1
|
Wodtke P, Grashei M, Schilling F. Quo Vadis Hyperpolarized 13C MRI? Z Med Phys 2025; 35:8-32. [PMID: 38160135 PMCID: PMC11910262 DOI: 10.1016/j.zemedi.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024]
Abstract
Over the last two decades, hyperpolarized 13C MRI has gained significance in both preclinical and clinical studies, hereby relying on technologies like PHIP-SAH (ParaHydrogen-Induced Polarization-Side Arm Hydrogenation), SABRE (Signal Amplification by Reversible Exchange), and dDNP (dissolution Dynamic Nuclear Polarization), with dDNP being applied in humans. A clinical dDNP polarizer has enabled studies across 24 sites, despite challenges like high cost and slow polarization. Parahydrogen-based techniques like SABRE and PHIP offer faster, more cost-efficient alternatives but require molecule-specific optimization. The focus has been on imaging metabolism of hyperpolarized probes, which requires long T1, high polarization and rapid contrast generation. Efforts to establish novel probes, improve acquisition techniques and enhance data analysis methods including artificial intelligence are ongoing. Potential clinical value of hyperpolarized 13C MRI was demonstrated primarily for treatment response assessment in oncology, but also in cardiology, nephrology, hepatology and CNS characterization. In this review on biomedical hyperpolarized 13C MRI, we summarize important and recent advances in polarization techniques, probe development, acquisition and analysis methods as well as clinical trials. Starting from those we try to sketch a trajectory where the field of biomedical hyperpolarized 13C MRI might go.
Collapse
Affiliation(s)
- Pascal Wodtke
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
2
|
Kondo Y, Saito Y, Seki T, Takakusagi Y, Koyasu N, Saito K, Morimoto J, Nonaka H, Miyanishi K, Mizukami W, Negoro M, Elhelaly AE, Hyodo F, Matsuo M, Raju N, Swenson RE, Krishna MC, Yamamoto K, Sando S. Directly monitoring the dynamic in vivo metabolisms of hyperpolarized 13C-oligopeptides. SCIENCE ADVANCES 2024; 10:eadp2533. [PMID: 39413185 PMCID: PMC11482307 DOI: 10.1126/sciadv.adp2533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
Peptides play essential roles in biological phenomena, and, thus, there is a growing interest in detecting in vivo dynamics of peptide metabolisms. Dissolution-dynamic nuclear polarization (d-DNP) is a state-of-the-art technology that can markedly enhance the sensitivity of nuclear magnetic resonance (NMR), providing metabolic and physiological information in vivo. However, the hyperpolarized state exponentially decays back to the thermal equilibrium, depending on the spin-lattice relaxation time (T1). Because of the limitation in T1, peptide-based DNP NMR molecular probes applicable in vivo have been limited to amino acids or dipeptides. Here, we report the direct detection of in vivo metabolic conversions of hyperpolarized 13C-oligopeptides. Structure-based T1 relaxation analysis suggests that the C-terminal [1-13C]Gly-d2 residue affords sufficient T1 for biological uses, even in relatively large oligopeptides, and allowed us to develop 13C-β-casomorphin-5 and 13C-glutathione. It was found that the metabolic response and perfusion of the hyperpolarized 13C-glutathione in the mouse kidney were significantly altered in a model of cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohiro Seki
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoichi Takakusagi
- Quantum Hyperpolarized MRI Research Team, Quantum Life Spin Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage, Chiba-city 263-8555, Japan
- Institute for Quantum Medical Science (iQMS), National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage, Chiba-city 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage, Chiba-city 265-8522, Japan
| | - Norikazu Koyasu
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keita Saito
- Quantum Hyperpolarized MRI Research Team, Quantum Life Spin Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage, Chiba-city 263-8555, Japan
| | - Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Nonaka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Koichiro Miyanishi
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, Osaka 560-8531, Japan
| | - Wataru Mizukami
- Center for Quantum Information and Quantum Biology, Osaka University, Osaka 560-8531, Japan
| | - Makoto Negoro
- Quantum Hyperpolarized MRI Research Team, Quantum Life Spin Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage, Chiba-city 263-8555, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, Osaka 560-8531, Japan
- Premium Research Institute for Human Metaverse Medicine, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Abdelazim E. Elhelaly
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Fuminori Hyodo
- Department of Pharmacology, School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 501-1194, Gifu, Japan
| | - Masayuki Matsuo
- Department of Radiology, School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Natarajan Raju
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Murali C. Krishna
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kazutoshi Yamamoto
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
3
|
