1
|
Asadi Tokmedash M, Kim C, Chavda AP, Li A, Robins J, Min J. Engineering multifunctional surface topography to regulate multiple biological responses. Biomaterials 2025; 319:123136. [PMID: 39978049 PMCID: PMC11893264 DOI: 10.1016/j.biomaterials.2025.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Surface topography or curvature plays a crucial role in regulating cell behavior, influencing processes such as adhesion, proliferation, and gene expression. Recent advancements in nano- and micro-fabrication techniques have enabled the development of biomimetic systems that mimic native extracellular matrix (ECM) structures, providing new insights into cell-adhesion mechanisms, mechanotransduction, and cell-environment interactions. This review examines the diverse applications of engineered topographies across multiple domains, including antibacterial surfaces, immunomodulatory devices, tissue engineering scaffolds, and cancer therapies. It highlights how nanoscale features like nanopillars and nanospikes exhibit bactericidal properties, while many microscale patterns can direct stem cell differentiation and modulate immune cell responses. Furthermore, we discuss the interdisciplinary use of topography for combined applications, such as the simultaneous regulation of immune and tissue cells in 2D and 3D environments. Despite significant advances, key knowledge gaps remain, particularly regarding the effects of topographical cues on multicellular interactions and dynamic 3D contexts. This review summarizes current fabrication methods, explores specific and interdisciplinary applications, and proposes future research directions to enhance the design and utility of topographically patterned biomaterials in clinical and experimental settings.
Collapse
Affiliation(s)
| | - Changheon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay P Chavda
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adrian Li
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob Robins
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jouha Min
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Gnatowski P, Ansariaghmiuni M, Piłat E, Poostchi M, Kucińska-Lipka J, Yazdi MK, Ryl J, Ashrafizadeh M, Mottaghitalab F, Farokhi M, Saeb MR, Bączek T, Chen C, Lu Q. Hydrogel membranes in organ-on-a-chip devices: A review. Colloids Surf B Biointerfaces 2025; 251:114591. [PMID: 40054047 DOI: 10.1016/j.colsurfb.2025.114591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/31/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025]
Abstract
Organ-on-a-chip (OoC) devices represent advanced in vitro models enabling to mimic the human tissue architecture function and physiology, providing a promising alternative to the traditional animal testing methods. These devices combine the microfluidics with soft materials, specifically hydrogel membranes (HMs) for mimicking the extracellular matrix (ECM) and biological barriers, such as the blood-brain barrier (BBB). Hydrogels are ideal biomaterials for OoC systems because of their tunable properties, biocompatibility, biodegradability, and microscale self-assembly. The integration of HMs with OoC devices provides an effective way to develop dynamic, biologically relevant environments for supporting living cells targeted at drug discovery, disease modeling, and personalized medicine. Recent advancements in fabrication technologies such as additive manufacturing (3D printing), photolithography, and bioprinting have additionally advanced development of such systems. This review aims to outline the role of HMs in OoC platforms, highlighting their material properties, self-assembly behavior, and also challenges associated with their fabrication. Additionally, we visualize and discuss the latest progress made in utilizing HMs for applications in tissue engineering, drug development, and biosensing, with a focus on their interface dynamics and structural self-organization. The future perspective on OoC technology has also been patterned in order to provide a broader image on integration of OoC and HMs with personalized medicine and advanced drug delivery systems.
Collapse
Affiliation(s)
- Przemysław Gnatowski
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, Gdańsk 80-233, Poland; Department of Environmental Toxicology, Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębowa 23A, Gdańsk 80-204, Poland
| | - Maryam Ansariaghmiuni
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 11365-9516, Iran
| | - Edyta Piłat
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, Gdańsk 80-233, Poland
| | - Maryam Poostchi
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, Gdańsk 80-233, Poland
| | - Justyna Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, Gdańsk 80-233, Poland
| | - Mohsen Khodadadi Yazdi
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland; Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland; Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, Gdańsk 80-416, Poland.
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, Gdańsk 80-416, Poland.
| | - Chu Chen
- Department of Cardiology, Cardiac Arrhythmia Center, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Qi Lu
- Department of Cardiology, Cardiac Arrhythmia Center, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
3
|
Xu J, Harasek M, Gföhler M. From Soft Lithography to 3D Printing: Current Status and Future of Microfluidic Device Fabrication. Polymers (Basel) 2025; 17:455. [PMID: 40006117 PMCID: PMC11859042 DOI: 10.3390/polym17040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
The advent of 3D printing has revolutionized the fabrication of microfluidic devices, offering a compelling alternative to traditional soft lithography techniques. This review explores the potential of 3D printing, particularly photopolymerization techniques, fused deposition modeling, and material jetting, in advancing microfluidics. We analyze the advantages of 3D printing in terms of cost efficiency, geometric complexity, and material versatility while addressing key challenges such as material transparency and biocompatibility, which have represented the limiting factors for its widespread adoption. Recent developments in printing technologies and materials are highlighted, underscoring the progress in overcoming these barriers. Finally, we discuss future trends and opportunities, including advancements in printing resolution and speed, the development of new printable materials, process standardization, and the emergence of bioprinting for organ-on-a-chip applications. Sustainability and regulatory frameworks are also considered critical aspects shaping the future of 3D-printed microfluidics. By bridging the gap between traditional and emerging fabrication techniques, this review aims to illuminate the transformative potential of 3D printing in microfluidic device manufacturing.
