1
|
Lambert A, Ingrosso F. A Molecular Dynamics Study of the Solvation Properties of Sugars in Supercritical Carbon Dioxide. Molecules 2025; 30:1256. [PMID: 40142034 PMCID: PMC11944854 DOI: 10.3390/molecules30061256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Among the various strategies used to enhance the solvation power of supercritical carbon dioxide (scCO2), the use of CO2-philic compounds has been extensively studied over the recent two decades. Given the biocompatibility of this medium, extraction technologies based on scCO2 are particularly attractive, and a molecular-level understanding of intermolecular interactions is crucial for optimizing processing conditions. Functionalized sugars and cyclic oligosaccharides, such as cyclodextrins, can be rendered soluble in scCO2, opening new avenues for vectorization strategies and supramolecular chemistry in this medium. To support the exploration of CO2-philic compounds relevant to these research goals, we conducted a molecular dynamics investigation into the solvation properties of cyclodextrins functionalized with CO2-philic groups. We thoroughly analyzed the key solute-solvent interactions and their influence on the cavity shape. Additionally, we provided insights into the solvation behavior of peracetylated α and β-glucose across different regions of the carbon dioxide phase diagram. We were able to confirm the importance of the well-known (acetyl)C-O⋯C(CO2) interaction, as the most important signature of CO2-philicity of carbonyl compounds. Depending on the substituent, this interaction can be assisted by a cooperative (methyl)2HCH⋯O(CO2) intermolecular bond. In cyclodextrins, conformational flexibility, with a possible change in the conformation of some pyranose units, was observed in the macromolecular structure. On the other hand, these structural modifications were not present for α- and β-glucose.
Collapse
Affiliation(s)
| | - Francesca Ingrosso
- Laboratoire de Physique et Chimie Théoriques UMR 7019, Université de Lorraine and CNRS, F-54000 Nancy, France
| |
Collapse
|
2
|
Wang C, Lan J, Li M, Wang H, Xie F, Tian X, Gao T, Chen J, Yu Z, Schnell M, Grabow JU, Gou Q. Deciphering the Role of Vinylene Carbonate in Shaping CO 2 Cluster Growth and Stability via Wavelet-Enhanced Microwave Spectroscopy. J Am Chem Soc 2025; 147:4689-4694. [PMID: 39899331 DOI: 10.1021/jacs.4c14584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
This study presents the first integration of wavelet denoising with resonator-enhanced microwave spectroscopy to explore the formation and characteristics of gas-phase heterogeneous vinylene carbonate-(CO2)1-5 clusters. Through this innovative approach, faint spectral lines were detected with efficiency, enhancing our understanding of complex interaction patterns that govern the growth and stability of these molecular clusters. It was found that CO2 aggregates preferentially around the vinylene carbonate molecule through C···O tetrel bonds at the carbonyl and ether groups, altering the typical self-aggregation topology of free CO2 clusters. This leads to more symmetrical growth around the vinylene carbonate monomer. Our findings provide insights into the solvation mechanisms of compounds in supercritical CO2 thereby advancing the understanding of subnanoscale CO2 aggregation patterns.
Collapse
Affiliation(s)
- Chenxu Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing Key Laboratory of Chemical Theory and Mechanism, 401331 Chongqing, China
| | - Junlin Lan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing Key Laboratory of Chemical Theory and Mechanism, 401331 Chongqing, China
| | - Meiyue Li
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing Key Laboratory of Chemical Theory and Mechanism, 401331 Chongqing, China
| | - Hao Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, No.27 Taoyuan South Rd., 030001 Taiyuan, China
| | - Fan Xie
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Xiao Tian
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing Key Laboratory of Chemical Theory and Mechanism, 401331 Chongqing, China
| | - Tianyue Gao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing Key Laboratory of Chemical Theory and Mechanism, 401331 Chongqing, China
| | - Junhua Chen
- School of Pharmacy, Guizhou Medical University, 561113 Guiyang, Guizhou, China
| | - Zhenhong Yu
- Hangzhou International Innovation Institute, Beihang University, 166 Shuanghongqiao Street, 311115 Hangzhou, China
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Jens-Uwe Grabow
- Institut für Physikalische Chemie & Elektrochemie, Leibniz Universität Hannover, Callinstraβe 3A, 30167 Hannover, Germany
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing Key Laboratory of Chemical Theory and Mechanism, 401331 Chongqing, China
| |
Collapse
|
3
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
4
|
Martins-Costa MTC, Ruiz-López MF. The Structure of Carbon Dioxide at the Air-Water Interface and its Chemical Implications. Chemistry 2024; 30:e202400825. [PMID: 38838064 DOI: 10.1002/chem.202400825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
The efficient reduction of CO2 into valuable products is a challenging task in an international context marked by the climate change crisis and the need to move away from fossil fuels. Recently, the use of water microdroplets has emerged as an interesting reaction media where many redox processes which do not occur in conventional solutions take place spontaneously. Indeed, several experimental studies in microdroplets have already been devoted to study the reduction of CO2 with promising results. The increased reactivity in microdroplets is thought to be linked to unique electrostatic solvation effects at the air-water interface. In the present work, we report a theoretical investigation on this issue for CO2 using first-principles molecular dynamics simulations. We show that CO2 is stabilized at the interface, where it can accumulate, and that compared to bulk water solution, its electron capture ability is larger. Our results suggest that reduction of CO2 might be easier in interface-rich systems such as water microdroplets, which is in line with early experimental data and indicate directions for future laboratory studies. The effect of other relevant factors which could play a role in CO2 reduction potential is discussed.
