer
- University of Potsdam Institute of Physics and Astronomy Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Matthias Hartlieb
- University of Potsdam Institute of Chemistry Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 14476 Potsdam Germany
| | - Alexander Böker
- University of Potsdam Institute of Chemistry Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 14476 Potsdam Germany
| |
Collapse
|
6
|
Reifarth M, Bekir M, Bapolisi AM, Titov E, Nußhardt F, Nowaczyk J, Grigoriev D, Sharma A, Saalfrank P, Santer S, Hartlieb M, Böker A. A Dual pH and Light‐Responsive Spiropyrane‐Based Surfactant: Investigations on its Switching Behavior and Remote Control over Emulsion Stability. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Reifarth
- University of Potsdam: Universitat Potsdam Institut für Chemie GERMANY
| | - Marek Bekir
- University of Potsdam: Universitat Potsdam Institut für Chemie GERMANY
| | - Alain M. Bapolisi
- University of Potsdam: Universitat Potsdam Institut für Chemie GERMANY
| | - Evgenii Titov
- University of Potsdam: Universitat Potsdam Institut für Chemie GERMANY
| | - Fabian Nußhardt
- Fraunhofer Institute for Applied Polymer Research: Fraunhofer-Institut fur Angewandte Polymerforschung IAP Life Sciences and Bioprocesses GERMANY
| | - Julius Nowaczyk
- University of Potsdam: Universitat Potsdam Institut für Chemie GERMANY
| | - Dmitry Grigoriev
- Fraunhofer Institute for Applied Polymer Research: Fraunhofer-Institut fur Angewandte Polymerforschung IAP Life Sciences and Bioprocesses GERMANY
| | - Anjali Sharma
- University of Potsdam: Universitat Potsdam Institut für Physik GERMANY
| | - Peter Saalfrank
- University of Potsdam: Universitat Potsdam Institut für Chemie GERMANY
| | - Svetlana Santer
- University of Potsdam: Universitat Potsdam Institut für Physik GERMANY
| | - Matthias Hartlieb
- University of Potsdam: Universitat Potsdam Institut für Chemie GERMANY
| | - Alexander Böker
- Universität Potsdam: Universitat Potsdam Lehrstuhl für Polymermaterialien und Polymertechnologienlächen Geiselbergstrasse 69 D-14476 Potsdam GERMANY
| |
Collapse
|
7
|
Zhang W, Zhang MY, Wang K, Sun R, Zhao S, Zhang Z, He YP, Yu F. Geometry transformation of ionic surfactants and adsorption behavior on water/ n-decane-interface: calculation by molecular dynamics simulation and DFT study. RSC Adv 2021; 11:28286-28294. [PMID: 35480765 PMCID: PMC9038023 DOI: 10.1039/d1ra04669a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/15/2021] [Indexed: 01/20/2023] Open
Abstract
Understanding the effect of surfactant structure on their ability to modify interfacial properties is of great scientific and industrial interest. In this work, we have synthesized four amide based ionic surfactants under acidic or basic conditions, including CTHA·HCl, CTEA·HCl, CTHA-Na+ and CTEA-Na+. Experiments have proved that the anionic surfactant with polyethylene oxide groups (CTEA-Na+) had the lowest surface tension on the water/n-decane interface. Molecular dynamics simulations have been applied to investigate the structural effect on the adsorption behavior of four different surfactants. The surface tension, interface thickness, interface formation energy, density profiles, order parameters, radial distribution function on the water/n-decane interfaces were calculated and compared. During the equilibrium states, we found that the interface configuration of two cationic surfactants are almost linear while the two anionic surfactants are changed to bending shapes due to the different positions of the hydrophilic head groups. Further DFT study and wavefunction analysis of surfactants have shown that CTEA-Na+ can form stronger vdW interactions with n-decane molecules due to a more neutral electrostatic potential distribution. Meanwhile, the introduction of polyethylene oxide groups has offered more H-bonding sites and resulted in more concentrated H-bonding interactions with water molecules. The difference of weak interactions may contribute to the conformational change and finally affect the interface properties of these ionic surfactants.