Santi MD, Hune TLK, Rodriguez GG, Fries LM, Mei R, Sternkopf S, Elsaßer J, Glöggler S. Parahydrogen-enhanced pH measurements using [1- 13C]bicarbonate derived from non-enzymatic decarboxylation of [1- 13C]pyruvate-d 3. Analyst 2024; 149:5022-5033. [PMID: 39230365 PMCID: PMC11373534 DOI: 10.1039/d4an00832d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Alterations in pH are a hallmark in several pathologies including cancer, ischemia, and inflammation. Non-invasive magnetic resonance methods to measure pH offer a new approach for early diagnosis of diseases characterized by acid-base imbalances. The hyperpolarization with parahydrogen-induced polarization (PHIP) enhances inherently low signals in magnetic resonance experiments by several orders of magnitude and offers a suitable platform to obtain biocompatible markers in less than one minute. Here, we present an optimized preparation of an hyperpolarized H13CO3-/13CO2 pH sensor via non-enzymatic decarboxylation with H2O2 of [1-13C]pyruvate-d3 obtained by PHIP at 7 T. An improved 13C polarization of purified [1-13C]pyruvate-d3 in water with 36.65 ± 0.06% polarization was obtained starting from 50 mM precursor. Subsequent decarboxylation, H13CO3-/13CO2 exhibited 12.46 ± 0.01% of polarization at physiological pH, 45 seconds after the reaction start. Considering the dilution factor that [1-13C]pyruvate-d3 exhibits in vivo, we optimized our methodology to test the accuracy of the pH sensor at single digit millimolar concentration. In vitro pH estimations on phantoms and cell culture media demonstrated accurate pH calculations with uncertainties of less than 0.08 units. These promising results highlight the efficiency of a pH sensor generated via PHIP in less than one minute, with remarkable polarization, and biocompatibility suitable for future in vivo studies.
Collapse
Affiliation(s)
- Maria Daniela Santi
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Theresa Luca Katrin Hune
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Gonzalo Gabriel Rodriguez
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Lisa M Fries
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Ruhuai Mei
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Sonja Sternkopf
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Josef Elsaßer
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| |
Collapse
|
4
|
Chen S, Zhang L, Li S, Yuan Y, Jiang B, Jiang Z, Zhang X, Zhou X, Liu M. Detecting biomarkers by dynamic nuclear polarization enhanced magnetic resonance. Natl Sci Rev 2024; 11:nwae228. [PMID: 39144741 PMCID: PMC11321254 DOI: 10.1093/nsr/nwae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/26/2024] [Accepted: 06/16/2024] [Indexed: 08/16/2024] Open
Abstract
Hyperpolarization stands out as a technique capable of significantly enhancing the sensitivity of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Dynamic nuclear polarization (DNP), among various hyperpolarization methods, has gained prominence for its efficacy in real-time monitoring of metabolism and physiology. By administering a hyperpolarized substrate through dissolution DNP (dDNP), the biodistribution and metabolic changes of the DNP agent can be visualized spatiotemporally. This approach proves to be a distinctive and invaluable tool for non-invasively studying cellular metabolism in vivo, particularly in animal models. Biomarkers play a pivotal role in influencing the growth and metastasis of tumor cells by closely interacting with them, and accordingly detecting pathological alterations of these biomarkers is crucial for disease diagnosis and therapy. In recent years, a range of hyperpolarized DNP molecular bioresponsive agents utilizing various nuclei, such as 13C, 15N, 31P, 89Y, etc., have been developed. In this context, we explore how these magnetic resonance signals of nuclear spins enhanced by DNP respond to biomarkers, including pH, metal ions, enzymes, or redox processes. This review aims to offer insights into the design principles of responsive DNP agents, target selection, and the mechanisms of action for imaging. Such discussions aim to propel the future development and application of DNP-based biomedical imaging agents.
Collapse
Affiliation(s)
- Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Lei Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sha Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongxing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Grashei M, Wodtke P, Skinner JG, Sühnel S, Setzer N, Metzler T, Gulde S, Park M, Witt D, Mohr H, Hundshammer C, Strittmatter N, Pellegata NS, Steiger K, Schilling F. Simultaneous magnetic resonance imaging of pH, perfusion and renal filtration using hyperpolarized 13C-labelled Z-OMPD. Nat Commun 2023; 14:5060. [PMID: 37604826 PMCID: PMC10442412 DOI: 10.1038/s41467-023-40747-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
pH alterations are a hallmark of many pathologies including cancer and kidney disease. Here, we introduce [1,5-13C2]Z-OMPD as a hyperpolarized extracellular pH and perfusion sensor for MRI which allows to generate a multiparametric fingerprint of renal disease status and to detect local tumor acidification. Exceptional long T1 of two minutes at 1 T, high pH sensitivity of up to 1.9 ppm per pH unit and suitability of using the C1-label as internal frequency reference enables pH imaging in vivo of three pH compartments in healthy rat kidneys. Spectrally selective targeting of both 13C-resonances enables simultaneous imaging of perfusion and filtration in 3D and pH in 2D within one minute to quantify renal blood flow, glomerular filtration rates and renal pH in healthy and hydronephrotic kidneys with superior sensitivity compared to clinical routine methods. Imaging multiple biomarkers within a single session renders [1,5-13C2]Z-OMPD a promising new hyperpolarized agent for oncology and nephrology.