Collapse
Affiliation(s)
- Jingjing Xu
- Institute of Engineering Design and Product Development, Technische Universität Wien, 1060 Vienna, Austria;
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria;
| | - Michael Harasek
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060 Vienna, Austria;
| | - Margit Gföhler
- Institute of Engineering Design and Product Development, Technische Universität Wien, 1060 Vienna, Austria;
| |
Collapse
|
4
|
Karimi K, Fardoost A, Mhatre N, Rajan J, Boisvert D, Javanmard M. A Thorough Review of Emerging Technologies in Micro- and Nanochannel Fabrication: Limitations, Applications, and Comparison. MICROMACHINES 2024; 15:1274. [PMID: 39459148 PMCID: PMC11509582 DOI: 10.3390/mi15101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
In recent years, the field of micro- and nanochannel fabrication has seen significant advancements driven by the need for precision in biomedical, environmental, and industrial applications. This review provides a comprehensive analysis of emerging fabrication technologies, including photolithography, soft lithography, 3D printing, electron-beam lithography (EBL), wet/dry etching, injection molding, focused ion beam (FIB) milling, laser micromachining, and micro-milling. Each of these methods offers unique advantages in terms of scalability, precision, and cost-effectiveness, enabling the creation of highly customized micro- and nanochannel structures. Challenges related to scalability, resolution, and the high cost of traditional techniques are addressed through innovations such as deep reactive ion etching (DRIE) and multipass micro-milling. This paper also explores the application potential of these technologies in areas such as lab-on-a-chip devices, biomedical diagnostics, and energy-efficient cooling systems. With continued research and technological refinement, these methods are poised to significantly impact the future of microfluidic and nanofluidic systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854, USA; (K.K.); (A.F.); (N.M.); (J.R.); (D.B.)
| |
Collapse
|
5
|
Tran DT, Yadav AS, Nguyen NK, Singha P, Ooi CH, Nguyen NT. Biodegradable Polymers for Micro Elastofluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303435. [PMID: 37292037 DOI: 10.1002/smll.202303435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 06/10/2023]
Abstract
Micro elastofluidics is an emerging research field that encompasses characteristics of conventional microfluidics and fluid-structure interactions. Micro elastofluidics is expected to enable practical applications, for instance, where direct contact between biological samples and fluid handling systems is required. Besides design optimization, choosing a proper material is critical to the practical use of micro elastofluidics upon interaction with biological interface and after its functional lifetime. Biodegradable polymers are one of the most studied materials for this purpose. Micro elastofluidic devices made of biodegradable polymers possess exceptional mechanical elasticity, excellent bio compatibility, and structural degradability into non-toxic products. This article provides an insightful and systematic review of the utilization of biodegradable polymers in digital and continuous-flow micro elastofluidics.
Collapse
Affiliation(s)
- Du Tuan Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Ajeet Singh Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nhat-Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Pradip Singha
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| |
Collapse
|
6
|
Ritanjali SR, Bhandaru N, Mukherjee R. Influence of Initial Film Properties in UVO-Mediated Patterning of an Elastomeric Film Using a TEM Grid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39132929 DOI: 10.1021/acs.langmuir.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Ultraviolet irradiation of a cross-linked polydimethylsiloxane (PDMS) Sylgard 184 film in the presence of atmospheric oxygen (UVO) through a bare transmission electron microscope (TEM) sample holding grid is a rather simple and widely utilized technique for creating micropatterned surfaces. The surface oxidation of a Sylgard 184 film due to UVO exposure is associated with densification and the formation of a silica-like surface layer, which under a TEM grid happens only over the exposed areas of the film, resulting in a physicochemical pattern. It is known that the depth (hD) of the features depends on the duration of UVO exposure (tE). In this article, we show for the first time that hD also depends on the initial film thickness (hF) and the cross-linker percentage (CL, ratio of part A to part B) in a Sylgard 184 thin film. We show that for a specific tE, hD progressively decreases with the reduction in hF. On the other hand, hD shows a nonmonotonic dependence with CL, resulting in patterns with maximum depth for CL ≈ 10.0%. We attribute this observation to the combined effect of resistance against the penetration of the propagation front by the rigid substrate as well as stress relaxation within the exposed parts of the film below the propagating front in films with higher CL values leading to the variation of hD. The observation reported here would allow the potential fabrication of polymer films with physicochemical patterns with feature height on demand by a one-step, facile technique.