Collapse
Affiliation(s)
- Marilia T C Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506, Vandoeuvre-lès-Nancy, France
| | - Manuel F Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
5
|
Skarmoutsos I. Substantial breakdown of the hydrogen-bonding network, local density inhomogeneities and fluid-liquid structural transitions in supercritical octanol-1: A molecular dynamics investigation. J Chem Phys 2024; 161:044506. [PMID: 39056384 DOI: 10.1063/5.0219417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Molecular dynamics simulations have been employed to explore the hydrogen-bonding structure and dynamics in supercritical octanol-1 at a near-critical temperature and up to high densities and pressures. A substantial breakdown of the hydrogen-bonding network when going from ambient-liquid to supercritical conditions is revealed. The fraction of the non-hydrogen bonded molecules significantly increases in supercritical octanol-1, and a substantial decrease in the intermittent hydrogen-bond lifetime is observed. This behavior is also reflected on the maximum local density augmentation, which is comparable to the values obtained for non-polar and non-hydrogen bonded fluids. The existence of a structural transition from an inhomogeneous fluid phase to a soft-liquid one at densities higher than 2.0 ρc is also revealed. At higher densities, a significant change in the reorientational relaxation process is observed, reflected on the significant increase in the ratio of the Legendre reorientational times τ1R/τ2R. The latter becomes much higher than the value predicted by the Debye model of diffusive reorientation and the corresponding ratio for ambient liquid octanol-1. The non-polar tail of octanol-1 under supercritical conditions reorients more slowly in comparison with the polar tail. Interestingly, the opposite behavior is observed for the ambient liquid, further verifying the strong effect of the breakdown of the hydrogen bonding network on the properties of supercritical octanol-1. In accordance with the above-mentioned findings, the static dielectric constant of supercritical octanol-1 is very low even at high densities and pressures, comparable to the values obtained for non-polar and non-hydrogen bonded fluids.
Collapse
Affiliation(s)
- Ioannis Skarmoutsos
- Laboratory of Physical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
6
|
Wang H, Chen J, Tian X, Wang C, Lan J, Liu X, Zhang Z, Wen X, Gou Q. Conformational equilibria in acrolein-CO 2: the crucial contribution of n → π* interactions unveiled by rotational spectroscopy. Phys Chem Chem Phys 2024; 26:18865-18870. [PMID: 38946600 DOI: 10.1039/d4cp01650e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Using gas phase Fourier-transform microwave spectroscopy complemented by theoretical analysis, this study delivers a comprehensive depiction of the physical origin of the 'n → π* interaction' between CO2 and acrolein, one of the most reactive aldehydes. Three distinct isomers of the acrolein-CO2 complex, linked through a C⋯O tetrel bond (or n → π* interaction) and a C-H⋯O hydrogen bond, have been unambiguously identified in the pulsed jet. Relative intensity measurements allowed estimation on the population ratio of the three isomers to be T1/T2/C1 ≈ 25/5/1. Advanced theoretical analyses were employed to elucidate the intricacies of the noncovalent interactions within the examined complex. This study not only sheds light on the molecular underpinnings of n → π* interactions but also paves the way for future exploration in carbon dioxide capture and utilization, leveraging the fundamental principles uncovered in the study of acrolein-carbon dioxide interactions.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd 55, 401331, Chongqing, China.
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taoyuan South Rd. 27, Taiyuan 030001, Shanxi, China
| | - Junhua Chen
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Xiao Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd 55, 401331, Chongqing, China.
| | - Chenxu Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd 55, 401331, Chongqing, China.
| | - Junlin Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd 55, 401331, Chongqing, China.