Collapse
Affiliation(s)
- Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Pascal Wodtke
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Sandra Sühnel
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Nadine Setzer
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Thomas Metzler
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Sebastian Gulde
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Mihyun Park
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Daniela Witt
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Nicole Strittmatter
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich, D-85748, Garching, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
- Department of Biology and Biotechnology, University of Pavia, I-27100, Pavia, Italy
| | - Katja Steiger
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, D-81675, Munich, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, D-85748, Garching, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Angelovski G, Tickner BJ, Wang G. Opportunities and challenges with hyperpolarized bioresponsive probes for functional imaging using magnetic resonance. Nat Chem 2023; 15:755-763. [PMID: 37264100 DOI: 10.1038/s41557-023-01211-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/19/2023] [Indexed: 06/03/2023]
Abstract
The development of hyperpolarized bioresponsive probes for magnetic resonance imaging (MRI) applications is an emerging and rapidly growing topic in chemistry. A wide range of hyperpolarized molecular biosensors for functional MRI have been developed in recent years. These probes comprise many different types of small-molecule reporters that can be hyperpolarized using dissolution dynamic nuclear polarization and parahydrogen-induced polarization or xenon-chelated macromolecular conjugates hyperpolarized using spin-exchange optical pumping. In this Perspective, we discuss how the amplified magnetic resonance signals of these agents are responsive to biologically relevant stimuli such as target proteins, reactive oxygen species, pH or metal ions. We examine how functional MRI using these systems allows a great number of biological processes to be monitored rapidly. Consequently, hyperpolarized bioresponsive probes may play a critical role in functional molecular imaging for observing physiology and pathology in real time.
Collapse
Affiliation(s)
- Goran Angelovski
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, People's Republic of China.
| | - Ben J Tickner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, York, UK
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Gaoji Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
7
|
Jardim-Perassi BV, Irrera P, Lau JYC, Budzevich M, Whelan CJ, Abrahams D, Ruiz E, Ibrahim-Hashim A, Damgaci Erturk S, Longo DL, Pilon-Thomas SA, Gillies RJ. Intraperitoneal Delivery of Iopamidol to Assess Extracellular pH of Orthotopic Pancreatic Tumor Model by CEST-MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2023; 2023:1944970. [PMID: 36704211 PMCID: PMC9836819 DOI: 10.1155/2023/1944970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 01/07/2023]
Abstract
The extracellular pH (pHe) of solid tumors is often acidic, as a consequence of the Warburg effect, and an altered metabolic state is often associated with malignancy. It has been shown that acidosis can promote tumor progression; thus, many therapeutic strategies have been adopted against tumor metabolism; one of these involves alkalinization therapies to raise tumor pH to inhibit tumor progression, improve immune surveillance, and overcome resistance to chemotherapies. Chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) is a noninvasive technique that can measure pH in vivo using pH-sensitive contrast agents. Iopamidol, an iodinated contrast agent, clinically used for computed tomography (CT), contains amide group protons with pH-dependent exchange rates that can reveal the pHe of the tumor microenvironment. In this study, we optimized intraperitoneal (IP) delivery of iopamidol to facilitate longitudinal assessments of orthotopic pancreatic tumor pHe by CEST-MRI. Following IV-infusion and IP-bolus injections, we compared the two protocols for assessing tumor pH. Time-resolved CT imaging was used to evaluate the uptake of iopamidol in the tumor, revealing that IP-bolus delivered a high amount of contrast agent 40 min postinjection, which was similar to the amounts reached with the IV-infusion protocol. As expected, both IP and IV injection protocols produced comparable measurements of tumor pHe, showing no statistically significant difference between groups (p=0.16). In addition, we showed the ability to conduct longitudinal monitoring of tumor pHe using CEST-MRI with the IP injection protocol, revealing a statistically significant increase in tumor pHe following bicarbonate administration (p < 0.001). In conclusion, this study shows the capability to measure pHe using an IP delivery of iopamidol into orthotopic pancreatic tumors, which is important to conduct longitudinal studies.
