1
|
Kowalski RM, Cheng D, Sautet P. A tutorial on the modeling of the heterogenous captured CO 2 electroreduction reaction and first principles electrochemical modeling. Chem Soc Rev 2025. [PMID: 40395068 DOI: 10.1039/d4cs01210k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
As the energy demands of the world continue to grow, the electroreduction of captured CO2 (c-CO2RR) is an appealing alternative to the traditional CO2 reduction reaction (CO2RR) as it does not include the energetically unfavorable release of CO2 from the capture agent. In this tutorial we cover the motivation behind the c-CO2RR and CO2RR, their respective mechanisms, and computational tools that have been used to model these reactions and to compare their reactivities. Emphasis is given to methods that have already been used to model the c-CO2RR but a comparison to the methods used to explore the more understood CO2RR is covered as well.
Collapse
Affiliation(s)
- Robert Michael Kowalski
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Dongfang Cheng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Kowalski RM, Banerjee A, Yue C, Gracia SG, Cheng D, Morales-Guio CG, Sautet P. Electroreduction of Captured CO 2 on Silver Catalysts: Influence of the Capture Agent and Proton Source. J Am Chem Soc 2024. [PMID: 39037349 DOI: 10.1021/jacs.4c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In the context of carbon reutilization, the direct electroreduction of captured CO2 (c-CO2RR) appears as an appealing approach since it avoids the energetically costly separation of CO2 from the capture agent. In this process, CO2 is directly reduced from its captured form. Here, we investigate the influence of the capture agent and proton source on that reaction from a combination of theory and experiment. Specifically, we consider methoxide-captured CO2, NH3-captured CO2, and bicarbonate on silver electrocatalysts. We show that the proton source plays a key role in the interplay of the chemistries for the electroreduction of protons, free CO2, and captured CO2. Our density functional theory calculations, including the influence of the potential, demonstrate that a proton source with smaller pKa improves the reactivity for c-CO2RR, but also increases the selectivity toward the hydrogen evolution reaction (HER) on silver surfaces. Since c-CO2RR requires an additional chemical protonation step, the influence of the proton source is stronger than that of the HER. However, c-CO2RR cannot compete with the HER on Ag, Experimentally, the dominant product observed is H2 with low amounts of CO being produced. Through a rotating cylinder electrode cell of well-defined mass-transport properties, we conclude that although methanol solvent exhibits a lower HER activity, HER remains dominant over c-CO2RR. Our work suggests that methoxide is a potential alternative capture agent to NH3 for direct reduction of captured CO2, though challenges in catalyst design, particularly in reducing the onset potential of c-CO2RR to surpass the HER, remain to be addressed.
Collapse
Affiliation(s)
- Robert Michael Kowalski
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Avishek Banerjee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Chudi Yue
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Sara G Gracia
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Dongfang Cheng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Carlos G Morales-Guio
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Chemistry and Biochemistry Department, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Luan D, Xiao J. Adaptive Electric Fields Embedded Electrochemical Barrier Calculations. J Phys Chem Lett 2023; 14:685-693. [PMID: 36638320 DOI: 10.1021/acs.jpclett.2c03588] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrochemical interfaces are grand canonical ensembles of varying electrons. Simulating them by standard first-principles methods is a challenging task, since the number of electrons (or charge) is fixed in the calculation. Under the constant charge framework, we developed a constant potential simulation method realized by adding an adaptive electric field to a charge neutral system. Electric field is the controlling variable. In addition, we defined an internal reversible hydrogen electrode potential (ϕIRHE), which can ensure the model independence of our method. To validate our method, the reaction energies of some electrochemical reactions are calculated, the results are comparable with the computational hydrogen electrode model and experiments. At last, the evolution of transition state structures and charge transfer coefficients of some electrochemical reactions on Ag(111) surface were discussed by our method.