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taoyuan South Rd. 27, Taiyuan 030001, Shanxi, China
| | - Zhenhua Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taoyuan South Rd. 27, Taiyuan 030001, Shanxi, China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taoyuan South Rd. 27, Taiyuan 030001, Shanxi, China
| | - Qian Gou
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd 55, 401331, Chongqing, China.
| |
Collapse
|
7
|
Furtado AI, Bonifácio VDB, Viveiros R, Casimiro T. Design of Molecularly Imprinted Polymers Using Supercritical Carbon Dioxide Technology. Molecules 2024; 29:926. [PMID: 38474438 DOI: 10.3390/molecules29050926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024] Open
Abstract
The design and development of affinity polymeric materials through the use of green technology, such as supercritical carbon dioxide (scCO2), is a rapidly evolving field of research with vast applications across diverse areas, including analytical chemistry, pharmaceuticals, biomedicine, energy, food, and environmental remediation. These affinity polymeric materials are specifically engineered to interact with target molecules, demonstrating high affinity and selectivity. The unique properties of scCO2, which present both liquid- and gas-like properties and an accessible critical point, offer an environmentally-friendly and highly efficient technology for the synthesis and processing of polymers. The design and the synthesis of affinity polymeric materials in scCO2 involve several strategies. Commonly, the incorporation of functional groups or ligands into the polymer matrix allows for selective interactions with target compounds. The choice of monomer type, ligands, and synthesis conditions are key parameters of material performance in terms of both affinity and selectivity. In addition, molecular imprinting allied with co-polymerization and surface modification are commonly used in these strategies, enhancing the materials' performance and versatility. This review aims to provide an overview of the key strategies and recent advancements in the design of affinity polymeric materials using scCO2.
Collapse
Affiliation(s)
- Ana I Furtado
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science & Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - Vasco D B Bonifácio
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
- Bioengineering Department, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Raquel Viveiros
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science & Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Teresa Casimiro
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science & Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
8
|
Sevastianov VI, Basok YB, Grigoriev AM, Nemets EA, Kirillova AD, Kirsanova LA, Lazhko AE, Subbot A, Kravchik MV, Khesuani YD, Koudan EV, Gautier SV. Decellularization of cartilage microparticles: Effects of temperature, supercritical carbon dioxide and ultrasound on biochemical, mechanical, and biological properties. J Biomed Mater Res A 2023; 111:543-555. [PMID: 36478378 DOI: 10.1002/jbm.a.37474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
One of the approaches to restoring the structure of damaged cartilage tissue is an intra-articular injection of tissue-engineered medical products (TEMPs) consisting of biocompatible matrices loaded with cells. The most interesting are the absorbable matrices from decellularized tissues, provided that the cellular material is completely removed from them with the maximum possible preservation of the structure and composition of the natural extracellular matrix. The present study investigated the mechanical, biochemical, and biological properties of decellularized porcine cartilage microparticles (DCMps) obtained by techniques, differing only in physical treatments, such as freeze-thaw cycling (Protocol 1), supercritical carbon dioxide fluid (Protocol 2) and ultrasound (Protocol 3). Full tissue decellularization was achieved, as confirmed by the histological analysis and DNA quantification, though all the resultant DCMps had reduced glycosaminoglycans (GAGs) and collagen. The elastic modulus of all DCMp samples was also significantly reduced. Most notably, DCMps prepared with Protocol 3 significantly outperformed other samples in viability and the chondroinduction of the human adipose-derived stem cells (hADSCs), with a higher GAG production per DNA content. A positive ECM staining for type II collagen was also detected only in cartilage-like structures based on ultrasound-treated DCMps. The biocompatibility of a xenogenic DCMps obtained with Protocol 3 has been confirmed for a 6-month implantation in the thigh muscle tissue of mature rats (n = 18). Overall, the results showed that the porcine cartilage microparticles decellularized by a combination of detergents, ultrasound and DNase could be a promising source of scaffolds for TEMPs for cartilage reconstruction.