Collapse
Affiliation(s)
| | - Pietro Irrera
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Justin Y. C. Lau
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mikalai Budzevich
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Christopher J. Whelan
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA
| | | | - Epifanio Ruiz
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Arig Ibrahim-Hashim
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sultan Damgaci Erturk
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Dario Livio Longo
- Institute of Biostructures and Bioimages (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Shari A. Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert J. Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
8
|
Fok WYR, Grashei M, Skinner JG, Menze BH, Schilling F. Prediction of multiple pH compartments by deep learning in magnetic resonance spectroscopy with hyperpolarized 13C-labelled zymonic acid. EJNMMI Res 2022; 12:24. [PMID: 35460436 PMCID: PMC9035201 DOI: 10.1186/s13550-022-00894-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/05/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Hyperpolarization enhances the sensitivity of nuclear magnetic resonance experiments by between four and five orders of magnitude. Several hyperpolarized sensor molecules have been introduced that enable high sensitivity detection of metabolism and physiological parameters. However, hyperpolarized magnetic resonance spectroscopy imaging (MRSI) often suffers from poor signal-to-noise ratio and spectral analysis is complicated by peak overlap. Here, we study measurements of extracellular pH (pHe) by hyperpolarized zymonic acid, where multiple pHe compartments, such as those observed in healthy kidney or other heterogeneous tissue, result in a cluster of spectrally overlapping peaks, which is hard to resolve with conventional spectroscopy analysis routines. METHODS We investigate whether deep learning methods can yield improved pHe prediction in hyperpolarized zymonic acid spectra of multiple pHe compartments compared to conventional line fitting. As hyperpolarized 13C-MRSI data sets are often small, a convolutional neural network (CNN) and a multilayer perceptron (MLP) were trained with either a synthetic or a mixed (synthetic and augmented) data set of acquisitions from the kidneys of healthy mice. RESULTS Comparing the networks' performances compartment-wise on a synthetic test data set and eight real kidney data shows superior performance of CNN compared to MLP and equal or superior performance compared to conventional line fitting. For correct prediction of real kidney pHe values, training with a mixed data set containing only 0.5% real data shows a large improvement compared to training with synthetic data only. Using a manual segmentation approach, pH maps of kidney compartments can be improved by neural network predictions for voxels including three pH compartments. CONCLUSION The results of this study indicate that CNNs offer a reliable, accurate, fast and non-interactive method for analysis of hyperpolarized 13C MRS and MRSI data, where low amounts of acquired data can be complemented to achieve suitable network training.
Collapse
Affiliation(s)
- Wai-Yan Ryana Fok
- Department of Informatics, Technical University of Munich, 85748, Garching, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Bjoern H Menze
- Department of Informatics, Technical University of Munich, 85748, Garching, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany.
| |
Collapse
|
9
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Entwicklung molekularer Sonden für die hyperpolarisierte NMR‐Bildgebung im biologischen Bereich. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201915718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
- National Institute of Radiological Sciences National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
10
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Design of Nuclear Magnetic Resonance Molecular Probes for Hyperpolarized Bioimaging. Angew Chem Int Ed Engl 2021; 60:14779-14799. [PMID: 32372551 DOI: 10.1002/anie.201915718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Nuclear hyperpolarization has emerged as a method to dramatically enhance the sensitivity of NMR spectroscopy. By application of this powerful tool, small molecules with stable isotopes have been used for highly sensitive biomedical molecular imaging. The recent development of molecular probes for hyperpolarized in vivo analysis has demonstrated the ability of this technique to provide unique metabolic and physiological information. This review presents a brief introduction of hyperpolarization technology, approaches to the rational design of molecular probes for hyperpolarized analysis, and examples of molecules that have met with success in vitro or in vivo.
