1
|
Xu L, Shao Z, Fang X, Xin Z, Zhao S, Zhang H, Zhang Y, Zheng W, Yu X, Zhang Z, Sun L. Exploring precision treatments in immune-mediated inflammatory diseases: Harnessing the infinite potential of nucleic acid delivery. EXPLORATION (BEIJING, CHINA) 2025; 5:20230165. [PMID: 40040830 PMCID: PMC11875455 DOI: 10.1002/exp.20230165] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 03/06/2025]
Abstract
Immune-mediated inflammatory diseases (IMIDs) impose an immeasurable burden on individuals and society. While the conventional use of immunosuppressants and disease-modifying drugs has provided partial relief and control, their inevitable side effects and limited efficacy cast a shadow over finding a cure. Promising nucleic acid drugs have shown the potential to exert precise effects at the molecular level, with different classes of nucleic acids having regulatory functions through varying mechanisms. For the better delivery of nucleic acids, safe and effective viral vectors and non-viral delivery systems (including liposomes, polymers, etc.) have been intensively explored. Herein, after describing a range of nucleic acid categories and vectors, we focus on the application of therapeutic nucleic acid delivery in various IMIDs, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, multiple sclerosis, asthma, ankylosing spondylitis, systemic lupus erythematosus, and uveitis. Molecules implicated in inflammation and immune dysregulation are abnormally expressed in a series of IMIDs, and their meticulous modulation through nucleic acid therapy results in varying degrees of remission and improvement of these diseases. By synthesizing findings centered on specific molecular targets, this review delivers a systematic elucidation and perspective towards advancing and utilization of nucleic acid therapeutics for managing IMIDs.
Collapse
Affiliation(s)
- Lingxiao Xu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zhenxuan Shao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Xia Fang
- Department of Plastic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zengfeng Xin
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Shenzhi Zhao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Yu Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Wenbiao Zheng
- Department of OrthopedicsTaizhou Municipal HospitalTaizhouChina
| | - Xiaohua Yu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zengjie Zhang
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Lingling Sun
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
2
|
Alsaikhan F. Hyaluronic acid-empowered nanotheranostics in breast and lung cancers therapy. ENVIRONMENTAL RESEARCH 2023; 237:116951. [PMID: 37633628 DOI: 10.1016/j.envres.2023.116951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Nanomedicine application in cancer therapy is an urgency because of inability of current biological therapies for complete removal of tumor cells. The development of smart and novel nanoplatforms for treatment of cancer can provide new insight in tumor suppression. Hyaluronic acid is a biopolymer that can be employed for synthesis of smart nanostructures capable of selective targeting CD44-overexpressing tumor cells. The breast and lung cancers are among the most malignant and common tumors in both females and males that environmental factors, lifestyle and genomic alterations are among the risk factors for their pathogenesis and development. Since etiology of breast and lung tumors is not certain and multiple factors participate in their development, preventative measures have not been completely successful and studies have focused on developing new treatment strategies for them. The aim of current review is to provide a comprehensive discussion about application of hyaluronic acid-based nanostructures for treatment of breast and lung cancers. The main reason of using hyaluronic acid-based nanoparticles is their ability in targeting breast and lung cancers in a selective way due to upregulation of CD44 receptor on their surface. Moreover, nanocarriers developed from hyaluronic acid or functionalized with hyaluronic acid have high biocompatibility and their safety is appreciated. The drugs and genes used for treatment of breast and lung cancers lack specific accumulation at cancer site and their cytotoxicity is low, but hyaluronic acid-based nanostructures provide their targeted delivery to tumor site and by increasing internalization of drugs and genes in breast and lung tumor cells, they improve their therapeutic index. Furthermore, hyaluronic acid-based nanostructures can be used for phototherapy-mediated breast and lung cancers ablation. The stimuli-responsive and smart kinds of hyaluronic acid-based nanostructures such as pH- and light-responsive can increase selective targeting of breast and lung cancers.