Collapse
Affiliation(s)
- Victor I Sevastianov
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia.,The Institute of Biomedical Research and Technology, Moscow, Russia
| | - Yulia B Basok
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - Alexey M Grigoriev
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - Evgeny A Nemets
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - Alexandra D Kirillova
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - Liudmila A Kirsanova
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - Aleksey E Lazhko
- Chemical Department, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia Subbot
- Laboratory of Fundamental Research in Ophtalmology, The Research Institute of Eye Diseases, Moscow, Russia
| | - Marina V Kravchik
- Laboratory of Fundamental Research in Ophtalmology, The Research Institute of Eye Diseases, Moscow, Russia
| | - Yusef D Khesuani
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Moscow, Russia
| | - Elizaveta V Koudan
- Center for Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, Russia
| | - Sergey V Gautier
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia.,The Department of Transplantology and Artificial Organs, Faculty of Medicine, The Sechenov University, Moscow, Russia
| |
Collapse
|
9
|
Preetam A, Jadhao PR, Naik S, Pant K, Kumar V. Supercritical fluid technology - an eco-friendly approach for resource recovery from e-waste and plastic waste: A review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Wang H, Chen J, Cheng W, Zheng Y, Zou S, Du W, Xu X, Gou Q. Rotational spectrum of anisole-CO 2: Cooperative C···O tetrel bond and CH···O hydrogen bond. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121677. [PMID: 35908502 DOI: 10.1016/j.saa.2022.121677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Rotational spectrum of the 1:1 anisole-CO2 complex has been investigated using a pulsed jet Fourier transform microwave spectrometer supplemented with quantum chemical calculations. In the pulsed jet, only one isomer has been observed which is characterized by a dominant C···O tetrel bond and two CH···OCO2 weak hydrogen bonds. Different theoretical methods predict different orders of relative energies of plausible conformations. The experimental observation is most consistent with the theoretical estimation at the B3LYP-D3(BJ)/6-311++G(d,p) level of theory. Johnson's non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses have been applied to better understand the nature of non-covalent interactions at play in the anisole-CO2 complex.
Collapse
Affiliation(s)
- Hao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Junhua Chen
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Wanying Cheng
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Yang Zheng
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Siyu Zou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Weiping Du
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Xuefang Xu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China; Chongqing Key Laboratory of Theoretical and Computational Chemistry, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| |
Collapse
|
11
|
Nemets EA, Lazhko AE, Grigoriev AM, Basok YB, Kirillova AD, Sevastianov VI. Biocompatible and functional properties of a microdispersed tissue-specific 3D matrix from decellularized porcine cartilage. RUSSIAN JOURNAL OF TRANSPLANTOLOGY AND ARTIFICIAL ORGANS 2022. [DOI: 10.15825/1995-1191-2022-4-73-84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In contrast to decellularization of soft tissues for use as tissue-specific matrices in the creation of tissue-engineered constructs, decellularization of cartilage tissue requires several processing techniques, which can negatively affect the biocompatibility and functional properties of the native extracellular matrix (ECM).Objective: to study the biocompatible and functional properties of microdispersed tissue-specific 3D matrix from a porcine cartilage that is decellularized by sequential use of chemical, physical and enzymatic techniques.Materials and methods. For decellularization, microdispersed cartilage particles (MCPs), obtained by cryomilling, were incubated in detergent solutions (sodium dodecyl sulfate and Triton X-100), then treated with supercritical carbon dioxide (scCO2) with 10% ethanol and DNase I. The Ames test (Salmonella typhimurium reverse mutation assay) was used to determine the genotoxicity of decellularized microdispersed cartilage particles (dMCPs). Local and general toxic effects, as well as resorption of dMCPs were studied in vivo on sexually mature outbred rats. Decellularized MCP specimens (10 mg) were implanted into the thigh muscle tissue. Viability of human adipose-derived mesenchymal stem/stromal cells (hAdMSCs), when cultured on dMCPs, was analyzed by in vivo microscopy, stained with fluorescent Calcein AM dye. Cell metabolic activity was assessed using PrestoBlue™ Cell Viability Reagent.Results. It has been proven that porcine dMCPs implanted in rat muscle after treatment with scCO2 do not exhibit local and general toxic effects, and do not show genotoxicity and negative effects on the reproductive system of animals. After 6 months of in vivo experiment, most (87%) of the implanted decellularized cartilage was resorbed. It was shown that the resulting matrices are able to support adhesion and proliferation of hAdMSCs. Conclusion. Porcine dMCP specimens are suitable for biocompatible medical products in terms of local and general toxic effects, genotoxicity and reproductive toxicity, and can be used as a matrix for creating cell- and tissue-engineered cartilage constructs.