Collapse
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan.,National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
11
|
Shaul D, Azar A, Sapir G, Uppala S, Nardi-Schreiber A, Gamliel A, Sosna J, Gomori JM, Katz-Brull R. Correlation between lactate dehydrogenase/pyruvate dehydrogenase activities ratio and tissue pH in the perfused mouse heart: A potential noninvasive indicator of cardiac pH provided by hyperpolarized magnetic resonance. NMR IN BIOMEDICINE 2021; 34:e4444. [PMID: 33258527 DOI: 10.1002/nbm.4444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/05/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases account for more than 30% of all deaths worldwide and many could be ameliorated with early diagnosis. Current cardiac imaging modalities can assess blood flow, heart anatomy and mechanical function. However, for early diagnosis and improved treatment, further functional biomarkers are needed. One such functional biomarker could be the myocardium pH. Although tissue pH is already determinable via MR techniques, and has been since the early 1990s, it remains elusive to use practically. The objective of this study was to explore the possibility to evaluate cardiac pH noninvasively, using in-cell enzymatic rates of hyperpolarized [1-13 C]pyruvate metabolism (ie, moles of product produced per unit time) determined directly in real time using magnetic resonance spectroscopy in a perfused mouse heart model. As a gold standard for tissue pH we used 31 P spectroscopy and the chemical shift of the inorganic phosphate (Pi) signal. The nonhomogenous pH distribution of the perfused heart was analyzed using a multi-parametric analysis of this signal, thus taking into account the heterogeneous nature of this characteristic. As opposed to the signal ratio of hyperpolarized [13 C]bicarbonate to [13 CO2 ], which has shown correlation to pH in other studies, we investigated here the ratio of two intracellular enzymatic rates: lactate dehydrogenase (LDH) and pyruvate dehydrogenase (PDH), by way of determining the production rates of [1-13 C]lactate and [13 C]bicarbonate, respectively. The enzyme activities determined here are intracellular, while the pH determined using the Pi signal may contain an extracellular component, which could not be ruled out. Nevertheless, we report a strong correlation between the tissue pH and the LDH/PDH activities ratio. This work may pave the way for using the LDH/PDH activities ratio as an indicator of cardiac intracellular pH in vivo, in an MRI examination.
Collapse
Affiliation(s)
- David Shaul
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Assad Azar
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Gal Sapir
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Sivaranjan Uppala
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Atara Nardi-Schreiber
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Ayelet Gamliel
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
12
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
13
|
Anemone A, Consolino L, Arena F, Capozza M, Longo DL. Imaging tumor acidosis: a survey of the available techniques for mapping in vivo tumor pH. Cancer Metastasis Rev 2020; 38:25-49. [PMID: 30762162 PMCID: PMC6647493 DOI: 10.1007/s10555-019-09782-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cancer cells are characterized by a metabolic shift in cellular energy production, orchestrated by the transcription factor HIF-1α, from mitochondrial oxidative phosphorylation to increased glycolysis, regardless of oxygen availability (Warburg effect). The constitutive upregulation of glycolysis leads to an overproduction of acidic metabolic products, resulting in enhanced acidification of the extracellular pH (pHe ~ 6.5), which is a salient feature of the tumor microenvironment. Despite the importance of pH and tumor acidosis, there is currently no established clinical tool available to image the spatial distribution of tumor pHe. The purpose of this review is to describe various imaging modalities for measuring intracellular and extracellular tumor pH. For each technique, we will discuss main advantages and limitations, pH accuracy and sensitivity of the applied pH-responsive probes and potential translatability to the clinic. Particular attention is devoted to methods that can provide pH measurements at high spatial resolution useful to address the task of tumor heterogeneity and to studies that explored tumor pH imaging for assessing treatment response to anticancer therapies.
Collapse
Affiliation(s)
- Annasofia Anemone
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, Italy
| | - Lorena Consolino
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, Italy
| | - Francesca Arena
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Via Nizza 52, Turin, Italy.,Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Ribes 5, Colleretto Giacosa, Italy
| | - Martina Capozza
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Ribes 5, Colleretto Giacosa, Italy
| | - Dario Livio Longo
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, Italy. .,Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Via Nizza 52, Turin, Italy.
| |
Collapse
|
14
|
Julià-Sapé M, Candiota AP, Arús C. Cancer metabolism in a snapshot: MRS(I). NMR IN BIOMEDICINE 2019; 32:e4054. [PMID: 30633389 DOI: 10.1002/nbm.4054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
The contribution of MRS(I) to the in vivo evaluation of cancer-metabolism-derived metrics, mostly since 2016, is reviewed here. Increased carbon consumption by tumour cells, which are highly glycolytic, is now being sampled by 13 C magnetic resonance spectroscopic imaging (MRSI) following the injection of hyperpolarized [1-13 C] pyruvate (Pyr). Hot-spots of, mostly, increased lactate dehydrogenase activity or flow between Pyr and lactate (Lac) have been seen with cancer progression in prostate (preclinical and in humans), brain and pancreas (both preclinical) tumours. Therapy response is usually signalled by decreased Lac/Pyr 13 C-labelled ratio with respect to untreated or non-responding tumour. For therapeutic agents inducing tumour hypoxia, the 13 C-labelled Lac/bicarbonate ratio may be a better metric than the Lac/Pyr ratio. 31 P MRSI may sample intracellular pH changes from brain tumours (acidification upon antiangiogenic treatment, basification at fast proliferation and relapse). The steady state tumour metabolome pattern is still in use for cancer evaluation. Metrics used for this range from quantification of single oncometabolites (such as 2-hydroxyglutarate in mutant IDH1 glial brain tumours) to selected metabolite ratios (such as total choline to N-acetylaspartate (plain ratio or CNI index)) or the whole 1 H MRSI(I) pattern through pattern recognition analysis. These approaches have been applied to address different questions such as tumour subtype definition, following/predicting the response to therapy or defining better resection or radiosurgery limits.