Collapse
Affiliation(s)
- Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| |
Collapse
|
3
|
Abdellatif AAH, Scagnetti G, Younis MA, Bouazzaoui A, Tawfeek HM, Aldosari BN, Almurshedi AS, Alsharidah M, Rugaie OA, Davies MPA, Liloglou T, Ross K, Saleem I. Non-coding RNA-directed therapeutics in lung cancer: Delivery technologies and clinical applications. Colloids Surf B Biointerfaces 2023; 229:113466. [PMID: 37515959 DOI: 10.1016/j.colsurfb.2023.113466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Lung cancer is one of the most aggressive and deadliest health threats. There has been an increasing interest in non-coding RNA (ncRNA) recently, especially in the areas of carcinogenesis and tumour progression. However, ncRNA-directed therapies are still encountering obstacles on their way to the clinic. In the present article, we provide an overview on the potential of targeting ncRNA in the treatment of lung cancer. Then, we discuss the delivery challenges and recent approaches enabling the delivery of ncRNA-directed therapies to the lung cancer cells, where we illuminate some advanced technologies including chemically-modified oligonucleotides, nuclear targeting, and three-dimensional in vitro models. Furthermore, advanced non-viral delivery systems recruiting nanoparticles, biomimetic delivery systems, and extracellular vesicles are also highlighted. Lastly, the challenges limiting the clinical trials on the therapeutic targeting of ncRNAs in lung cancer and future directions to tackle them are explored.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Al Qassim 51452, Saudi Arabia; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Giulia Scagnetti
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK
| | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Medical Clinic, Hematology/Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, P.O. Box 991, Unaizah, Al Qassim 51911, Saudi Arabia
| | - Michael P A Davies
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, UK
| | | | - Kehinde Ross
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK; Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Imran Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Liverpool L3 3AF, UK; Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
4
|
Li L, Duns GJ, Dessie W, Cao Z, Ji X, Luo X. Recent advances in peptide-based therapeutic strategies for breast cancer treatment. Front Pharmacol 2023; 14:1052301. [PMID: 36794282 PMCID: PMC9922721 DOI: 10.3389/fphar.2023.1052301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related fatalities in female worldwide. Effective therapies with low side effects for breast cancer treatment and prevention are, accordingly, urgently required. Targeting anticancer materials, breast cancer vaccines and anticancer drugs have been studied for many years to decrease side effects, prevent breast cancer and suppress tumors, respectively. There are abundant evidences to demonstrate that peptide-based therapeutic strategies, coupling of good safety and adaptive functionalities are promising for breast cancer therapy. In recent years, peptide-based vectors have been paid attention in targeting breast cancer due to their specific binding to corresponding receptors overexpressed in cell. To overcome the low internalization, cell penetrating peptides (CPPs) could be selected to increase the penetration due to the electrostatic and hydrophobic interactions between CPPs and cell membranes. Peptide-based vaccines are at the forefront of medical development and presently, 13 types of main peptide vaccines for breast cancer are being studied on phase III, phase II, phase I/II and phase I clinical trials. In addition, peptide-based vaccines including delivery vectors and adjuvants have been implemented. Many peptides have recently been used in clinical treatments for breast cancer. These peptides show different anticancer mechanisms and some novel peptides could reverse the resistance of breast cancer to susceptibility. In this review, we will focus on current studies of peptide-based targeting vectors, CPPs, peptide-based vaccines and anticancer peptides for breast cancer therapy and prevention.
Collapse
Affiliation(s)
- Ling Li
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Gregory J. Duns
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Wubliker Dessie
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Zhenmin Cao
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Xiaofang Luo
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| |
Collapse
|
5
|
Chen H, Fang Z, Song M, Liu K. Mitochondrial targeted hierarchical drug delivery system based on HA-modified liposomes for cancer therapy. Eur J Med Chem 2022; 241:114648. [DOI: 10.1016/j.ejmech.2022.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022]
|
6
|
Yin D, Zhang M, Chen J, Huang Y, Liang D. Shear-responsive peptide/siRNA complexes as lung-targeting gene vectors. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Mohammadinejad R, Dehshahri A, Sagar Madamsetty V, Zahmatkeshan M, Tavakol S, Makvandi P, Khorsandi D, Pardakhty A, Ashrafizadeh M, Ghasemipour Afshar E, Zarrabi A. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release 2020; 325:249-275. [PMID: 32634464 PMCID: PMC7334939 DOI: 10.1016/j.jconrel.2020.06.038] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Gene therapy by expression constructs or down-regulation of certain genes has shown great potential for the treatment of various diseases. The wide clinical application of nucleic acid materials dependents on the development of biocompatible gene carriers. There are enormous various compounds widely investigated to be used as non-viral gene carriers including lipids, polymers, carbon materials, and inorganic structures. In this review, we will discuss the recent discoveries on non-viral gene delivery systems. We will also highlight the in vivo gene delivery mediated by non-viral vectors to treat cancer in different tissue and organs including brain, breast, lung, liver, stomach, and prostate. Finally, we will delineate the state-of-the-art and promising perspective of in vivo gene editing using non-viral nano-vectors.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Danial Khorsandi
- Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran; Department of Biotechnology-Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey.
