1
|
Hong C, Shi M, Wang S, Yang Y, Pu Z. Novel analysis based on Raman spectroscopy in nutrition science. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1977-1996. [PMID: 39937157 DOI: 10.1039/d4ay02129k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Modern research in nutrition science is transitioning from classical methodologies to advanced analytical strategies, in which Raman spectroscopy plays a crucial role. Raman spectroscopy and its derived techniques are gaining recognition in nutrition science for their features, such as high-speed, non-destructive analysis, label-free multiple detection and high sensitivity. Raman-enhancing techniques have further improved the sensitivity of Raman spectroscopy and widely extended its detection and imaging applications in nutrient analysis, as well as in ancillary tasks for nutrition research, such as nutrient status evaluation, nutrient interaction and metabolism studies. Further development of Raman-based analytical approaches lies in the improvement of instruments with higher precision, as well as the incorporation of other analytical techniques and advanced data analysis tools. This paper provides a comprehensive review of the application of nanoscience and nanotechnology, with a specific focus on Raman technology, in the field of food and nutrition science research. Instead of delving into the quantitative or qualitative detection capabilities of Raman technology, we highlight the remarkable food analysis and nutrition research methods established by this technology. Generally, this review introduces the characteristics and applications of Raman technology in nutrition analysis and discusses the limitations and future prospects of Raman spectroscopy for nutrition monitoring.
Collapse
Affiliation(s)
- Chao Hong
- State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou, Hainan Province 570228, China.
| | - Muling Shi
- State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou, Hainan Province 570228, China.
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province 410082, P.R. China
| | - Sixian Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry & Technology, Changsha, Hunan Province 410004, China
| | - Yiqing Yang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry & Technology, Changsha, Hunan Province 410004, China
| | - Zhangjie Pu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry & Technology, Changsha, Hunan Province 410004, China
| |
Collapse
|
2
|
Trends in pharmaceutical analysis and quality control by modern Raman spectroscopic techniques. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Allakhverdiev ES, Khabatova VV, Kossalbayev BD, Zadneprovskaya EV, Rodnenkov OV, Martynyuk TV, Maksimov GV, Alwasel S, Tomo T, Allakhverdiev SI. Raman Spectroscopy and Its Modifications Applied to Biological and Medical Research. Cells 2022; 11:cells11030386. [PMID: 35159196 PMCID: PMC8834270 DOI: 10.3390/cells11030386] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, there is an interest in biomedical and nanobiotechnological studies, such as studies on carotenoids as antioxidants and studies on molecular markers for cardiovascular, endocrine, and oncological diseases. Moreover, interest in industrial production of microalgal biomass for biofuels and bioproducts has stimulated studies on microalgal physiology and mechanisms of synthesis and accumulation of valuable biomolecules in algal cells. Biomolecules such as neutral lipids and carotenoids are being actively explored by the biotechnology community. Raman spectroscopy (RS) has become an important tool for researchers to understand biological processes at the cellular level in medicine and biotechnology. This review provides a brief analysis of existing studies on the application of RS for investigation of biological, medical, analytical, photosynthetic, and algal research, particularly to understand how the technique can be used for lipids, carotenoids, and cellular research. First, the review article shows the main applications of the modified Raman spectroscopy in medicine and biotechnology. Research works in the field of medicine and biotechnology are analysed in terms of showing the common connections of some studies as caretenoids and lipids. Second, this article summarises some of the recent advances in Raman microspectroscopy applications in areas related to microalgal detection. Strategies based on Raman spectroscopy provide potential for biochemical-composition analysis and imaging of living microalgal cells, in situ and in vivo. Finally, current approaches used in the papers presented show the advantages, perspectives, and other essential specifics of the method applied to plants and other species/objects.
Collapse
Affiliation(s)
- Elvin S. Allakhverdiev
- Russian National Medical Research Center of Cardiology, 3rd Cherepkovskaya St., 15A, 121552 Moscow, Russia; (E.S.A.); (O.V.R.); (T.V.M.)
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1/12, 119991 Moscow, Russia;
| | - Venera V. Khabatova
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya str., 35, 127276 Moscow, Russia; (V.V.K.); (E.V.Z.)
| | - Bekzhan D. Kossalbayev
- Geology and Oil-gas Business Institute Named after K. Turyssov, Satbayev University, Satpaeva, 22, Almaty 050043, Kazakhstan;
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050038, Kazakhstan
| | - Elena V. Zadneprovskaya
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya str., 35, 127276 Moscow, Russia; (V.V.K.); (E.V.Z.)
| | - Oleg V. Rodnenkov
- Russian National Medical Research Center of Cardiology, 3rd Cherepkovskaya St., 15A, 121552 Moscow, Russia; (E.S.A.); (O.V.R.); (T.V.M.)
| | - Tamila V. Martynyuk
- Russian National Medical Research Center of Cardiology, 3rd Cherepkovskaya St., 15A, 121552 Moscow, Russia; (E.S.A.); (O.V.R.); (T.V.M.)
| | - Georgy V. Maksimov
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1/12, 119991 Moscow, Russia;
- Department of Physical Materials Science, Technological University “MISiS”, Leninskiy Prospekt 4, Office 626, 119049 Moscow, Russia
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan;
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya str., 35, 127276 Moscow, Russia; (V.V.K.); (E.V.Z.)