Collapse
Affiliation(s)
- Margarida Julià-Sapé
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
15
|
Spatiotemporal pH Heterogeneity as a Promoter of Cancer Progression and Therapeutic Resistance. Cancers (Basel) 2019; 11:cancers11071026. [PMID: 31330859 PMCID: PMC6678451 DOI: 10.3390/cancers11071026] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of pH in solid tumors is a hallmark of cancer. In recent years, the role of altered pH heterogeneity in space, between benign and aggressive tissues, between individual cancer cells, and between subcellular compartments, has been steadily elucidated. Changes in temporal pH-related processes on both fast and slow time scales, including altered kinetics of bicarbonate-CO2 exchange and its effects on pH buffering and gradual, progressive changes driven by changes in metabolism, are further implicated in phenotypic changes observed in cancers. These discoveries have been driven by advances in imaging technologies. This review provides an overview of intra- and extracellular pH alterations in time and space reflected in cancer cells, as well as the available technology to study pH spatiotemporal heterogeneity.
Collapse
|
16
|
Heger D, Eugene AJ, Parkin SR, Guzman MI. Crystal structure of zymonic acid and a redetermination of its precursor, pyruvic acid. Acta Crystallogr E Crystallogr Commun 2019; 75:858-862. [PMID: 31391982 PMCID: PMC6658982 DOI: 10.1107/s2056989019007072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/15/2019] [Indexed: 05/11/2023]
Abstract
The structure of zymonic acid (systematic name: 4-hy-droxy-2-methyl-5-oxo-2,5-di-hydro-furan-2-carb-oxy-lic acid), C6H6O5, which had previously eluded crystallographic determination, is presented here for the first time. It forms by intra-molecular condensation of parapyruvic acid, which is the product of aldol condensation of pyruvic acid. A redetermination of the crystal structure of pyruvic acid (systematic name: 2-oxo-propanoic acid), C3H4O3, at low temperature (90 K) and with increased precision, is also presented [for the previous structure, see: Harata et al. (1977 ▸). Acta Cryst. B33, 210-212]. In zymonic acid, the hy-droxy-lactone ring is close to planar (r.m.s. deviation = 0.0108 Å) and the dihedral angle between the ring and the plane formed by the bonds of the methyl and carb-oxy-lic acid carbon atoms to the ring is 88.68 (7)°. The torsion angle of the carb-oxy-lic acid group relative to the ring is 12.04 (16)°. The pyruvic acid mol-ecule is almost planar, having a dihedral angle between the carb-oxy-lic acid and methyl-ketone groups of 3.95 (6)°. Inter-molecular inter-actions in both crystal structures are dominated by hydrogen bonding. The common R 2 2(8) hydrogen-bonding motif links carb-oxy-lic acid groups on adjacent mol-ecules in both structures. In zymonic acid, this results in dimers about a crystallographic twofold of space group C2/c, which forces the carb-oxy-lic acid group to be disordered exactly 50:50, which scrambles the carbonyl and hydroxyl groups and gives an apparent equalization of the C-O bond lengths [1.2568 (16) and 1.2602 (16) Å]. The other hydrogen bonds in zymonic acid (O-H⋯O and weak C-H⋯O), link mol-ecules across a 21-screw axis, and generate an R 2 2(9) motif. These hydrogen-bonding inter-actions propagate to form extended pleated sheets in the ab plane. Stacking of these zigzag sheets along c involves only van der Waals contacts. In pyruvic acid, inversion-related mol-ecules are linked into R 2 2(8) dimers, with van der Waals inter-actions between dimers as the only other inter-molecular contacts.