Collapse
Affiliation(s)
- E. A. Nemets
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | | | - A. M. Grigoriev
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - Yu. B. Basok
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - A. D. Kirillova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - V. I. Sevastianov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs; Institute of Biomedical Research and Technology
| |
Collapse
|
12
|
Wang H, Wang X, Tian X, Cheng W, Zheng Y, Obenchain DA, Xu X, Gou Q. Competitive tetrel bond and hydrogen bond in benzaldehyde-CO 2: characterization via rotational spectroscopy. Phys Chem Chem Phys 2021; 23:25784-25788. [PMID: 34757355 DOI: 10.1039/d1cp03608d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rotational spectrum of the 1 : 1 benzaldehyde-CO2 complex has been investigated using pulsed-jet Fourier transform microwave spectroscopy complemented with quantum chemical calculations. Two isomers, both characterized by one C⋯O tetrel bond (n → π* interaction) and one C-H⋯O hydrogen bond (n → σ* interaction), have been observed in the pulsed jet. Competition between the tetrel bond and the hydrogen bond has been disclosed by natural bond orbital analysis: isomer I is characterized by one dominating OCCO2⋯O tetrel bond (12.6 kJ mol-1) and a secondary (C-H)formyl⋯O hydrogen bond (2.2 kJ mol-1); by contrast, in isomer II the (C-H)phenyl⋯O hydrogen bond (7.6 kJ mol-1) becomes the dominant bond, while the OCCO2⋯O tetrel bond (5.8 kJ mol-1) becomes much weaker with respect to that of isomer I. Using intensity measurements the relative population ratio of the two isomers was estimated to be NI/NII ≈ 2/1.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Xiujuan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Xiao Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Wanying Cheng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Yang Zheng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Daniel A Obenchain
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Xuefang Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Qian Gou
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China. .,Chongqing Key Laboratory of Theoretical and Computational Chemistry, Daxuecheng South Rd 55, 401331, Chongqing, China
| |
Collapse
|
13
|
Peng L, Guo Q, Song C, Ghosh S, Xu H, Wang L, Hu D, Shi L, Zhao L, Li Q, Sakurai T, Yan H, Seki S, Liu Y, Wei D. Ultra-fast single-crystal polymerization of large-sized covalent organic frameworks. Nat Commun 2021; 12:5077. [PMID: 34426571 PMCID: PMC8382702 DOI: 10.1038/s41467-021-24842-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 06/14/2021] [Indexed: 12/31/2022] Open
Abstract
In principle, polymerization tends to produce amorphous or poorly crystalline materials. Efficiently producing high-quality single crystals by polymerization in solvent remains as an unsolved issue in chemistry, especially for covalent organic frameworks (COFs) with highly complex structures. To produce μm-sized single crystals, the growth time is prolonged to >15 days, far away from the requirements in practical applications. Here, we find supercritical CO2 (sc-CO2) accelerates single-crystal polymerization by 10,000,000 folds, and produces two-dimensional (2D) COF single crystals with size up to 0.2 mm within 2~5 min. Although it is the fastest single-crystal polymerization, the growth in sc-CO2 leads to not only the largest crystal size of 2D COFs, but also higher quality with improved photoconductivity performance. This work overcomes traditional concept on low efficiency of single-crystal polymerization, and holds great promise for future applications owing to its efficiency, industrial compatibility, environmental friendliness and universality for different crystalline structures and linkage bonds.
Collapse
Affiliation(s)
- Lan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Qianying Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Chaoyu Song
- Department of Physics, Fudan University, Shanghai, China
| | - Samrat Ghosh
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Huoshu Xu
- Department of Chemistry, Fudan University, Shanghai, China
| | - Liqian Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Dongdong Hu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Lei Shi
- Department of Physics, Fudan University, Shanghai, China
| | - Ling Zhao
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiaowei Li
- Department of Chemistry, Fudan University, Shanghai, China
| | - Tsuneaki Sakurai
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Hugen Yan
- Department of Physics, Fudan University, Shanghai, China
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Yunqi Liu
- Institute of Molecular Materials and Devices, Fudan University, Shanghai, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Li W, Melandri S, Evangelisti L, Calabrese C, Vigorito A, Maris A. Characterizing hydrogen and tetrel bonds in clusters of CO 2 with carboxylic acids. Phys Chem Chem Phys 2021; 23:16915-16922. [PMID: 34337625 DOI: 10.1039/d1cp02568f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The interaction between carbon dioxide and planar carboxylic acids has been investigated through the analysis of the microwave spectrum of the acrylic acid·CO2 complex and quantum chemical modeling of the R-COOH·(CO2)1,16 clusters, where R = H, CH2CH. As regards the 1 : 1 compounds, two species, involving the s-cis and s-trans conformers of acrylic acid were observed. For both of them, a similar bidentate interaction arises between the carbonyl group of CO2 and the carboxylic group of the organic acid, leading to the formation of a planar six-membered ring. The binding energy is estimated to be De ≃ 21 kJ mol-1, 1/3 being the energy contributions of the tetrel to hydrogen bonds, respectively. In the 1 : 16 clusters, the ring arrangement is broken, allowing for the interaction of the acid with several CO2 molecules. The CO2 molecules completely surround formic acid, whereas, in the case of acrylic acid, they tend to avoid the allyl chain.