Collapse
Affiliation(s)
- Wannian Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 P. R. China
- State Key Laboratory of Fine Chemicals, Ningbo Institute of Dalian University of Technology No. 26 Yucai Road, Jiangbei District Ningbo 315016 P. R. China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University Dandong Lu West 1 Fushun 113001 Liaoning P. R. China +86-2456860548
| | - Ming-Yuan Zhang
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University Dandong Lu West 1 Fushun 113001 Liaoning P. R. China +86-2456860548
| | - Kai Wang
- State Key Laboratory of Fine Chemicals, Ningbo Institute of Dalian University of Technology No. 26 Yucai Road, Jiangbei District Ningbo 315016 P. R. China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University Dandong Lu West 1 Fushun 113001 Liaoning P. R. China +86-2456860548
| | - Ruixia Sun
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University Dandong Lu West 1 Fushun 113001 Liaoning P. R. China +86-2456860548
| | - Shanlin Zhao
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 P. R. China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University Dandong Lu West 1 Fushun 113001 Liaoning P. R. China +86-2456860548
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 P. R. China
| | - Yu-Peng He
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 P. R. China
- State Key Laboratory of Fine Chemicals, Ningbo Institute of Dalian University of Technology No. 26 Yucai Road, Jiangbei District Ningbo 315016 P. R. China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University Dandong Lu West 1 Fushun 113001 Liaoning P. R. China +86-2456860548
| | - Fang Yu
- State Key Laboratory of Fine Chemicals, Ningbo Institute of Dalian University of Technology No. 26 Yucai Road, Jiangbei District Ningbo 315016 P. R. China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University Dandong Lu West 1 Fushun 113001 Liaoning P. R. China +86-2456860548
| |
Collapse
|
8
|
Scermino L, Fabozzi A, De Tommaso G, Valente AJ, Iuliano M, Paduano L, D'Errico G. pH-responsive micellization of an amine oxide surfactant with branched hydrophobic tail. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Abstract
Surfactants are ubiquitous in cellular membranes, detergents or as emulsification agents. Due to their amphiphilic properties, they cannot only mediate between two domains of very different solvent compatibility like water and organic but also show fascinating self-assembly features resulting in micelles, vesicles, or lyotropic liquid crystals. The current review article highlights some approaches towards the next generation surfactants, for example, those with catalytically active heads. Furthermore, it is shown that amphiphilic properties can be obtained beyond the classical hydrophobic-hydrophilic interplay, for instance with surfactants containing one molecular block with a special shape. Whereas, classical surfactants are static, researchers have become more interested in species that are able to change their properties depending on external triggers. The article discusses examples for surfactants sensitive to chemical (e.g., pH value) or physical triggers (temperature, electric and magnetic fields).
Collapse
Affiliation(s)
- Sebastian Polarz
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Marius Kunkel
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Adrian Donner
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Moritz Schlötter
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
10
|
Gan Y, Wang ZD, Lu ZX, Shi Y, Tan HY, Yan CF. Control on the Morphology of ABA Amphiphilic Triblock Copolymer Micelles in Dioxane/Water Mixture Solvent. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2066-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Qi R, Liu Z, Zhou C, Han Y, Wang Y. pH-Responsive self-assembly of cationic surfactants with a star-shaped tetra-carboxylate acid and the solubilization of hydrophobic drugs. SOFT MATTER 2017; 13:7804-7812. [PMID: 29067393 DOI: 10.1039/c7sm01940h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This work involved the construction of pH-responsive self-assembly systems from a pH-sensitive four-arm carboxylate acid (4EOCOOH) and either the cationic single chain surfactant dodecyl trimethyl ammonium bromide (DTAB) or the cationic gemini surfactant hexamethylene-1,6-bis(dodecyldimethylammonium bromide) (12-6-12). It was found that the constructed oligomeric-like structures from the mixtures of 4EOCOOH with DTAB or 12-6-12 greatly enhance the aggregation ability of the mixtures, thus improving the pH-responsivity. In particular, surfactant concentrations significantly affect the pH-responsivity at a fixed 4EOCOOH concentration. At higher surfactant concentrations, the pH-responsivity is suppressed, while at lower surfactant concentrations, the mixed aggregates gradually change from micelles to unstable large spherical aggregates or vesicles, and then to stable spherical aggregates, with decreasing pH. Moreover, the surfactant/4EOCOOH systems have different solubilization abilities for three hydrophobic drugs. For quercetin and baicalein, the systems support much better solubilization at lower pH values, while for indomethacin, the systems show better solubilization at higher pH values. In particular, compared with DTAB, 12-6-12 is more efficient in constructing pH-responsive systems, and the 12-6-12/4EOCOOH mixture shows better ability for solubilizing hydrophobic drugs. This work will be helpful in the design of high-efficiency, pH-responsive surfactant systems for solubilizing hydrophobic drugs by simply mixing pH-sensitive molecules with surfactants.
