1
|
A Combined Experimental/Quantum-Chemical Study of Tetrel, Pnictogen, and Chalcogen Bonds of Linear Triatomic Molecules. Molecules 2021; 26:molecules26226767. [PMID: 34833858 PMCID: PMC8623034 DOI: 10.3390/molecules26226767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 12/05/2022] Open
Abstract
Linear triatomic molecules (CO2, N2O, and OCS) are scrutinized for their propensity to form perpendicular tetrel (CO2 and OCS) or pnictogen (N2O) bonds with Lewis bases (dimethyl ether and trimethyl amine) as compared with their tendency to form end-on chalcogen bonds. Comparison of the IR spectra of the complexes with the corresponding monomers in cryogenic solutions in liquid argon enables to determine the stoichiometry and the nature of the complexes. In the present cases, perpendicular tetrel and pnictogen 1:1 complexes are identified mainly on the basis of the lifting of the degenerate ν 2 bending mode with the appearance of both a blue and a red shift. Van ′t Hoff plots of equilibrium constants as a function of temperature lead to complexation enthalpies that, when converted to complexation energies, form the first series of experimental complexation energies on sp1 tetrel bonds in the literature, directly comparable to quantum-chemically obtained values. Their order of magnitude corresponds with what can be expected on the basis of experimental work on halogen and chalcogen bonds and previous computational work on tetrel bonds. Both the order of magnitude and sequence are in fair agreement with both CCSD(T) and DFA calculations, certainly when taking into account the small differences in complexation energies of the different complexes (often not more than a few kJ mol−1) and the experimental error. It should, however, be noted that the OCS chalcogen complexes are not identified experimentally, most probably owing to entropic effects. For a given Lewis base, the stability sequence of the complexes is first successfully interpreted via a classical electrostatic quadrupole–dipole moment model, highlighting the importance of the magnitude and sign of the quadrupole moment of the Lewis acid. This approach is validated by a subsequent analysis of the molecular electrostatic potential, scrutinizing the σ and π holes, as well as the evolution in preference for chalcogen versus tetrel bonds when passing to “higher” chalcogens in agreement with the evolution of the quadrupole moment. The energy decomposition analysis gives further support to the importance/dominance of electrostatic effects, as it turns out to be the largest attractive term in all cases considered, followed by the orbital interaction and the dispersion term. The natural orbitals for chemical valence highlight the sequence of charge transfer in the orbital interaction term, which is dominated by an electron-donating effect of the N or O lone-pair(s) of the base to the central atom of the triatomics, with its value being lower than in the case of comparable halogen bonding situations. The effect is appreciably larger for TMA, in line with its much higher basicity than DME, explaining the comparable complexation energies for DME and TMA despite the much larger dipole moment for DME.
Collapse
|
2
|
Del Bene JE, Alkorta I, Elguero J. IR and NMR properties of N-base:PH2F:BeX2 ternary and corresponding binary complexes stabilised by pnicogen and beryllium bonds. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1905191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Janet E. Del Bene
- Department of Chemistry, Youngstown State University, Youngstown, OH USA
| | | | | |
Collapse
|
3
|
Abstract
The heavier chalcogen atoms S, Se, and Te can each participate in a range of different noncovalent interactions. They can serve as both proton donor and acceptor in H-bonds. Each atom can also act as electron acceptor in a chalcogen bond.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
4
|
Abstract
The tetrel bond (TB) recruits an element drawn from the C, Si, Ge, Sn, Pb family as electron acceptor in an interaction with a partner Lewis base. The underlying principles that explain this attractive interaction are described in terms of occupied and vacant orbitals, total electron density, and electrostatic potential. These principles facilitate a delineation of the factors that feed into a strong TB. The geometric deformation that occurs within the tetrel-bearing Lewis acid monomer is a particularly important issue, with both primary and secondary effects. As a first-row atom of low polarizability, C is a reluctant participant in TBs, but its preponderance in organic and biochemistry make it extremely important that its potential in this regard be thoroughly understood. The IR and NMR manifestations of tetrel bonding are explored as spectroscopy offers a bridge to experimental examination of this phenomenon. In addition to the most common σ-hole type TBs, discussion is provided of π-hole interactions which are a result of a common alternate covalent bonding pattern of tetrel atoms.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.