Collapse
Affiliation(s)
- Weixing Li
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, I-40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Kapoor R, Jash A, Rizvi SS. Shelf-life extension of Paneer by a sequential supercritical-CO2-based process. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Pacheco AAC, da Silva Filho AF, Kortsen K, Hanson-Heine MWD, Taresco V, Hirst JD, Lansalot M, D'Agosto F, Howdle SM. Influence of structure and solubility of chain transfer agents on the RAFT control of dispersion polymerisation in scCO 2. Chem Sci 2020; 12:1016-1030. [PMID: 34163868 PMCID: PMC8179044 DOI: 10.1039/d0sc05281g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Reversible addition-fragmentation chain transfer (RAFT) dispersion polymerisation of methyl methacrylate (MMA) is performed in supercritical carbon dioxide (scCO2) with 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) present as chain transfer agent (CTA) and surprisingly shows good control over PMMA molecular weight. Kinetic studies of the polymerisation in scCO2 also confirm these data. By contrast, only poor control of MMA polymerisation is obtained in toluene solution, as would be expected for this CTA which is better suited for acrylates. In this regard, we select a range of CTAs and use them to determine the parameters that must be considered for good control in dispersion polymerisation in scCO2. A thorough investigation of the nucleation stage during the dispersion polymerisation reveals an unexpected "in situ two-stage" mechanism that strongly determines how the CTA works. Finally, using a novel computational solvation model, we identify a correlation between polymerisation control and degree of solubility of the CTAs. All of this ultimately gives rise to a simple, elegant and counterintuitive guideline to select the best CTA for RAFT dispersion polymerisation in scCO2.
Collapse
Affiliation(s)
- Ana A C Pacheco
- University of Nottingham, University Park Nottingham England NG7 2RD UK
| | | | | | | | - Vincenzo Taresco
- University of Nottingham, University Park Nottingham England NG7 2RD UK
| | - Jonathan D Hirst
- University of Nottingham, University Park Nottingham England NG7 2RD UK
| | - Muriel Lansalot
- Univ. Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - Franck D'Agosto
- Univ. Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - Steven M Howdle
- University of Nottingham, University Park Nottingham England NG7 2RD UK
| |
Collapse
|
17
|
Tampucci S, Guazzelli L, Burgalassi S, Carpi S, Chetoni P, Mezzetta A, Nieri P, Polini B, Pomelli CS, Terreni E, Monti D. pH-Responsive Nanostructures Based on Surface Active Fatty Acid-Protic Ionic Liquids for Imiquimod Delivery in Skin Cancer Topical Therapy. Pharmaceutics 2020; 12:pharmaceutics12111078. [PMID: 33187215 PMCID: PMC7697672 DOI: 10.3390/pharmaceutics12111078] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
For topical treatment of skin cancer, the design of pH-responsive nanocarriers able to selectively release the drug in the tumor acidic microenvironment represents a reliable option for targeted delivery. In this context, a series of newly synthesized surface-active fatty acid-protic ionic liquids (FA-PILs), based on tetramethylguanidinium cation and different natural hydrophobic fatty acid carboxylates, have been investigated with the aim of developing a pH-sensitive nanostructured drug delivery system for cutaneous administration in the skin cancer therapy. The capability of FA-PILs to arrange in micelles when combined with each other and with the non-ionic surfactant d-α-Tocopherol polyethylene glycol succinate (vitamin E TPGS) as well as their ability to solubilize imiquimod, an immuno-stimulant drug used for the treatment of skin cancerous lesions, have been demonstrated. The FA-PILs-TPGS mixed micelles showed pH-sensitivity, suggesting that the acidic environment of cancer cells can trigger nanostructures’ swelling and collapse with consequent rapid release of imiquimod and drug cytotoxic potential enhancement. The in vitro permeation/penetration study showed that the micellar formulation produced effective imiquimod concentrations into the skin exposed to acid environment, representing a potential efficacious and selective drug delivery system able to trigger the drug release in the tumor tissues, at lower and less irritating drug concentrations.
Collapse
Affiliation(s)
- Silvia Tampucci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
- Correspondence: (S.T.); (L.G.)
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
- Correspondence: (S.T.); (L.G.)