Collapse
Affiliation(s)
- Dong Luan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| |
Collapse
|
4
|
Müller A, Comas-Vives A, Copéret C. Ga and Zn increase the oxygen affinity of Cu-based catalysts for the CO x hydrogenation according to ab initio atomistic thermodynamics. Chem Sci 2022; 13:13442-13458. [PMID: 36507169 PMCID: PMC9685501 DOI: 10.1039/d2sc03107h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/18/2022] [Indexed: 11/10/2022] Open
Abstract
The direct hydrogenation of CO or CO2 to methanol, a highly vivid research area in the context of sustainable development, is typically carried out with Cu-based catalysts. Specific elements (so-called promoters) improve the catalytic performance of these systems under a broad range of reaction conditions (from pure CO to pure CO2). Some of these promoters, such as Ga and Zn, can alloy with Cu and their role remains a matter of debate. In that context, we used periodic DFT calculations on slab models and ab initio thermodynamics to evaluate both metal alloying and surface formation by considering multiple surface facets, different promoter concentrations and spatial distributions as well as adsorption of several species (O*, H*, CO* and ) for different gas phase compositions. Both Ga and Zn form an fcc-alloy with Cu due to the stronger interaction of the promoters with Cu than with themselves. While the Cu-Ga-alloy is more stable than the Cu-Zn-alloy at low promoter concentrations (<25%), further increasing the promoter concentration reverses this trend, due to the unfavoured Ga-Ga-interactions. Under CO2 hydrogenation conditions, a substantial amount of O* can adsorb onto the alloy surfaces, resulting in partial dealloying and oxidation of the promoters. Therefore, the CO2 hydrogenation conditions are actually rather oxidising for both Ga and Zn despite the large amount of H2 present in the feedstock. Thus, the growth of a GaO x /ZnO x overlayer is thermodynamically preferred under reaction conditions, enhancing CO2 adsorption, and this effect is more pronounced for the Cu-Ga-system than for the Cu-Zn-system. In contrast, under CO hydrogenation conditions, fully reduced and alloyed surfaces partially covered with H* and CO* are expected, with mixed CO/CO2 hydrogenation conditions resulting in a mixture of reduced and oxidised states. This shows that the active atmosphere tunes the preferred state of the catalyst, influencing the catalytic activity and stability, indicating that the still widespread image of a static catalyst under reaction conditions is insufficient to understand the complex interplay of processes taking place on a catalyst surface under reaction conditions, and that dynamic effects must be considered.
Collapse
Affiliation(s)
- Andreas Müller
- Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland +41 44 633 93 94
| | - Aleix Comas-Vives
- Institute of Materials Chemistry, TU Wien 1060 Vienna Austria
- Departament de Química, Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès Catalonia Spain
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich 8093 Zurich Switzerland +41 44 633 93 94
| |
Collapse
|
5
|
Lindgren P, Kastlunger G, Peterson AA. Electrochemistry from the atomic scale, in the electronically grand-canonical ensemble. J Chem Phys 2022; 157:180902. [DOI: 10.1063/5.0123656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The ability to simulate electrochemical reactions from first-principles has advanced significantly in recent years. Here, we discuss the atomistic interpretation of electrochemistry at three scales: from the electronic structure to elementary processes to constant-potential reactions. At each scale, we highlight the importance of the grand-canonical nature of the process and show that the grand-canonical energy is the natural thermodynamic state variable, which has the additional benefit of simplifying calculations. We show that atomic forces are the derivative of the grand-potential energy when the potential is fixed. We further examine the meaning of potential at the atomic scale and its link to the chemical potential and discuss the link between charge transfer and potential in several situations.
Collapse
Affiliation(s)
- Per Lindgren
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Georg Kastlunger
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Andrew A. Peterson
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
6
|
Vijay S, Kastlunger G, Gauthier JA, Patel A, Chan K. Force-Based Method to Determine the Potential Dependence in Electrochemical Barriers. J Phys Chem Lett 2022; 13:5719-5725. [PMID: 35713626 DOI: 10.1021/acs.jpclett.2c01367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Determining ab initio potential-dependent energetics is critical to the investigation of mechanisms for electrochemical reactions. While methodology for evaluating reaction thermodynamics is established, simulation techniques for the corresponding kinetics is still a major challenge owing to a lack of potential control, finite cell size effects, or computational expense. In this work, we develop a model that allows for computing electrochemical activation energies from just a handful of density functional theory (DFT) calculations. The sole input into the model are the atom-centered forces obtained from DFT calculations performed on a homogeneous grid composed of varying field strengths. We show that the activation energies as a function of the potential obtained from our model are consistent for different supercell sizes and proton concentrations for a range of electrochemical reactions.