Collapse
Affiliation(s)
- Ruilian Qi
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | |
Collapse
|
12
|
Dutta R, Ghosh S, Banerjee P, Kundu S, Sarkar N. Micelle-vesicle-micelle transition in aqueous solution of anionic surfactant and cationic imidazolium surfactants: Alteration of the location of different fluorophores. J Colloid Interface Sci 2017; 490:762-773. [DOI: 10.1016/j.jcis.2016.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 01/14/2023]
|
13
|
Villamil Giraldo AM, Fyrner T, Wennmalm S, Parikh AN, Öllinger K, Ederth T. Spontaneous Vesiculation and pH-Induced Disassembly of a Lysosomotropic Detergent: Impacts on Lysosomotropism and Lysosomal Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13566-13575. [PMID: 27936755 DOI: 10.1021/acs.langmuir.6b03458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Lysosomotropic detergents (LDs) selectively rupture lysosomal membranes through mechanisms that have yet to be characterized. A consensus view, currently, holds that LDs, which are weakly basic, diffuse across cellular membranes as monomers in an uncharged state, and via protonation in the acidic lysosomal compartment, they become trapped, accumulate, and subsequently solubilize the membrane and induce lysosomal membrane permeabilization. Here we demonstrate that the lysosomotropic detergent O-methyl-serine dodecylamide hydrochloride (MSDH) spontaneously assembles into vesicles at, and above, cytosolic pH, and that the vesicles disassemble as the pH reaches 6.4 or lower. The aggregation commences at concentrations below the range of those used in cell studies. Assembly and disassembly of the vesicles was studied via dynamic light scattering, zeta potential measurements, cryo-TEM, and fluorescence correlation spectroscopy and was found to be reversible via control of the pH. Aggregation of MSDH into closed vesicles under cytosolic conditions is at variance with the commonly held view of LD behavior, and we propose that endocytotic pathways should be considered as possible routes of LD entry into lysosomes. We further demonstrate that MSDH vesicles can be loaded with fluorophores via a solution transition from low to high pH, for subsequent release when the pH is lowered again. The ability to encapsulate molecular cargo into MSDH vesicles together with its ability to disaggregate at low pH and to permeabilize the lysosomal membrane presents an intriguing possibility to use MSDH as a delivery system.
Collapse
Affiliation(s)
- Ana M Villamil Giraldo
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping, University , SE-581 85 Linköping, Sweden
| | | | - Stefan Wennmalm
- Royal Institute of Technology, Department of Applied Physics, Experimental Biomolecular Physics, Scilifelab , 171 65 Solna, Sweden
| | - Atul N Parikh
- Departments of Biomedical Engineering and Materials Science & Engineering, University of California , Davis, California 95616, United States
| | - Karin Öllinger
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping, University , SE-581 85 Linköping, Sweden
| | | |
Collapse
|
14
|
Baccile N, Cuvier AS, Prévost S, Stevens CV, Delbeke E, Berton J, Soetaert W, Van Bogaert INA, Roelants S. Self-Assembly Mechanism of pH-Responsive Glycolipids: Micelles, Fibers, Vesicles, and Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10881-10894. [PMID: 27730816 DOI: 10.1021/acs.langmuir.6b02337] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A set of four structurally related glycolipids are described: two of them have one glucose unit connected to either stearic or oleic acid, and two other ones have a diglucose headgroup (sophorose) similarly connected to either stearic or oleic acid. The self-assembly properties of these compounds, poorly known, are important to know due to their use in various fields of application from cleaning to cosmetics to medical. At basic pH, they all form mainly small micellar aggregates. At acidic pH, the oleic and stearic derivatives of the monoglucose form, respectively, vesicles and bilayer, while the same derivatives of the sophorose headgroup form micelles and twisted ribbons. We use pH-resolved in situ small angle X-ray scattering (SAXS) under synchrotron radiation to characterize the pH-dependent mechanism of evolution from micelles to the more complex aggregates at acidic pH. By pointing out the importance of the COO-/COOH ratio, the melting temperature, Tm, of the lipid moieties, hydration of the glycosidic headgroup, the packing parameter, membrane rigidity, and edge stabilization, we are now able to draw a precise picture of the full self-assembly mechanism. This work is a didactical illustration of the complexity of the self-assembly process of a stimuli-responsive amphiphile during which many concomitant parameters play a key role at different stages of the process.