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Christian Silvio Pomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Eleonora Terreni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| |
Collapse
|
18
|
Oparin RD, Ivlev DV, Kiselev MG. Conformational equilibria of pharmaceuticals in supercritical CO 2, IR spectroscopy and quantum chemical calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118072. [PMID: 31978693 DOI: 10.1016/j.saa.2020.118072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
In this work we demonstrate a self-consistent effective technique of analyzing the conformational equilibria of active pharmaceutical ingredient (API) molecules dissolved in supercritical carbon dioxide in a wide range of thermodynamic parameters of state. This approach can be useful for pharmaceutics when the crystalline forms of pharmaceuticals with a high purity degree and desirable polymorphism are produced using CO2-based supercritical fluids technologies. Within this approach we use a combination of quantum chemical calculations and in situ IR spectroscopy. Quantum chemical calculations allow us to perform the initial conformational search and to determine the energy characteristics of the most stable conformers of API and the energy barriers of transitions between them. IR spectroscopy gives the information on the equilibrium of the most stable conformers of pharmaceuticals dissolved in scCO2 in the thermodynamic parameter range of interest. Finally we validate our approach by applying it to the study of carbamazepine dissolved in scCO2 being in permanent contact with an excess of crystalline carbamazepine as an example. The conformational search for carbamazepine molecules in scCO2 was also performed using molecular dynamics simulation for comparison with the results obtained by the technique presented in this paper.
Collapse
Affiliation(s)
- R D Oparin
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia.
| | - D V Ivlev
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| | - M G Kiselev
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| |
Collapse
|
19
|
Li RQ, Wang MX, Zhang QY, Chen JG, Wang K, Zhang XY, Shen S, Liu ZT, Liu ZW, Jiang J. Insight into the Intermolecular Interaction and Free Radical Polymerizability of Methacrylates in Supercritical Carbon Dioxide. Polymers (Basel) 2020; 12:E78. [PMID: 31906565 PMCID: PMC7023658 DOI: 10.3390/polym12010078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 11/26/2022] Open
Abstract
High pressure in situ Fourier transfer infrared/near infrared technology (HP FTIR/NIR) along with theoretical calculation of density functional theory (DFT) method was employed. The solvation behaviors and the free radical homopolymerization of methyl methacrylate (MMA), methacrylate acid (MAA), trifluoromethyl methacrylate (MTFMA) and trifluoromethyl methacrylate acid (TFMAA) in scCO2 were systematically investigated. Interestingly, the previously proposed mechanism of intermolecular-interaction dynamically-induced solvation effect (IDISE) of monomer in scCO2 is expected to be well verified/corroborated in view that the predicted solubility order of the monomers in scCO2 via DFT calculation is ideally consistent with that observed via HP FTIR/NIR. It is shown that MMA and MAA can be easily polymerized, while the free radical polymerizability of MTFMA is considerably poor and TFMAA cannot be polymerized via the free radical initiators. The α trifluoromethyl group (-CF3) may effectively enhance the intermolecular hydrogen bonding and restrain the diffusion of the monomer in scCO2. More importantly, the strong electron-withdrawing inductive effect of -CF3 to C=C may distinctly decrease the atomic charge of the carbon atom in the methylene (=CH2). These two factors are believed to be predominantly responsible for the significant decline of the free radical polymerizability of MTFMA and the other alkyl 2-trifluoromethacrylates in scCO2.
Collapse
Affiliation(s)
- Rui-Qing Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (R.-Q.L.); (M.-X.W.); (Q.-Y.Z.); (X.-Y.Z.); (Z.-W.L.); (J.J.)
| | - Ming-Xi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (R.-Q.L.); (M.-X.W.); (Q.-Y.Z.); (X.-Y.Z.); (Z.-W.L.); (J.J.)
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China;
| | - Qi-Yu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (R.-Q.L.); (M.-X.W.); (Q.-Y.Z.); (X.-Y.Z.); (Z.-W.L.); (J.J.)
| | - Jian-Gang Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (R.-Q.L.); (M.-X.W.); (Q.-Y.Z.); (X.-Y.Z.); (Z.-W.L.); (J.J.)
| | - Kuan Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China;
| | - Xiao-Yong Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (R.-Q.L.); (M.-X.W.); (Q.-Y.Z.); (X.-Y.Z.); (Z.-W.L.); (J.J.)
| | - Shukun Shen
- School of Materials Science & Engineering, Shaanxi Normal University, Xi’an 710119, China;
| | - Zhao-Tie Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (R.-Q.L.); (M.-X.W.); (Q.-Y.Z.); (X.-Y.Z.); (Z.-W.L.); (J.J.)
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China;
| | - Zhong-Wen Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (R.-Q.L.); (M.-X.W.); (Q.-Y.Z.); (X.-Y.Z.); (Z.-W.L.); (J.J.)
| | - Jinqiang Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (R.-Q.L.); (M.-X.W.); (Q.-Y.Z.); (X.-Y.Z.); (Z.-W.L.); (J.J.)
| |
Collapse
|
20
|
Gutiérrez Ortiz FJ, Kruse A. The use of process simulation in supercritical fluids applications. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00465c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modelling and simulation from micro- to macro-scale are needed to attain a broader commercialization of supercritical technologies.