Collapse
Affiliation(s)
- Sudarshan Vijay
- CatTheory, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Georg Kastlunger
- CatTheory, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Joseph A Gauthier
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720 Berkeley, California, United States
- Department of Chemical and Biomolecular Engineering, University of California, 94720 Berkeley, California, United States
| | - Anjli Patel
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 94305 Stanford, California, United States
| | - Karen Chan
- CatTheory, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Zhang Z, Zandkarimi B, Munarriz J, Dickerson CE, Alexandrova AN. Fluxionality of Subnano Clusters Reshapes the Activity Volcano of Electrocatalysis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zisheng Zhang
- University of California Los Angeles Chemistry and Biochemistry UNITED STATES
| | - Borna Zandkarimi
- University of California Los Angeles Chemistry and Biochemistry UNITED STATES
| | - Julen Munarriz
- University of California Los Angeles Chemistry and Biochemistry UNITED STATES
| | - Claire E. Dickerson
- University of California Los Angeles Chemistry and Biochemistry UNITED STATES
| | - Anastassia N. Alexandrova
- University of California Los Angeles Chemistry and Biochemistry 607 Charles E. Young Drive East, Box 951 90095-1569 Los Angeles UNITED STATES
| |
Collapse
|
8
|
Steinmann SN, Michel C. How to Gain Atomistic Insights on Reactions at the Water/Solid Interface? ACS Catal 2022. [DOI: 10.1021/acscatal.2c00594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stephan N. Steinmann
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie
UMR 5182, 46 allée d’Italie, F-69364 Lyon, France
| | - Carine Michel
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie
UMR 5182, 46 allée d’Italie, F-69364 Lyon, France
| |
Collapse
|
9
|
Muramoto E, Chen W, Jia X, Friend CM, Sautet P, Madix RJ. Toward benchmarking theoretical computations of elementary rate constants on catalytic surfaces: formate decomposition on Au and Cu. Chem Sci 2022; 13:804-815. [PMID: 35173946 PMCID: PMC8768843 DOI: 10.1039/d1sc05127j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 11/21/2022] Open
Abstract
With the emergence of methods for computing rate constants for elementary reaction steps of catalytic reactions, benchmarking their accuracy becomes important. The unimolecular dehydrogenation of adsorbed formate on metal surfaces serves as a prototype for comparing experiment and theory. Previously measured pre-exponential factors for CO2 formation from formate on metal surfaces, including Cu(110), are substantially higher than expected from the often used value of k B T/h, or ∼6 × 1012 s-1, suggesting that the entropy of the transition state is higher than that of the adsorbed formate. Herein, the rate constant parameters for formate decomposition on Au(110) and Cu(110) are addressed quantitatively by both experiment and theory and compared. A pre-exponential factor of 2.3 × 1014 s-1 was obtained experimentally on Au(110). DFT calculations revealed the most stable configuration of formate on both surfaces to be bidentate and the transition states to be less rigidly bound to the surface compared to the reactant state, resulting in a higher entropy of activation and a pre-exponential factor exceeding k B T/h. Though reasonable agreement is obtained between experiment and theory for the pre-exponential factors, the activation energies determined experimentally remain consistently higher than those computed by DFT using the GGA-PBE functional. This difference was largely erased when the metaGGA-SCAN functional was applied. This study provides insight into the underlying factors that result in the relatively high pre-exponential factors for unimolecular decomposition on metal surfaces generally, highlights the importance of mobility for the transition state, and offers vital information related to the direct use of DFT to predict rate constants for elementary reaction steps on metal surfaces.
Collapse
Affiliation(s)
- Eri Muramoto
- John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge MA 02138 USA
| | - Wei Chen
- Center for Functional Nanomaterials, Brookhaven National Laboratory Upton NY 11973 USA
| | - Xiwen Jia
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02138 USA
| | - Cynthia M Friend
- John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge MA 02138 USA
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02138 USA
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles Los Angeles CA 90095 USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles CA 90095 USA
| | - Robert J Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge MA 02138 USA
| |
Collapse
|
10
|
Realistic Modelling of Dynamics at Nanostructured Interfaces Relevant to Heterogeneous Catalysis. Catalysts 2022. [DOI: 10.3390/catal12010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The focus of this short review is directed towards investigations of the dynamics of nanostructured metallic heterogeneous catalysts and the evolution of interfaces during reaction—namely, the metal–gas, metal–liquid, and metal–support interfaces. Indeed, it is of considerable interest to know how a metal catalyst surface responds to gas or liquid adsorption under reaction conditions, and how its structure and catalytic properties evolve as a function of its interaction with the support. This short review aims to offer the reader a birds-eye view of state-of-the-art methods that enable more realistic simulation of dynamical phenomena at nanostructured interfaces by exploiting resource-efficient methods and/or the development of computational hardware and software.