Collapse
Affiliation(s)
- Niki Baccile
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France UMR 7574, Chimie de la Matière Condensée de Paris, UMR 7574, F-75005 Paris, France
| | - Anne-Sophie Cuvier
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France UMR 7574, Chimie de la Matière Condensée de Paris, UMR 7574, F-75005 Paris, France
| | - Sylvain Prévost
- ESRF - The European Synchrotron , High Brilliance Beamline ID02, 38043 Grenoble, France
| | - Christian V Stevens
- SynBioC, Department of Sustainable Organic Chemistry and Technology, Ghent University , Ghent, Belgium
| | - Elisabeth Delbeke
- SynBioC, Department of Sustainable Organic Chemistry and Technology, Ghent University , Ghent, Belgium
| | - Jan Berton
- SynBioC, Department of Sustainable Organic Chemistry and Technology, Ghent University , Ghent, Belgium
| | - Wim Soetaert
- InBio, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, 9000 Ghent, Belgium
| | - Inge N A Van Bogaert
- InBio, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, 9000 Ghent, Belgium
| | - Sophie Roelants
- InBio, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, 9000 Ghent, Belgium
- Bio Base Europe Pilot Plant , Rodenhuizekaai 1, 9042 Ghent, Belgium
| |
Collapse
|
15
|
Jiang Z, Jia K, Liu X, Dong J, Li X. Multiple Responsive Fluids Based on Vesicle to Wormlike Micelle Transitions by Single-Tailed Pyrrolidone Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11760-11768. [PMID: 26473558 DOI: 10.1021/acs.langmuir.5b02312] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report a new family of multiple responsive fluids based on the single-tailed pyrrolidone surfactants, N-ethyl-2-pyrrolidone N-alkyl amine (C(m)NP, where m = 10, 12, 14, 16, and 18). These surfactants are highly sensitive to solution pH as a result of the presence of the N-amino group in the molecules. Equilibrium surface tension results indicate that both the surface activity and micellization ability of C(m)NPs decrease with the increase of the protonation degree; i.e., they exhibit a higher critical micelle concentration (cmc) and higher surface tension at the cmc (γ(cmc)) at the acidic conditions than those at the basic conditions. The cmc values of C(m)NPs follow the well-known Klevens equation, which decrease linearly with the increase of the hydrocarbon chain length m at a given pH. More importantly, the self-assemblies of C(m)NPs are highly sensitive to pH, CO2, and CuCl2, as identified by turbidity and viscosity. The transitions between vesicles and wormlike micelles are further confirmed by rheology, static and dynamic light scattering (SLS and DLS), cryogenic transmission electron microscopy (cryo-TEM), and nuclear magnetic resonance (NMR) techniques systematically. Although the aggregate transitions induced by different factors are similar, however, the mechanisms are different. The pH- and CO2-induced transitions are attributed to variation in the protonation degree of the N-amino group; however, CuCl2-induced transitions are a result of the formation of C(m)NP and CuCl2 coordination complexes as revealed by two-dimensional (2D) nuclear Overhauser effect spectrometry (NOESY) NMR and ultraviolet-visible (UV-vis) spectra.