Collapse
Affiliation(s)
- Francisco Javier Gutiérrez Ortiz
- Department of Chemical and Environmental Engineering
- Escuela Técnica Superior de Ingeniería
- University of Seville
- 41092 Sevilla
- Spain
| | - Andrea Kruse
- Department of Conversion Technologies and of Biobased Products
- Institute of Agricultural Engineering
- University of Hohenheim
- 70599 Stuttgart
- Germany
| |
Collapse
|
21
|
Xia GJ, Liu J, Liu ZF. Structural inhomogeneity as a factor promoting the homogenous catalysis of CO 2 hydrogenation by (PMe 3) 4RuH 2. Phys Chem Chem Phys 2019; 21:19252-19268. [PMID: 31441925 DOI: 10.1039/c9cp03288f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During homogenous catalysis by organometallic complexes, the dissociation of a ligand to produce an unsaturated site on the metal center is often invoked as the first step of activation, especially when photo-excitation is involved. In this theoretical study, we demonstrated that under mild conditions, a thermodynamically unstable yet dynamically favorable active intermediate could be produced by the inhomogeneity of the solvent distribution around the catalyst rather than by ligand dissociation. This occurred at the end of the first catalytic cycle when the product was eliminated. The empty site was immediately filled by one of the additive molecules aggregated around the reaction center even when the intermediate complex was unstable, producing a transient and more active catalyst. This process accounted for the accelerated reaction rate observed in the landmark CO2 hydrogenation catalyzed by (PMe3)4RuH2 in supercritical CO2 when H2O, MeOH, or HNMe2 was added. This also suggests a new way to exploit the structural inhomogeneity around an organometallic complex for the design of superior catalysts.
Collapse
Affiliation(s)
- Guang-Jie Xia
- Department of Chemistry and Centre for Scientific Modeling and Computation Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Jianwen Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Zhi-Feng Liu
- Department of Chemistry and Centre for Scientific Modeling and Computation Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
22
|
Harb W, Ingrosso F, Ruiz-López MF. Molecular insights into the carbon dioxide–carboxylate anion interactions and implications for carbon capture. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2472-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Gurina DL, Antipova ML, Odintsova EG, Petrenko VE. Hydrogen-Bonded Complexes of p-Hydrobenzoic Acid and Its Derivatives with a Polar Cosolvent in Supercritical Carbon Dioxide. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419050121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Kannangara PB, West CT, Peebles SA, Peebles RA. Towards microsolvation of fluorocarbons by CO2: Two isomers of fluoroethylene-(CO2)2 observed using chirped-pulse Fourier-transform microwave spectroscopy. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.06.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Herrero M, Ibañez E. Green extraction processes, biorefineries and sustainability: Recovery of high added-value products from natural sources. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Ingrosso F, Ruiz-López MF. Electronic Interactions in Iminophosphorane Superbase Complexes with Carbon Dioxide. J Phys Chem A 2018; 122:1764-1770. [PMID: 29346729 DOI: 10.1021/acs.jpca.7b11853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iminophosphoranes or phosphazenes are an important class of compounds with increasing use in synthetic organic chemistry as neutral organic superbases exhibiting low nucleophilicity. Their electronic structure and therefore their properties strongly depend on substitution, but there have been very few theoretical studies devoted to this topic, and more specifically to the formation of electron donor-acceptor complexes of iminophosphoranes with electrophiles. In this work, we have investigated the interaction with carbon dioxide at different ab initio levels. Carbon dioxide usually behaves as a Lewis acid and the reaction with iminiphosphoranes has been described as a nonconventional aza-Wittig process leading to isocyanates. The reaction can be conducted in supercritical CO2 conditions (carbon dioxide acts as both solvent and reactant), which is a promising strategy in the context of green chemistry. Our calculations have been carried out at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ level for model systems and at the M06-2X/6-611+G(d,p) level for a larger species used in experiments. The electronic interactions and the interaction energies are analyzed and discussed in detail using the natural bond orbital method. Proton affinities and gas-phase basicities are provided as well.
Collapse
Affiliation(s)
- Francesca Ingrosso
- SRSMC, University of Lorraine , BP 70239, 54506 Vandoeuvre-lès-Nancy, France.,CNRS, UMR 7565 , BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Manuel F Ruiz-López
- SRSMC, University of Lorraine , BP 70239, 54506 Vandoeuvre-lès-Nancy, France.,CNRS, UMR 7565 , BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|