Collapse
|
11
|
Réocreux R, Fampiou I, Stamatakis M. The role of oxygenated species in the catalytic self-coupling of MeOH on O pre-covered Au(111). Faraday Discuss 2021; 229:251-266. [PMID: 33646205 DOI: 10.1039/c9fd00134d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation of alcohols plays a central role in the valorisation of biomass, in particular when performed with a non-toxic oxidant such as O2. Aerobic oxidation of methanol on gold has attracted attention lately and the main steps of its mechanism have been described experimentally. However, the exact role of O and OH on each elementary step and the effect of the interactions between adsorbates are still not completely understood. Here we investigate the mechanism of methanol oxidation to HCOOCH3 and CO2. We use Density Functional Theory (DFT) to assess the energetics of the underlying pathways, and subsequently build lattice kinetic Monte Carlo (kMC) models of increasing complexity, to elucidate the role of different oxygenates. Detailed comparisons of our simulation results with experimental temperature programmed desorption (TPD) spectra enable us to validate the mechanism and identify rate determining steps. Crucially, taking into account dispersion (van der Waals forces) and adsorbate-adsorbate lateral interactions are both important for reproducing the experimental data.
Collapse
Affiliation(s)
- R Réocreux
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E 7JE, UK.
| | - I Fampiou
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - M Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
12
|
Kopač Lautar A, Bitenc J, Dominko R, Filhol JS. Building Ab Initio Interface Pourbaix diagrams to Investigate Electrolyte Stability in the Electrochemical Double Layer: Application to Magnesium Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8263-8273. [PMID: 33590762 DOI: 10.1021/acsami.0c19579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Insights into the electrochemical processes occurring at the electrode-electrolyte interface are a crucial step in most electrochemistry domains and in particular in the optimization of the battery technology. However, studying potential-dependent processes at the interface is one of the biggest challenges, both for theoreticians and experimentalists. The challenge is pushed further when stable species also depend on the concentration of specific ligands in the electrolyte, such as chlorides. Herein, we present a general theoretical ab initio methodology to compute a Pourbaix-like diagram of complex electrolytes as a function of electrode potential and anion's chemical potential, that is, concentration. This approach is developed not only for the bulk properties of the electrolytes but also for electrode-electrolyte interfaces. In the case of chlorinated magnesium complexes in dimethoxyethane, we show that the stability domains of the different species are strongly shifted at the interface compared to the bulk of the electrolyte because of the strong local electric fields and charges occurring in the double layer. Thus, as the interfacial stability domains are strongly modified, this approach is necessary to investigate all interface properties that often govern the reaction kinetics, such as solvent degradation at the electrode. Interface Pourbaix diagram is used to give some insights into the improved stability at the Mg anode induced by the addition of chloride. Because of its far-reaching insights, transferability, and wide applicability, the methodology presented herein should serve as a valuable tool not only for the battery community but also for the wider electrochemical one.
Collapse
Affiliation(s)
- Anja Kopač Lautar
- Department of Materials Chemistry, National Institute of Chemistry, Ljubljana 1000, Slovenia
| | - Jan Bitenc
- Department of Materials Chemistry, National Institute of Chemistry, Ljubljana 1000, Slovenia
| | - Robert Dominko
- Department of Materials Chemistry, National Institute of Chemistry, Ljubljana 1000, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
- Alistore-European Research Institute CNRS FR 3104, Hub del & Energie, Rue Baudelocque, 80039 Amiens, France
| | - Jean-Sébastien Filhol
- Institut Charles Gerhardt, ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier 34095, France
- RS2E French Network on Electrochemical Energy Storage, FR5439, Amiens 80039, France
| |
Collapse
|
13
|
Abidi N, Lim KRG, Seh ZW, Steinmann SN. Atomistic modeling of electrocatalysis: Are we there yet? WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1499] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nawras Abidi
- Univ Lyon, Ens de Lyon, CNRS UMR 5182 Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon France
| | - Kang Rui Garrick Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR) Singapore
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR) Singapore
| | - Stephan N. Steinmann
- Univ Lyon, Ens de Lyon, CNRS UMR 5182 Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon France
| |
Collapse
|
14
|
Panaritis C, Michel C, Couillard M, Baranova EA, Steinmann SN. Elucidating the role of electrochemical polarization on the selectivity of the CO2 hydrogenation reaction over Ru. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Curutchet A, Colinet P, Michel C, Steinmann SN, Le Bahers T. Two-sites are better than one: revisiting the OER mechanism on CoOOH by DFT with electrode polarization. Phys Chem Chem Phys 2020; 22:7031-7038. [PMID: 32195492 DOI: 10.1039/d0cp00281j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We uncover the existence of several competitive mechanisms of water oxidation on the β-CoOOH (10-14) surface by going beyond the classical 4-step mechanism frequently used to study this reaction at the DFT level. Our results demonstrate the importance of two-site reactivity and of purely chemical steps with the associated activation energies. Taking the electrochemical potential explicitly into account leads to modifications of the reaction energy profiles finally leading to the proposition of a new family of mechanisms involving tetraoxidane intermediates. The two-site mechanisms revealed in this work are of key importance to rationalize and predict the impact of dopants in the design of future catalysts.