| |
Collapse
|
5
|
Scheiner S. Versatility of the Cyano Group in Intermolecular Interactions. Molecules 2020; 25:E4495. [PMID: 33007991 PMCID: PMC7582283 DOI: 10.3390/molecules25194495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 11/17/2022] Open
Abstract
Several cyano groups are added to an alkane, alkene, and alkyne group so as to construct a Lewis acid molecule with a positive region of electrostatic potential in the area adjoining these substituents. Although each individual cyano group produces only a weak π-hole, when two or more such groups are properly situated, they can pool their π-holes into one much more intense positive region that is located midway between them. A NH3 base is attracted to this site, where it forms a strong noncovalent bond to the Lewis acid, amounting to as much as 13.6 kcal/mol. The precise nature of the bonding varies a bit from one complex to the next but typically contains a tetrel bond to the C atoms of the cyano groups or the C atoms of the linkage connecting the C≡N substituents. The placement of the cyano groups on a cyclic system like cyclopropane or cyclobutane has a mild weakening effect upon the binding. Although F is comparable to C≡N in terms of electron-withdrawing power, the replacement of cyano by F substituents substantially weakens the binding with NH3.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Logan, UT 84322-0300, USA
| |
Collapse
|
6
|
Exceptional bifurcated chalcogen bonding interaction between Ph2N2O2 and only one σ–hole on XCY (X=S, Se, Te and Y=O, S, Se, Te): a DFT study. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02669-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Elguero J, Alkorta I, Del Bene JE. Calculated coupling constants 1 J(X-Y) and 1 K(X-Y), and fundamental relationships among the reduced coupling constants for molecules H m X-YH n , with X, Y ═ 1 H, 7 Li, 9 Be, 11 B, 13 C, 15 N, 17 O, 19 F, 31 P, 33 S, and 35 Cl. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:727-732. [PMID: 32247293 DOI: 10.1002/mrc.5026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) calculations have been performed to determine coupling constants 1 J(X-Y) for 65 molecules Hm X-YHn , with X,Y ═ 1 H, 7 Li, 9 Be, 11 B, 13 C, 15 N, 17 O, 19 F, 31 P, 33 S, and 35 Cl. The computed 1 J(X-Y) values are in good agreement with available experimental data. The reduced coupling constants 1 K(X-Y) have been derived from 1 J(X-Y) by removing the dependence on the magnetogyric ratios of X and Y. Patterns are found for the reduced coupling constants on a 1 K(X-Y) surface that are related to the positions of X and Y in the periodic table.
Collapse
Affiliation(s)
- José Elguero
- Instituto de Química Médica (CSIC), Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Madrid, Spain
| | - Janet E Del Bene
- Department of Chemistry, Youngstown State University, Youngstown, Ohio, USA
| |
Collapse
|
8
|
Abstract
In this review, we provide a consistent description of noncovalent interactions, covering most groups of the Periodic Table. Different types of bonds are discussed using their trivial names. Moreover, the new name “Spodium bonds” is proposed for group 12 since noncovalent interactions involving this group of elements as electron acceptors have not yet been named. Excluding hydrogen bonds, the following noncovalent interactions will be discussed: alkali, alkaline earth, regium, spodium, triel, tetrel, pnictogen, chalcogen, halogen, and aerogen, which almost covers the Periodic Table entirely. Other interactions, such as orthogonal interactions and π-π stacking, will also be considered. Research and applications of σ-hole and π-hole interactions involving the p-block element is growing exponentially. The important applications include supramolecular chemistry, crystal engineering, catalysis, enzymatic chemistry molecular machines, membrane ion transport, etc. Despite the fact that this review is not intended to be comprehensive, a number of representative works for each type of interaction is provided. The possibility of modeling the dissociation energies of the complexes using different models (HSAB, ECW, Alkorta-Legon) was analyzed. Finally, the extension of Cahn-Ingold-Prelog priority rules to noncovalent is proposed.
Collapse
|
9
|
Nature of the Interaction of Pyridines with OCS. A Theoretical Investigation. Molecules 2020; 25:molecules25020416. [PMID: 31963861 PMCID: PMC7024555 DOI: 10.3390/molecules25020416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
Ab initio calculations were carried out to investigate the interaction between para-substituted pyridines (X-C5H4N, X=NH2, CH3, H, CN, NO2) and OCS. Three stable structures of pyridine.OCS complexes were detected at the MP2=full/aug-cc-pVDZ level. The A structure is characterized by N…S chalcogen bonds and has binding energies between −9.58 and −12.24 kJ/mol. The B structure is bonded by N…C tetrel bond and has binding energies between −10.78 and −11.81 kJ/mol. The C structure is characterized by π-interaction and has binding energies between −10.76 and −13.33 kJ/mol. The properties of the systems were analyzed by AIM, NBO, and SAPT calculations. The role of the electrostatic potential of the pyridines on the properties of the systems is outlined. The frequency shift of relevant vibrational modes is analyzed.