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia;
- Institute of Basic Biological Problems, RAS, Pushchino, 142290 Moscow, Russia
- Correspondence:
| |
Collapse
|
4
|
|
5
|
Pinto R, Vilarinho R, Carvalho AP, Moreira JA, Guimarães L, Oliva-Teles L. Raman spectroscopy applied to diatoms (microalgae, Bacillariophyta): Prospective use in the environmental diagnosis of freshwater ecosystems. WATER RESEARCH 2021; 198:117102. [PMID: 33882320 DOI: 10.1016/j.watres.2021.117102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Diatom species are good pollution bioindicators due to their large distribution, fast response to changes in environmental parameters and different tolerance ranges. These organisms are used in ecological water assessment all over the world using autoecological indices. Such assessments commonly rely on the taxonomic identification of diatom species-specific shape and frustule ornaments, from which cell counts, species richness and diversity indices can be estimated. Taxonomic identification is, however, time-consuming and requires years of expertise. Additionally, though the diatom autoecological indices are region-specific, they are often applied indiscriminately across regions. Raman spectroscopy is a simpler, fast and label-free technique that can be applied to environmental diagnosis with diatoms. However, this approach has been poorly explored. This work reviews Raman spectroscopy studies involving the structure, location and conformation of diatom cell components and their variation under different conditions. A critical appreciation of the pros and cons of its application to environmental diagnosis is also given. This knowledge provides a strong foundation for the development of environmental protocols using Raman spectroscopy in diatoms. Our work aims at stimulating further research on the application of Raman spectroscopy as a tool to assess physiological changes and water quality under a changing climate.
Collapse
Affiliation(s)
- Raquel Pinto
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Rui Vilarinho
- IFIMUP, Department of Physics and Astronomy, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n. 4169-007, Porto, Portugal
| | - António Paulo Carvalho
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - J Agostinho Moreira
- IFIMUP, Department of Physics and Astronomy, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n. 4169-007, Porto, Portugal
| | - Laura Guimarães
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - Luís Oliva-Teles
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
6
|
Rüger J, Mondol AS, Schie IW, Popp J, Krafft C. High-throughput screening Raman microspectroscopy for assessment of drug-induced changes in diatom cells. Analyst 2019; 144:4488-4492. [PMID: 31287453 DOI: 10.1039/c9an00107g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
High-throughput screening Raman spectroscopy (HTS-RS) with automated localization algorithms offers unsurpassed speed and sensitivity to investigate the effect of dithiothreitol on the diatom Phaedactylum tricornutum. The HTS-RS capability that was demonstrated for this model system can be transferred to unmet analytical applications such as kinetic in vivo studies of microalgal assemblages.
Collapse
Affiliation(s)
- Jan Rüger
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | - Abdullah Saif Mondol
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany. and Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Iwan W Schie
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany. and Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany. and Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany.
| |
Collapse
|
7
|
Christensen D, Rüther A, Kochan K, Pérez-Guaita D, Wood B. Whole-Organism Analysis by Vibrational Spectroscopy. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:89-108. [PMID: 30978292 DOI: 10.1146/annurev-anchem-061318-115117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vibrational spectroscopy has contributed to the understanding of biological materials for many years. As the technology has advanced, the technique has been brought to bear on the analysis of whole organisms. Here, we discuss advanced and recently developed infrared and Raman spectroscopic instrumentation to whole-organism analysis. We highlight many of the recent contributions made in this relatively new area of spectroscopy, particularly addressing organisms associated with disease with emphasis on diagnosis and treatment. The application of vibrational spectroscopic techniques to entire organisms is still in its infancy, but new developments in imaging and chemometric processing will likely expand in the field in the near future.
Collapse
Affiliation(s)
- Dale Christensen
- School of Chemistry, Monash University, Victoria 3800, Australia;
| | - Anja Rüther
- School of Chemistry, Monash University, Victoria 3800, Australia;
| | - Kamila Kochan
- School of Chemistry, Monash University, Victoria 3800, Australia;
| | | | - Bayden Wood
- School of Chemistry, Monash University, Victoria 3800, Australia;
| |
Collapse
|
8
|
Abstract
Understanding the cellular basis of human health and disease requires the spatial resolution of microscopy and the molecular-level details provided by spectroscopy. This review highlights imaging methods at the intersection of microscopy and spectroscopy with applications in cell biology. Imaging methods are divided into three broad categories: fluorescence microscopy, label-free approaches, and imaging tools that can be applied to multiple imaging modalities. Just as these imaging methods allow researchers to address new biological questions, progress in biological sciences will drive the development of new imaging methods. We highlight four topics in cell biology that illustrate the need for new imaging tools: nanoparticle-cell interactions, intracellular redox chemistry, neuroscience, and the increasing use of spheroids and organoids. Overall, our goal is to provide a brief overview of individual imaging methods and highlight recent advances in the use of microscopy for cell biology.
Collapse
Affiliation(s)
- Joshua D Morris
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, Georgia 30043, USA
| | - Christine K Payne
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA;
| |
Collapse
|