Collapse
Affiliation(s)
- Zan Jiang
- College of Chemistry and Molecular Science, Wuhan University , Wuhan, Hubei 430072, People's Republic of China
| | - Kangle Jia
- College of Chemistry and Molecular Science, Wuhan University , Wuhan, Hubei 430072, People's Republic of China
| | - Xiong Liu
- College of Chemistry and Molecular Science, Wuhan University , Wuhan, Hubei 430072, People's Republic of China
| | - Jinfeng Dong
- College of Chemistry and Molecular Science, Wuhan University , Wuhan, Hubei 430072, People's Republic of China
| | - Xuefeng Li
- College of Chemistry and Molecular Science, Wuhan University , Wuhan, Hubei 430072, People's Republic of China
| |
Collapse
|
16
|
Yue X, Chen X, Li Q, Qian Z. Soft aggregates formed by a nonionic phytosterol ethoxylate and β-cyclodextrin in aqueous solution. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.03.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Zarzar LD, Sresht V, Sletten EM, Kalow JA, Blankschtein D, Swager TM. Dynamically reconfigurable complex emulsions via tunable interfacial tensions. Nature 2015; 518:520-4. [PMID: 25719669 DOI: 10.1038/nature14168] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/24/2014] [Indexed: 01/14/2023]
Abstract
Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials.
Collapse
Affiliation(s)
- Lauren D Zarzar
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Vishnu Sresht
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ellen M Sletten
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Julia A Kalow
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Timothy M Swager
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
18
|
di Gregorio MC, Varenik M, Gubitosi M, Travaglini L, Pavel NV, Jover A, Meijide F, Regev O, Galantini L. Multi stimuli response of a single surfactant presenting a rich self-assembly behavior. RSC Adv 2015. [DOI: 10.1039/c5ra01394a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A bile salt derived surfactant shows an unusually rich multi responsive self-assembly, involving interesting opening/closure mechanisms of supramolecular tubules and drastic spectroscopic variations, potentially exploitable in sensing.
Collapse
Affiliation(s)
| | - M. Varenik
- Department of Chemical Engineering
- Ben-Gurion University of the Negev
- Beer-Sheva 84105
- Israel
| | - M. Gubitosi
- Dipartimento di Chimica
- Università di Roma “Sapienza”
- 00185 Roma
- Italy
| | - L. Travaglini
- Dipartimento di Chimica
- Università di Roma “Sapienza”
- 00185 Roma
- Italy
| | - N. V. Pavel
- Dipartimento di Chimica
- Università di Roma “Sapienza”
- 00185 Roma
- Italy
| | - A. Jover
- Departamento de Química Física
- Facultad de Ciencias
- Universidad de Santiago de Compostela
- 27002 Lugo
- Spain
| | - F. Meijide
- Departamento de Química Física
- Facultad de Ciencias
- Universidad de Santiago de Compostela
- 27002 Lugo
- Spain
| | - O. Regev
- Department of Chemical Engineering
- Ben-Gurion University of the Negev
- Beer-Sheva 84105
- Israel
| | - L. Galantini
- Dipartimento di Chimica
- Università di Roma “Sapienza”
- 00185 Roma
- Italy
| |
Collapse
|
19
|
Frisch H, Besenius P. pH-switchable self-assembled materials. Macromol Rapid Commun 2014; 36:346-63. [PMID: 25534871 DOI: 10.1002/marc.201400623] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/20/2014] [Indexed: 01/21/2023]
Abstract
Self-assembled materials, which are able to respond to external stimuli, have been extensively studied over the last decades. A particularly exciting stimulus for a wide range of biomedical applications is the pH value of aqueous solutions, since deprotonation-protonation events are crucial for structural and functional properties of biopolymers. In living cells and tissues, intra- and extracellular pH values are stringently regulated, but can deviate from pH neutral as observed for example in tumorous, inflammatory sites, in endocytic pathways, and specific cellular compartments. By using a pH-switch as a stimulus, it is thereby possible to address specific targets in order to cause a programmed response of the supramolecular material. This strategy has not only been successfully applied in fundamental research but also in clinical studies. In this feature article, current strategies that have been used in order to design materials with pH-responsive properties are illustrated. This discussion only addresses selected examples from the last four years, the self-assembly of polymer-based building blocks, assemblies emerging from small molecules including surfactants or derived from biological macromolecules, and finally the controlled self-assembly of oligopeptides.