Collapse
|
10
|
Abstract
An algorithm for the efficient computation of molecular electrostatic potential is reported. It is based on the partition/expansion of density into (pseudo) atomic fragments with the method of Deformed Atoms in Molecules, which allows to compute the potential as a sum of atomic contributions. These contributions are expressed as a series of irregular spherical harmonics times effective multipole moments and inverse multipole moments, including short-range terms. The problem is split into two steps. The first one consists of the partition/expansion of density accompanied by the computation of multipole moments, and its cost depends on the size of the basis set used in the computation of electron density within the Linear Combination of Atomic Orbitals framework. The second one is the actual computation of the electrostatic potential from the quantities calculated in the first step, and its cost depends on the number of computation points. For a precision in the electrostatic potential of six decimal figures, the algorithm leads to a dramatic reduction of the computation time with respect to the calculation from electron density matrix and integrals involving basis set functions.
Collapse
|
11
|
Zierkiewicz W, Wysokiński R, Michalczyk M, Scheiner S. Chalcogen bonding of two ligands to hypervalent YF 4 (Y = S, Se, Te, Po). Phys Chem Chem Phys 2019; 21:20829-20839. [PMID: 31517347 DOI: 10.1039/c9cp04006d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability of two NH3 ligands to engage in simultaneous chalcogen bonds to a hypervalent YF4 molecule, with Y = S, Se, Te, Po, is assessed via quantum calculations. The complex can take on one of two different geometries. The cis structure places the two ligands adjacent to one another in a pseudo-octahedral geometry, held there by a pair of σ-hole chalcogen bonds. The bases can also lie nearly opposite one another, in a distorted octahedron containing one π-hole and one strained σ-hole bond. The cis geometry is favored for Y = S, while Te, and Po tend toward the trans structure; they are nearly equally stable for Se. In either case, the binding energy rises rapidly with the size of the Y atom, exceeding 30 kcal mol-1 for PoF4.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Rafał Wysokiński
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah 84322-0300, USA.
| |
Collapse
|
12
|
Del Bene JE, Alkorta I, Elguero J. N …C and S …S Interactions in Complexes, Molecules, and Transition Structures HN(CH)SX:SCO, for X = F, Cl, NC, CCH, H, and CN. Molecules 2019; 24:E3232. [PMID: 31491953 PMCID: PMC6767182 DOI: 10.3390/molecules24183232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/29/2019] [Accepted: 09/01/2019] [Indexed: 01/04/2023] Open
Abstract
Ab initio Møller-Plesset perturbation theory (MP2)/aug'-cc-pVTZ calculations have been carried out in search of complexes, molecules, and transition structures on HN(CH)SX:SCO potential energy surfaces for X = F, Cl, NC, CCH, H, and CN. Equilibrium complexes on these surfaces have C1 symmetry, but these have binding energies that are no more than 0.5 kJ·mol-1 greater than the corresponding Cs complexes which are vibrationally averaged equilibrium complexes. The binding energies of these span a narrow range and are independent of the N-C distance across the tetrel bond, but they exhibit a second-order dependence on the S-S distance across the chalcogen bond. Charge-transfer interactions stabilize all of these complexes. Only the potential energy surfaces HN(CH)SF:SCO and HN(CH)SCl:SCO have bound molecules that have short covalent N-C bonds and significantly shorter S…S chalcogen bonds compared to the complexes. Equation-of-motion coupled cluster singles and doubles (EOM-CCSD) spin-spin coupling constants 1tJ(N-C) for the HN(CH)SX:SCO complexes are small and exhibit no dependence on the N-C distance, while 1cJ(S-S) exhibit a second-order dependence on the S-S distance, increasing as the S-S distance decreases. Coupling constants 1tJ(N-C) and 1cJ(S-S) as a function of the N-C and S-S distances, respectively, in HN(CH)SF:SCO and HN(CH)SCl:SCO increase in the transition structures and then decrease in the molecules. These changes reflect the changing nature of the N…C and S…S bonds in these two systems.
Collapse
Affiliation(s)
- Janet E Del Bene
- Department of Chemistry, Youngstown State University, Youngstown, OH 44555, USA.
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
| | - José Elguero
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain
| |
Collapse
|
13
|
Vidal-Vidal Á, Silva López C, Faza ON. Lennard-Jones Intermolecular Potentials for the Description of 6-Membered Aromatic Heterocycles Interacting with the Isoelectronic CO 2 and CS 2. J Phys Chem A 2019; 123:4475-4485. [PMID: 30916964 DOI: 10.1021/acs.jpca.9b00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have generated Lennard-Jones potentials for the interaction between CX2 (X = O, S) and 11 nitrogen-doped benzene derivatives in different orientations at the M06-2X/def2-tzvpp level as tools to parametrize accurate force fields and to better understand the interaction of these greenhouse gases with heterocyclic building blocks used in the design of capture and detection systems. We find that the most favorable interactions are found between the carbon in CO2 and the main heterocycle in the ring in a parallel orientation, whereas the preferred interaction mode of CS2 is established between sulfur and the π density of the aromatic ring. The fact that the preferences for interaction sites and orientations of CO2 and CS2 are most of the times opposite helps in terms of ensuring the selectivity of these systems in front of these two isoelectronic compounds. The existence of very good linear correlations ( R2 values very close to one) between the number of nitrogen atoms in the heterocyclic ring and the depth of the interaction potential wells opens the door to the use of these results in generating coarse-grained potentials or models with predictive power for use in the design of larger systems.