Collapse
Affiliation(s)
- Antton Curutchet
- Univ Lyon, ENS de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, Lyon, France.
| | - Pauline Colinet
- Univ Lyon, ENS de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, Lyon, France.
| | - Carine Michel
- Univ Lyon, ENS de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, Lyon, France.
| | - Stephan N Steinmann
- Univ Lyon, ENS de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, Lyon, France.
| | - Tangui Le Bahers
- Univ Lyon, ENS de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, Lyon, France.
| |
Collapse
|
16
|
Shang R, Steinmann SN, Xu BQ, Sautet P. Mononuclear Fe in N-doped carbon: computational elucidation of active sites for electrochemical oxygen reduction and oxygen evolution reactions. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01935a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First principles simulations show that in Fe and N co-doped carbon, Fe coordination controls the activity for oxygen reduction and oxygen evolution reactions, and that including the electrostatic potential has a major influence at high potential.
Collapse
Affiliation(s)
- Rui Shang
- Innovative Catalysis Program
- Key Lab of Organic Optoelectronics & Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Stephan N. Steinmann
- Univ Lyon
- Ecole Normale Supérieure de Lyon
- CNRS Université Lyon 1
- Laboratoire de Chimie UMR 5182
- Lyon
| | - Bo-Qing Xu
- Innovative Catalysis Program
- Key Lab of Organic Optoelectronics & Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering
- University of California Los Angeles
- Los Angeles
- USA
- Department of Chemistry and Biochemistry
| |
Collapse
|
17
|
Lindgren P, Kastlunger G, Peterson AA. A Challenge to the G ∼ 0 Interpretation of Hydrogen Evolution. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02799] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Per Lindgren
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Georg Kastlunger
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Andrew A. Peterson
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
18
|
Chen H, Handoko AD, Xiao J, Feng X, Fan Y, Wang T, Legut D, Seh ZW, Zhang Q. Catalytic Effect on CO 2 Electroreduction by Hydroxyl-Terminated Two-Dimensional MXenes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36571-36579. [PMID: 31532180 DOI: 10.1021/acsami.9b09941] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrocatalysis represents a promising method to generate renewable fuels and chemical feedstock from the carbon dioxide reduction reaction (CO2RR). However, traditional electrocatalysts based on transition metals are not efficient enough because of the high overpotential and slow turnover. MXenes, a family of two-dimensional metal carbides and nitrides, have been predicted to be effective in catalyzing CO2RR, but a systematic investigation into their catalytic performance is lacking, especially on hydroxyl (-OH)-terminated MXenes relevant in aqueous reaction conditions. In this work, we utilized first-principles simulations to systematically screen and explore the properties of MXenes in catalyzing CO2RR to CH4 from both aspects of thermodynamics and kinetics. Sc2C(OH)2 was found to be the most promising catalyst with the least negative limiting potential of -0.53 V vs RHE. This was achieved through an alternative reaction pathway, where the adsorbed species are stabilized by capturing H atoms from the MXene's OH termination group. New scaling relations, based on the shared H interaction between intermediates and MXenes, were established. Bader charge analyses reveal that catalysts with less electron migration in the *(H)COOH → *CO elementary step exhibit better CO2RR performance. This study provides new insights regarding the effect of surface functionalization on the catalytic performance of MXenes to guide future materials design.