Collapse
Affiliation(s)
- Hendrik Frisch
- Organic Chemistry Institute and CeNTech, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, D-48149, Münster, Germany
| | | |
Collapse
|
20
|
Jiang Z, Liu J, Sun K, Dong J, Li X, Mao S, Du Y, Liu M. pH- and concentration-induced micelle-to-vesicle transitions in pyrrolidone-based Gemini surfactants. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-013-3145-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Hata S, Takahashi H, Takahashi Y, Kondo Y. Control of Dual Stimuli-Responsive Vesicle Formation in Aqueous Solutions of Single-Tailed Ferrocenyl Surfactant by Varying pH and Redox Conditions. J Oleo Sci 2014; 63:239-48. [DOI: 10.5650/jos.ess13164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Yang Y, Dong J, Li X. Micelle to vesicle transitions of N-dodecyl-1, ω-diaminoalkanes: Effects of pH, temperature and salt. J Colloid Interface Sci 2012; 380:83-9. [DOI: 10.1016/j.jcis.2012.04.068] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 11/30/2022]
|
23
|
Jiang Z, Li X, Yang G, Cheng L, Cai B, Yang Y, Dong J. pH-responsive surface activity and solubilization with novel pyrrolidone-based Gemini surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7174-7181. [PMID: 22502732 DOI: 10.1021/la3008156] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A new series of pH-responsive Gemini surfactants with 2-pyrrolidone head groups, N,N'-dialkyl-N,N'-di(ethyl-2-pyrrolidone)ethylenediamine (Di-C(n)P, where n = 6, 8 10, 12), were synthesized and characterized by (1)H NMR, (13)C NMR, ESI-MS, and elemental analysis. The surface activity and micellization behavior at acidic, neutral, and basic conditions were characterized by equilibrium surface tension and fluorescence techniques. It was found that the surface activity of Di-C(n)P depends on the pH of aqueous solutions due to the protonation state of surfactant molecules when pH was varied. The new compounds have lower cmc and γ(cmc) in comparison with that of m-2-m type conventional cationic Gemini surfactants and gluconamide-type nonionic Gemini surfactants. Fluorescence data confirm that micelles are formed when the concentration is above the cmc. Since micellization is of fundamental importance in surfactant applications such as solubilization, microemulsion, and related technologies, the significant difference in cmc at different pH of this new Gemini surfactant is employed to solubilize cyclohexane. The preliminary result indeed shows that the solubilization capacity of Di-C(n)P can be tuned by pH.
Collapse
Affiliation(s)
- Zan Jiang
- College of Chemistry and Molecules Sciences, Wuhan University, Wuhan, P. R. China 430072
| | | | | | | | | | | | | |
Collapse
|
24
|
Ghai R, Falconer RJ, Collins BM. Applications of isothermal titration calorimetry in pure and applied research--survey of the literature from 2010. J Mol Recognit 2012; 25:32-52. [PMID: 22213449 DOI: 10.1002/jmr.1167] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isothermal titration calorimetry (ITC) is a biophysical technique for measuring the formation and dissociation of molecular complexes and has become an invaluable tool in many branches of science from cell biology to food chemistry. By measuring the heat absorbed or released during bond formation, ITC provides accurate, rapid, and label-free measurement of the thermodynamics of molecular interactions. In this review, we survey the recent literature reporting the use of ITC and have highlighted a number of interesting studies that provide a flavour of the diverse systems to which ITC can be applied. These include measurements of protein-protein and protein-membrane interactions required for macromolecular assembly, analysis of enzyme kinetics, experimental validation of molecular dynamics simulations, and even in manufacturing applications such as food science. Some highlights include studies of the biological complex formed by Staphylococcus aureus enterotoxin C3 and the murine T-cell receptor, the mechanism of membrane association of the Parkinson's disease-associated protein α-synuclein, and the role of non-specific tannin-protein interactions in the quality of different beverages. Recent developments in automation are overcoming limitations on throughput imposed by previous manual procedures and promise to greatly extend usefulness of ITC in the future. We also attempt to impart some practical advice for getting the most out of ITC data for those researchers less familiar with the method.
Collapse
Affiliation(s)
- Rajesh Ghai
- Institute for Molecular Bioscience (IMB), University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | |
Collapse
|