Collapse
Affiliation(s)
- Dominik Heger
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Alexis J. Eugene
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Sean R. Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Marcelo I. Guzman
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA
| |
Collapse
|
17
|
Korenchan DE, Gordon JW, Subramaniam S, Sriram R, Baligand C, VanCriekinge M, Bok R, Vigneron DB, Wilson DM, Larson PEZ, Kurhanewicz J, Flavell RR. Using bidirectional chemical exchange for improved hyperpolarized [ 13 C]bicarbonate pH imaging. Magn Reson Med 2019; 82:959-972. [PMID: 31050049 DOI: 10.1002/mrm.27780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Rapid chemical exchange can affect SNR and pH measurement accuracy for hyperpolarized pH imaging with [13 C]bicarbonate. The purpose of this work was to investigate chemical exchange effects on hyperpolarized imaging sequences to identify optimal sequence parameters for high SNR and pH accuracy. METHODS Simulations were performed under varying rates of bicarbonate-CO2 chemical exchange to analyze exchange effects on pH quantification accuracy and SNR under different sampling schemes. Four pulse sequences, including 1 new technique, a multiple-excitation 2D EPI (multi-EPI) sequence, were compared in phantoms using hyperpolarized [13 C]bicarbonate, varying parameters such as tip angles, repetition time, order of metabolite excitation, and refocusing pulse design. In vivo hyperpolarized bicarbonate-CO2 exchange measurements were made in transgenic murine prostate tumors to select in vivo imaging parameters. RESULTS Modeling of bicarbonate-CO2 exchange identified a multiple-excitation scheme for increasing CO2 SNR by up to a factor of 2.7. When implemented in phantom imaging experiments, these sampling schemes were confirmed to yield high pH accuracy and SNR gains. Based on measured bicarbonate-CO2 exchange in vivo, a 47% CO2 SNR gain is predicted. CONCLUSION The novel multi-EPI pulse sequence can boost CO2 imaging signal in hyperpolarized 13 C bicarbonate imaging while introducing minimal pH bias, helping to surmount a major hurdle in hyperpolarized pH imaging.
Collapse
Affiliation(s)
- David E Korenchan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Sukumar Subramaniam
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Celine Baligand
- Molecular Imaging Research Center, French Alternative Energies and Atomic Energy Commission Fontenay-aux-Roses, France
| | - Mark VanCriekinge
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,UC Berkeley, UCSF Graduate Program in Bioengineering, University of California, University of California, San Francisco, Berkeley, California
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,UC Berkeley, UCSF Graduate Program in Bioengineering, University of California, University of California, San Francisco, Berkeley, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,UC Berkeley, UCSF Graduate Program in Bioengineering, University of California, University of California, San Francisco, Berkeley, California
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
18
|
Hundshammer C, Grashei M, Greiner A, Glaser SJ, Schilling F. pH Dependence of T 1 for 13 C-Labelled Small Molecules Commonly Used for Hyperpolarized Magnetic Resonance Imaging. Chemphyschem 2019; 20:798-802. [PMID: 30790394 DOI: 10.1002/cphc.201801098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/07/2019] [Indexed: 01/18/2023]
Abstract
Hyperpolarization is a method to enhance the nuclear magnetic resonance signal by up to five orders of magnitude. However, the hyperpolarized (HP) state is transient and decays with the spin-lattice relaxation time (T1 ), which is on the order of a few tens of seconds. Here, we analyzed the pH-dependence of T1 for commonly used HP 13 C-labelled small molecules such as acetate, alanine, fumarate, lactate, pyruvate, urea and zymonic acid. For instance, the T1 of HP pyruvate is about 2.5 fold smaller at acidic pH (25 s, pH 1.7, B0 =1 T) compared to pH close to physiological conditions (66 s, pH 7.3, B0 =1 T). Our data shows that increasing hydronium ion concentrations shorten the T1 of protonated carboxylic acids of most of the analyzed molecules except lactate. Furthermore it suggests that intermolecular hydrogen bonding at low pH can contribute to this T1 shortening. In addition, enhanced proton exchange and chemical reactions at the pKa appear to be detrimental for the HP-state.