Collapse
Affiliation(s)
- Hetian Chen
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , P. R. China
| | - Albertus D Handoko
- Institute of Materials Research and Engineering , Agency for Science, Technology and Research (A*STAR) , 2 Fusionopolis Way, Innovis , Singapore 138634
| | - Jiewen Xiao
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , P. R. China
| | - Xiang Feng
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , P. R. China
| | - Yanchen Fan
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , P. R. China
| | - Tianshuai Wang
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , P. R. China
| | - Dominik Legut
- IT4Innovations Center , VSB-Technical University of Ostrava , 17. listopadu 15 , CZ-708 33 Ostrava , Czech Republic
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering , Agency for Science, Technology and Research (A*STAR) , 2 Fusionopolis Way, Innovis , Singapore 138634
| | - Qianfan Zhang
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , P. R. China
| |
Collapse
|
19
|
Catalytic consequences of ultrafine Pt clusters supported on SrTiO3 for photocatalytic overall water splitting. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nat Commun 2019; 10:3340. [PMID: 31350416 PMCID: PMC6659690 DOI: 10.1038/s41467-019-11292-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 06/30/2019] [Indexed: 12/05/2022] Open
Abstract
Electroreduction of carbon dioxide to hydrocarbons and oxygenates on copper involves reduction to a carbon monoxide adsorbate followed by further transformation to hydrocarbons and oxygenates. Simultaneous improvement of these processes over a single reactive site is challenging due to the linear scaling relationship of the binding strength of key intermediates. Herein, we report improved electroreduction of carbon dioxide by exploiting a one-pot tandem catalysis mechanism based on computational and electrochemical investigations. By constructing a well-defined copper-modified silver surface, adsorbed carbon monoxide generated on the silver sites is proposed to migrate to surface copper sites for the subsequent reduction to methane, which is consistent with insights gained from operando attenuated total reflectance surface enhanced infrared absorption spectroscopic investigations. Our results provide a promising approach for designing carbon dioxide electroreduction catalysts to enable one-pot reduction of products beyond carbon monoxide and formate. Carbon dioxide can be electrocatalytically reduced to valuable fuels and chemicals, but is hindered by poor catalytic efficiency and selectivity. Here the authors report improved electrocatalytic conversion of carbon dioxide into methane using a tandem catalysis strategy.
Collapse
|
21
|
Wu J, Sharifi T, Gao Y, Zhang T, Ajayan PM. Emerging Carbon-Based Heterogeneous Catalysts for Electrochemical Reduction of Carbon Dioxide into Value-Added Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804257. [PMID: 30589109 DOI: 10.1002/adma.201804257] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/25/2018] [Indexed: 05/29/2023]
Abstract
The electrocatalytic reduction of CO2 provides a sustainable way to mitigate CO2 emissions, as well as store intermittent electrical energy into chemicals. However, its slow kinetics and the lack of ability to control the products of the reaction inhibit its industrial applications. In addition, the immature mechanistic understanding of the reduction process makes it difficult to develop a selective, scalable, and stable electrocatalyst. Carbon-based materials are widely considered as a stable and abundant alternative to metals for catalyzing some of the key electrochemical reactions, including the CO2 reduction reaction. In this context, recent research advances in the development of heterogeneous nanostructured carbon-based catalysts for electrochemical reduction of CO2 are summarized. The leading factors for consideration in carbon-based catalyst research are discussed by analyzing the main challenges faced by electrochemical reduction of CO2 . Then the emerging metal-free doped carbon and aromatic N-heterocycle catalysts for electrochemical reduction of CO2 with an emphasis on the formation of multicarbon hydrocarbons and oxygenates are discussed. Following that, the recent progress in metal-nitrogen-carbon structures as an extension of carbon-based catalysts is scrutinized. Finally, an outlook for the future development of catalysts as well as the whole electrochemical system for CO2 reduction is provided.
Collapse
Affiliation(s)
- Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Tiva Sharifi
- Department of Physics, Umeå University, Umeå, 90187, Sweden
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Ying Gao
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Tianyu Zhang
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
22
|
Chen Z, Martirez JMP, Zahl P, Carter EA, Koel BE. Self-assembling of formic acid on the partially oxidizedp(2 × 1) Cu(110) surface reconstruction at low coverages. J Chem Phys 2019; 150:041720. [DOI: 10.1063/1.5046697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhu Chen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA
| | - John Mark P. Martirez
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA
| | - Percy Zahl
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - Emily A. Carter
- School of Engineering and Applied Science, Princeton University, Princeton, New Jersey 08544-5263, USA
| | - Bruce E. Koel
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA
| |
Collapse
|
23
|