| |
Collapse
|
8
|
Chu YL, Li H, Ng PLA, Kong ST, Zhang H, Lin Y, Tai WCS, Yu ACS, Yim AKY, Tsang HF, Cho WCS, Wong SCC. The potential of circulating exosomal RNA biomarkers in cancer. Expert Rev Mol Diagn 2020; 20:665-678. [PMID: 32188269 DOI: 10.1080/14737159.2020.1745064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/17/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION There are great potentials of using exosomal RNAs (exoRNA) as biomarkers in cancers. The isolation of exoRNA requires the use of ultracentrifugation to isolate cell-free RNA followed by detection using real-time PCR, microarray, next-generation sequencing, or Nanostring nCounter system. The use of exoRNA enrichment panels has largely increased the detection sensitivity and specificity when compared to traditional diagnostic tests. Moreover, using exoRNA as biomarkers can assist the early detection of chemo and radioresistance cancer, and in turn opens up the possibility of personalized treatment to patients. Finally, exoRNA can be detected at an early stage of cancer recurrence to improve the survival rate. AREAS COVERED In this review, the authors summarized the detection methods of exoRNA as well as its potential as a biomarker in cancer diagnosis and chemo and radioresistance. EXPERT OPINION The application of exoRNAs in clinical diagnosis is still in its infancy. Further researches on extracellular vesicles isolation, detection protocols, exoRNA classes and subclasses, and the regulatory biological pathways have to be performed before exoRNA can be applied translationally.
Collapse
Affiliation(s)
- Yin Lam Chu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Harriet Li
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Pik Lan Amanda Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Siu Ting Kong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College , Guangzhou, Guangdong, China
| | - Yusheng Lin
- Department of Immunotherapy and Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College , Shantou, Guangdong, China
| | - William Chi Shing Tai
- Department of Applied Biology and Chemical Technology, Faculty of Applied Sciences and Textiles, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region , Kowloon, China
| | | | | | - Hin Fung Tsang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | | | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| |
Collapse
|
9
|
Gareev I, Beylerli O, Yang G, Sun J, Pavlov V, Izmailov A, Shi H, Zhao S. The current state of MiRNAs as biomarkers and therapeutic tools. Clin Exp Med 2020; 20:349-359. [PMID: 32399814 DOI: 10.1007/s10238-020-00627-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs with a length of 18-22 nucleotides that regulate about a third of the human genome at the post-transcriptional level. MiRNAs are involved in almost all biological processes, including cell proliferation, apoptosis, and cell differentiation, but also play a key role in the pathogenesis of many diseases. Most miRNAs are expressed within the cells themselves. Due to various forms of transport from cells like exosomes, circulating miRNAs are stable and can be found in human body fluids, such as blood, saliva, cerebrospinal fluid, and urine. Circulating miRNAs are of great interest as potential noninvasive biomarkers for tumors, lipid disorders, diabetes mellitus, and cardiovascular diseases. However, the possibility of their use in the clinic is limited, and this is associated with a number of problems since currently there are significant differences between the procedures for processing samples, methods of analysis, and especially strategies for standardizing results. Moreover, miRNAs can represent not only potential biomarkers but also become new therapeutic agents and be used in modern clinical practice, which again confirms the need for their study.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jinxian Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Valentin Pavlov
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia
| | - Adel Izmailov
- Regional Clinical Oncology Center, Ufa, Republic of Bashkortostan, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001. .,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
10
|
Dziobek K, Opławski M, Grabarek BO, Zmarzły N, Kieszkowski P, Januszyk P, Kiełbasiński K, Kiełbasiński R, Boroń D. Assessment of the Usefulness of the SEMA5A Concentration Profile Changes as a Molecular Marker in Endometrial Cancer. Curr Pharm Biotechnol 2020; 21:45-51. [PMID: 31544715 DOI: 10.2174/1389201020666190911113611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/12/2019] [Accepted: 08/18/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Semaphorin 5A (SEMA5A) functions not only in the nervous system but also in cancer transformation where its role has not yet been sufficiently studied and described. OBJECTIVE The aim of the study was to determine the changes in SEMA5A expression in endometrial cancer at various degrees of its differentiation (G1-G3) compared to control. MATERIALS AND METHODS The study group consisted of 45 patients with endometrial cancer at various grades: G1, 17; G2, 15; G3, 13. The control consisted of 15 women without neoplastic changes in the routine gynecological examination. The statistical analysis of immunohistochemical assessment of SEMA5A level was carried out using the Statistica 12 program based on the Kruskal-Wallis test and Dunn's post-hoc test (p<0.05). RESULTS The expression of SEMA5A (optical density) was observed in the control group (Me = 103.43) and in the study group (G1, Me = 140.72; G2, Me = 150.88; G3, Me = 173.77). Differences in expression between each grade and control and between individual grades turned out to be statistically significant (p<0.01). The protein level of SEMA5A expression increased with the decreasing degree of endometrial cancer differentiation. CONCLUSION In our research, we indicated the overexpression of SEMA5A protein in endometrial cancer. It is a valuable starting point for further consideration of the role of SEMA5A as a new supplementary molecular marker in endometrial cancer.