Collapse
Affiliation(s)
- Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich.,Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching.,Graduate School of Bioengineering, Technical University of Munich, Boltzmannstr. 11, 85748, Garching
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich
| | - Alexandra Greiner
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching
| | - Steffen J Glaser
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching
| | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich
| |
Collapse
|
19
|
Köcher SS, Düwel S, Hundshammer C, Glaser SJ, Schilling F, Granwehr J, Scheurer C. Ab Initio Simulation of pH-Sensitive Biomarkers in Magnetic Resonance Imaging. J Phys Chem A 2018; 122:7983-7990. [PMID: 30222345 DOI: 10.1021/acs.jpca.8b04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An ab initio simulation scheme is introduced as a theoretical prescreening approach to facilitate and enhance the research for pH-sensitive biomarkers. The proton 1H and carbon 13C nuclear magnetic resonance (NMR) chemical shifts of the recently published marker for extracellular pH, [1,5-13C2]zymonic acid (ZA), and the as yet unpublished ( Z)-4-methyl-2-oxopent-3-enedioic acid (OMPD) were calculated with ab initio methods as a function of the pH. The influence of the aqueous solvent was taken into account either by an implicit solvent model or by explicit water molecules, where the latter improved the accuracy of the calculated chemical shifts considerably. The theoretically predicted chemical shifts allowed for a reliable NMR peak assignment. The p Ka value of the first deprotonation of ZA and OMPD was simulated successfully whereas the parametrization of the implicit solvent model does not allow for an accurate description of the second p Ka. The theoretical models reproduce the pH-induced chemical shift changes and the first p Ka with sufficient accuracy to establish the ab initio prescreening approach as a valuable support to guide the experimental search for pH-sensitive biomarkers.
Collapse
Affiliation(s)
- Simone S Köcher
- Chair for Theoretical Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstr. 4 , D-85747 Garching , Germany.,Institute of Energy and Climate Research (IEK-9) , Forschungszentrum Jülich , D-52425 Jülich , Germany.,Institute of Technical and Macromolecular Chemistry , RWTH Aachen University , Worringerweg 1-2 , D-52074 Aachen , Germany
| | - Stephan Düwel
- Department of Nuclear Medicine, Klinikum rechts der Isar , Technische Universität München , Ismaninger Str. 22 , D-81675 München , Germany.,Department of Chemistry , Technische Universität München , Lichtenbergstr. 4 , D-85747 Garching , Germany.,Munich School of BioEngineering , Technische Universität München , Boltzmannstr. 11 , D-85748 Garching , Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar , Technische Universität München , Ismaninger Str. 22 , D-81675 München , Germany.,Department of Chemistry , Technische Universität München , Lichtenbergstr. 4 , D-85747 Garching , Germany
| | - Steffen J Glaser
- Department of Chemistry , Technische Universität München , Lichtenbergstr. 4 , D-85747 Garching , Germany
| | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar , Technische Universität München , Ismaninger Str. 22 , D-81675 München , Germany
| | - Josef Granwehr
- Institute of Energy and Climate Research (IEK-9) , Forschungszentrum Jülich , D-52425 Jülich , Germany.,Institute of Technical and Macromolecular Chemistry , RWTH Aachen University , Worringerweg 1-2 , D-52074 Aachen , Germany
| | - Christoph Scheurer
- Chair for Theoretical Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstr. 4 , D-85747 Garching , Germany
| |
Collapse
|
20
|
Taglang C, Korenchan DE, von Morze C, Yu J, Najac C, Wang S, Blecha JE, Subramaniam S, Bok R, VanBrocklin HF, Vigneron DB, Ronen SM, Sriram R, Kurhanewicz J, Wilson DM, Flavell RR. Late-stage deuteration of 13C-enriched substrates for T 1 prolongation in hyperpolarized 13C MRI. Chem Commun (Camb) 2018; 54:5233-5236. [PMID: 29726563 PMCID: PMC6054790 DOI: 10.1039/c8cc02246a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A robust and selective late-stage deuteration methodology was applied to 13C-enriched amino and alpha hydroxy acids to increase spin-lattice relaxation constant T1 for hyperpolarized 13C magnetic resonance imaging. For the five substrates with 13C-labeling on the C1-position ([1-13C]alanine, [1-13C]serine, [1-13C]lactate, [1-13C]glycine, and [1-13C]valine), significant increase of their T1 was observed at 3 T with deuterium labeling (+26%, 22%, +16%, +25% and +29%, respectively). Remarkably, in the case of [2-13C]alanine, [2-13C]serine and [2-13C]lactate, deuterium labeling led to a greater than four fold increase in T1. [1-13C,2-2H]alanine, produced using this method, was applied to in vitro enzyme assays with alanine aminotransferase, demonstrating a kinetic isotope effect.
Collapse
Affiliation(s)
- Céline Taglang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - David E. Korenchan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Justin Yu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Sinan Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Joseph E. Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Sukumar Subramaniam
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| |
Collapse
|
21
|
Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules. SENSORS 2018; 18:s18020600. [PMID: 29462891 PMCID: PMC5856118 DOI: 10.3390/s18020600] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 11/17/2022]
Abstract
pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (pKa). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the pKa of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1-13C]serine amide and [1-13C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei (13C, 15N, 31P) with high sensitivity up to 4.8 ppm/pH and we show that 13C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.
Collapse
|