Tian Z, Priest C, Chen L. Recent Progress in the Theoretical Investigation of Electrocatalytic Reduction of CO2. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ziqi Tian
- Ningbo Institute of Materials Technology & Engineering; Chinese Academy of Sciences; 1219 Zhongguan West Road, Zhenhai District Ningbo 315201 P.R. China
| | - Chad Priest
- Department of Chemistry; University of California, Riverside; CA 92521 USA
| | - Liang Chen
- Ningbo Institute of Materials Technology & Engineering; Chinese Academy of Sciences; 1219 Zhongguan West Road, Zhenhai District Ningbo 315201 P.R. China
| |
Collapse
|
24
|
Olivier-Bourbigou H, Chizallet C, Dumeignil F, Fongarland P, Geantet C, Granger P, Launay F, Löfberg A, Massiani P, Maugé F, Ouali A, Roger AC, Schuurman Y, Tanchoux N, Uzio D, Jérôme F, Duprez D, Pinel C. The Pivotal Role of Catalysis in France: Selected Examples of Recent Advances and Future Prospects. ChemCatChem 2017. [DOI: 10.1002/cctc.201700426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Céline Chizallet
- Catalysis and Separation Division; IFP Energies nouvelles; F-69360 Solaize France
| | - Franck Dumeignil
- Unité de Catalyse et Chimie du Solide; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois; F-59000 Lille France
| | - Pascal Fongarland
- Laboratoire de Génie des Procédés Catalytiques (LGPC); Univ. Lyon, Université Claude Bernard Lyon 1, CPE, CNRS; F-69616 Villeurbanne France
| | - Christophe Geantet
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON); Université Claude Bernard Lyon 1, CNRS; F-69626 Villeurbanne France
| | - Pascal Granger
- Unité de Catalyse et Chimie du Solide; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois; F-59000 Lille France
| | - Franck Launay
- Laboratoire de Réactivité de Surface (LRS); Sorbonne Universités, UPMC Univ Paris 06, CNRS; F-75005 Paris France
| | - Axel Löfberg
- Unité de Catalyse et Chimie du Solide; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois; F-59000 Lille France
| | - Pascale Massiani
- Laboratoire de Réactivité de Surface (LRS); Sorbonne Universités, UPMC Univ Paris 06, CNRS; F-75005 Paris France
| | - Françoise Maugé
- Laboratoire Catalyse et Spectrochimie (LCS); ENSICAEN, CNRS; F-14000 Caen France
| | - Armelle Ouali
- Institut Charles Gerhardt Montpellier (ICGM); Université Montpellier, CNRS; F-34095 Montpellier France
| | - Anne-Cécile Roger
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES); Université de Strasbourg, CNRS; F-67087 Strasbourg France
| | - Yves Schuurman
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON); Université Claude Bernard Lyon 1, CNRS; F-69626 Villeurbanne France
| | - Nathalie Tanchoux
- Institut Charles Gerhardt Montpellier (ICGM); Université Montpellier, CNRS; F-34095 Montpellier France
| | - Denis Uzio
- Catalysis and Separation Division; IFP Energies nouvelles; F-69360 Solaize France
| | - François Jérôme
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP); Université de Poitiers, ENSIP, CNRS; F-86073 Poitiers France
| | - Daniel Duprez
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP); Université de Poitiers, ENSIP, CNRS; F-86073 Poitiers France
| | - Catherine Pinel
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON); Université Claude Bernard Lyon 1, CNRS; F-69626 Villeurbanne France
| |
Collapse
|
25
|
Wang P, Steinmann SN, Fu G, Michel C, Sautet P. Key Role of Anionic Doping for H2 Production from Formic Acid on Pd(111). ACS Catal 2017. [DOI: 10.1021/acscatal.6b03544] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pei Wang
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Institution
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Univ
Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | - Stephan N. Steinmann
- Univ
Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | - Gang Fu
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Institution
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Carine Michel
- Univ
Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | - Philippe Sautet
- Univ
Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
- Department
of Chemical and Biomolecular Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| |
Collapse
|
26
|
Grosjean B, Pean C, Siria A, Bocquet L, Vuilleumier R, Bocquet ML. Chemisorption of Hydroxide on 2D Materials from DFT Calculations: Graphene versus Hexagonal Boron Nitride. J Phys Chem Lett 2016; 7:4695-4700. [PMID: 27809540 PMCID: PMC5360233 DOI: 10.1021/acs.jpclett.6b02248] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recent nanofluidic experiments revealed strongly different surface charge measurements for boron-nitride (BN) and graphitic nanotubes when in contact with saline and alkaline water (Nature 2013, 494, 455-458; Phys. Rev. Lett. 2016, 116, 154501). These observations contrast with the similar reactivity of a graphene layer and its BN counterpart, using density functional theory (DFT) framework, for intact and dissociative adsorption of gaseous water molecules. Here we investigate, by DFT in implicit water, single and multiple adsorption of anionic hydroxide on single layers. A differential adsorption strength is found in vacuum for the first ionic adsorption on the two materials-chemisorbed on BN while physisorbed on graphene. The effect of implicit solvation reduces all adsorption values, resulting in a favorable (nonfavorable) adsorption on BN (graphene). We also calculate a pKa ≃ 6 for BN in water, in good agreement with experiments. Comparatively, the unfavorable results for graphene in water echo the weaker surface charge measurements but point to an alternative scenario.