Collapse
Affiliation(s)
- Ángel Vidal-Vidal
- Departamento de Quı́mica Orgánica, Facultade de Quı́mica , Campus Lagoas-Marcosende , 36310 Vigo , Spain
| | - Carlos Silva López
- Departamento de Quı́mica Orgánica, Facultade de Quı́mica , Campus Lagoas-Marcosende , 36310 Vigo , Spain
| | - Olalla Nieto Faza
- Departamento de Quı́mica Orgánica, Facultade de Ciencias , Universidade de Vigo , Campus As Lagoas , 32004 Ourense Spain
| |
Collapse
|
14
|
Michalczyk M, Zierkiewicz W, Wysokiński R, Scheiner S. Hexacoordinated Tetrel‐Bonded Complexes between TF4(T=Si, Ge, Sn, Pb) and NCH: Competition between σ‐ and π‐Holes. Chemphyschem 2019; 20:959-966. [DOI: 10.1002/cphc.201900072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 02/15/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Mariusz Michalczyk
- Faculty of ChemistryWrocław University of Science and Technology Wybrzeże, Wyspiańskiego 27 50-370 Wrocław Poland
| | - Wiktor Zierkiewicz
- Faculty of ChemistryWrocław University of Science and Technology Wybrzeże, Wyspiańskiego 27 50-370 Wrocław Poland
| | - Rafał Wysokiński
- Faculty of ChemistryWrocław University of Science and Technology Wybrzeże, Wyspiańskiego 27 50-370 Wrocław Poland
| | - Steve Scheiner
- Department of Chemistry and BiochemistryUtah State University Logan, Utah 84322-0300 United States
| |
Collapse
|
15
|
Abstract
Halogens in a M–X bond are inhibited from forming a halogen bond but can do so in certain circumstances, with or without a σ-hole.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| |
Collapse
|
16
|
Sethio D, Oliveira V, Kraka E. Quantitative Assessment of Tetrel Bonding Utilizing Vibrational Spectroscopy. Molecules 2018; 23:E2763. [PMID: 30366391 PMCID: PMC6278569 DOI: 10.3390/molecules23112763] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 01/15/2023] Open
Abstract
A set of 35 representative neutral and charged tetrel complexes was investigated with the objective of finding the factors that influence the strength of tetrel bonding involving single bonded C, Si, and Ge donors and double bonded C or Si donors. For the first time, we introduced an intrinsic bond strength measure for tetrel bonding, derived from calculated vibrational spectroscopy data obtained at the CCSD(T)/aug-cc-pVTZ level of theory and used this measure to rationalize and order the tetrel bonds. Our study revealed that the strength of tetrel bonds is affected by several factors, such as the magnitude of the σ-hole in the tetrel atom, the negative electrostatic potential at the lone pair of the tetrel-acceptor, the positive charge at the peripheral hydrogen of the tetrel-donor, the exchange-repulsion between the lone pair orbitals of the peripheral atoms of the tetrel-donor and the heteroatom of the tetrel-acceptor, and the stabilization brought about by electron delocalization. Thus, focusing on just one or two of these factors, in particular, the σ-hole description can only lead to an incomplete picture. Tetrel bonding covers a range of -1.4 to -26 kcal/mol, which can be strengthened by substituting the peripheral ligands with electron-withdrawing substituents and by positively charged tetrel-donors or negatively charged tetrel-acceptors.
Collapse
Affiliation(s)
- Daniel Sethio
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA.
| | - Vytor Oliveira
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA.
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA.
| |
Collapse
|
17
|
Montero-Campillo MM, Alkorta I, Elguero J. Binding indirect greenhouse gases OCS and CS2by nitrogen heterocyclic carbenes (NHCs). Phys Chem Chem Phys 2018; 20:19552-19559. [DOI: 10.1039/c8cp03217c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon disulfide (CS2) and carbonyl sulfide (OCS) are indirect greenhouse gases that can be effectively trapped by classical, abnormal and remote nitrogen heterocyclic carbenes (NHCs), according to high levelab initiocalculations.
Collapse
Affiliation(s)
- M. Merced Montero-Campillo
- Dep. de Química
- Facultad de Ciencias, Módulo 13, and Institute of Advanced Chemical Sciences (IadChem)
- Universidad Autónoma de Madrid
- E-28049 Madrid
- Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC)
- E-28006 Madrid
- Spain
| | - José Elguero
- Instituto de Química Médica (CSIC)
- E-28006 Madrid
- Spain
| |
Collapse
|