Collapse
Affiliation(s)
- Konrad Dziobek
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Cracow, Poland
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Krakow, Poland
| | - Beniamin O Grabarek
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Cracow, Poland.,Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland.,Department of Molecular Biology, School of Pharmaceutical in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Nikola Zmarzły
- Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland.,Department of Molecular Biology, School of Pharmaceutical in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | | | - Piotr Januszyk
- Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland.,Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | | | - Robert Kiełbasiński
- Department of Obstetrics & Gynaecology ward, Health Center in Mikołów, Mikołów, Poland
| | - Dariusz Boroń
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Krakow, Poland.,Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland.,Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| |
Collapse
|
11
|
Gulei D, Raduly L, Broseghini E, Ferracin M, Berindan-Neagoe I. The extensive role of miR-155 in malignant and non-malignant diseases. Mol Aspects Med 2019; 70:33-56. [PMID: 31558293 DOI: 10.1016/j.mam.2019.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) have rapidly emerged as key molecules in cancer initiation and development, showing the capability to regulate pivotal oncogenic pathways. MiR-155 has gathered an increased attention especially in oncology, but also in non-malignanat pathologies. Nowadays, this noncoding RNA is one of the most important miRNAs in cancer, due to the extensive signaling network associated with it, implication in immune system regulation and also deregulation in disease states. Therefore, numerous research protocols are focused on preclinical modulation of miR-155 for therapeutic purposes, or investigation of its dynamic expression for diagnostic/prognostic assessments, with the final intention of bringing this miRNA into the clinical setting. This review comprehensively presents the extended role of miR-155 in cancer and other pathologies, where its expression is dysregulated. Finally, we assess the future steps toward miR-155 based therapeutics.
Collapse
Affiliation(s)
- Diana Gulei
- MEDFUTURE - Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Marinescu 23 Street, Cluj-Napoca, Romania.
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, 400337, Cluj-Napoca, Romania
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Manuela Ferracin
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, 400337, Cluj-Napoca, Romania; Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Marinescu 23 Street, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, 400337, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuţă", Cluj-Napoca, 400015, Romania.
| |
Collapse
|
12
|
Ossipov DA. Hyaluronan-based delivery of therapeutic oligonucleotides for treatment of human diseases. Expert Opin Drug Deliv 2019; 16:621-637. [PMID: 31072142 DOI: 10.1080/17425247.2019.1617693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Oligonucleotide therapeutics such as antisense oligonucleotides and siRNA requires chemical modifications and nano-sized carriers to circumvent stability problems in vivo, to reach target tissues, and to overcome tissue and cellular barriers. Hyaluronic acid (HA), already utilized in drug delivery and tissue engineering, possess properties that are useful to solve these problems and achieve full potential of oligonucleotide therapeutics. AREAS COVERED Complexes of oligonucleotide therapeutics with HA are discussed in terms of interactions providing the complexes formation and genes targeted by the therapeutics to cure diseases such as cancer, atherosclerosis, liver cirrhosis, and inflammation. The achieved therapeutic effects are rationalized as consequences of biodistribution, cell internalization and endosomal escape provided by HA. EXPERT OPINION Design of electrostatic, coordination, and hydrophobic interactions as well as covalent conjugation between oligonucleotide drugs, HA macromolecules and intermediate ligands are crucial for carrier-cargo association and dissociation under different conditions to impart oligonucleotides stability in vivo, their accumulation in diseased organs, cellular uptake, and dissociation in cytoplasm intact. These are the delivery factors that provides eventual complex formation of oligonucleotide therapeutics with their mRNA, microRNA, or protein targets. Elucidation of the impact of structural parameters of oligonucleotide/HA complexes on their therapeutic effect in vivo is important for the future rational design of the delivery agents.
Collapse
Affiliation(s)
- Dmitri A Ossipov
- a Department of Biosciences and Nutrition , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|