Collapse
Affiliation(s)
- Benoit Grosjean
- École Normale Supérieure-PSL Research University , Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France
| | - Clarisse Pean
- École Normale Supérieure-PSL Research University , Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France
| | - Alessandro Siria
- École Normale Supérieure-PSL Research University , Laboratoire de Physique Statistique, UMR 8550, 24, rue Lhomond, 75005 Paris, France
| | - Lydéric Bocquet
- École Normale Supérieure-PSL Research University , Laboratoire de Physique Statistique, UMR 8550, 24, rue Lhomond, 75005 Paris, France
| | - Rodolphe Vuilleumier
- École Normale Supérieure-PSL Research University , Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France
| | - Marie-Laure Bocquet
- École Normale Supérieure-PSL Research University , Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France
| |
Collapse
|
27
|
Steinmann SN, Michel C, Schwiedernoch R, Wu M, Sautet P. Electro-carboxylation of butadiene and ethene over Pt and Ni catalysts. J Catal 2016. [DOI: 10.1016/j.jcat.2016.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Cheng MJ, Clark EL, Pham HH, Bell AT, Head-Gordon M. Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO2 to C1 Hydrocarbons. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01393] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mu-Jeng Cheng
- The
Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Ezra L. Clark
- The
Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Hieu H. Pham
- The
Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexis T. Bell
- The
Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- The
Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Chen LD, Urushihara M, Chan K, Nørskov JK. Electric Field Effects in Electrochemical CO2 Reduction. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02299] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leanne D. Chen
- SUNCAT
Center for Interface Science and Catalysis, Department of Chemical
Engineering, Stanford University, Stanford, California 94305−5025, United States
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Makoto Urushihara
- SUNCAT
Center for Interface Science and Catalysis, Department of Chemical
Engineering, Stanford University, Stanford, California 94305−5025, United States
- Central
Research Institute, Mitsubishi Materials Corporation, 1002−14
Mukohyama, Naka, Ibaraki 311−0102, Japan
| | - Karen Chan
- SUNCAT
Center for Interface Science and Catalysis, Department of Chemical
Engineering, Stanford University, Stanford, California 94305−5025, United States
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jens K. Nørskov
- SUNCAT
Center for Interface Science and Catalysis, Department of Chemical
Engineering, Stanford University, Stanford, California 94305−5025, United States
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
30
|
Monyoncho EA, Steinmann SN, Michel C, Baranova EA, Woo TK, Sautet P. Ethanol Electro-oxidation on Palladium Revisited Using Polarization Modulation Infrared Reflection Absorption Spectroscopy (PM-IRRAS) and Density Functional Theory (DFT): Why Is It Difficult To Break the C–C Bond? ACS Catal 2016. [DOI: 10.1021/acscatal.6b00289] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evans A. Monyoncho
- Department
of Chemistry and Biomolecular Sciences, Center for Catalysis Research
and Innovation (CCRI), University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario K1N 6N5, Canada
- Department
of Chemical and Biological Engineering, (CCRI), University of Ottawa, 161 Louis-Pasteur St., Ottawa, Ontario K1N 6N5, Canada
| | - Stephan N. Steinmann
- Univ
Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| | - Carine Michel
- Univ
Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| | - Elena A. Baranova
- Department
of Chemical and Biological Engineering, (CCRI), University of Ottawa, 161 Louis-Pasteur St., Ottawa, Ontario K1N 6N5, Canada
| | - Tom K. Woo
- Department
of Chemistry and Biomolecular Sciences, Center for Catalysis Research
and Innovation (CCRI), University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - Philippe Sautet
- Univ
Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| |
Collapse
|
31
|
Atkinson RW, St. John S, Dyck O, Unocic KA, Unocic RR, Burke CS, Cisco JW, Rice CA, Zawodzinski TA, Papandrew AB. Supportless, Bismuth-Modified Palladium Nanotubes with Improved Activity and Stability for Formic Acid Oxidation. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01239] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert W. Atkinson
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Samuel St. John
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ondrej Dyck
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kinga A. Unocic
- Materials
Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Raymond R. Unocic
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Colten S. Burke
- Department
of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Joshua W. Cisco
- Department
of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Cynthia A. Rice
- Department
of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
- Center
for Manufacturing Research, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Thomas A. Zawodzinski
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Materials
Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexander B. Papandrew
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|