Collapse
Affiliation(s)
- Sushree Ritu Ritanjali
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721-302, India
| | - Nandini Bhandaru
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana 500-078, India
| | - Rabibrata Mukherjee
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721-302, India
| |
Collapse
|
7
|
Kalinke C, Crapnell RD, de Oliveira PR, Janegitz BC, Bonacin JA, Banks CE. How to Improve Sustainability in Fused Filament Fabrication (3D Printing) Research? GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300408. [PMID: 39006060 PMCID: PMC11237179 DOI: 10.1002/gch2.202300408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/11/2024] [Indexed: 07/16/2024]
Abstract
This review aims to provide an overview of sustainable approaches that can be incorporated into well-known procedures for the development of materials, pre- and post-treatments, modifications, and applications of 3D-printed objects, especially for fused filament fabrication (FFF). Different examples of conductive and non-conductive bespoke filaments using renewable biopolymers, bioplasticizers, and recycled materials are presented and discussed. The main final characteristics of the polymeric materials achieved according to the feedstock, preparation, extrusion, and treatments are also covered. In addition to recycling and remanufacturing, this review also explores other alternative approaches that can be adopted to enhance the sustainability of methods, aiming to produce efficient and environmentally friendly 3D printed products. Adjusting printing parameters and miniaturizing systems are also highlighted in this regard. All these recommended strategies are employed to minimize environmental damage, while also enabling the production of high-quality, economical materials and 3D printed systems. These efforts align with the principles of Green Chemistry, Sustainable Development Goals (SDGs), 3Rs (Reduce, Reuse, Recycle), and Circular Economy concepts.
Collapse
Affiliation(s)
- Cristiane Kalinke
- Institute of ChemistryUniversity of Campinas (UNICAMP)CampinasSão Paulo13083–859Brazil
- Faculty of Science and EngineeringManchester Metropolitan UniversityChester StreetManchesterM1 5GDUK
| | - Robert D. Crapnell
- Faculty of Science and EngineeringManchester Metropolitan UniversityChester StreetManchesterM1 5GDUK
| | - Paulo R. de Oliveira
- Faculty of Science and EngineeringManchester Metropolitan UniversityChester StreetManchesterM1 5GDUK
- Department of Nature SciencesMathematics, and EducationFederal University of São Carlos (UFSCar)ArarasSão Paulo13600–970Brazil
| | - Bruno C. Janegitz
- Department of Nature SciencesMathematics, and EducationFederal University of São Carlos (UFSCar)ArarasSão Paulo13600–970Brazil
| | - Juliano A. Bonacin
- Institute of ChemistryUniversity of Campinas (UNICAMP)CampinasSão Paulo13083–859Brazil
| | - Craig E. Banks
- Faculty of Science and EngineeringManchester Metropolitan UniversityChester StreetManchesterM1 5GDUK
| |
Collapse
|
8
|
Periz R, Geuß M, Mameka N, Markmann J, Steinhart M. High-Temperature Melt Stamping of Polymers Using Polymer/Nanoporous Gold Composite Stamps. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308478. [PMID: 38263727 DOI: 10.1002/smll.202308478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/05/2024] [Indexed: 01/25/2024]
Abstract
Parallel lithographic deposition of polymers onto counterpart substrates is a widely applied surface manufacturing operation. However, polymers may only be soluble in organic solvents or are insoluble at all. Solvent evaporation during stamping may trigger hardly controllable capillarity-driven flow processes or phase separation, and polymer solutions may spread on the counterpart substrates. Solvent-free stamping of melts prevents these drawbacks. Here, a stamp design for the deposition of melts is devised, which intrinsically circumvents ink depletion. The stamps' topographically patterned contact surfaces with protruding contact elements contacting the counterpart substrates consist of a nanoporous gold layer with a thickness of a few micrometers. The nanoporous gold layer is attached to a molten polymer layer, which is support for the nanoporous gold layer and ink reservoir at the same time. The nanoporous gold layer in turn stabilizes the topography of the stamps' contact surfaces. As examples, arrays of submicron microdots of polystyrene and poly(vinylidenefluoride-trifluoroethylene) (PVDF-TrFE) are manufactured. The P(VDF-TrFE) microdots are partially crystalline, ferroelectric, and can be locally poled. It is envisioned that the methodology reported here can be automatized and may be extended to functional low-molecular-mass compounds, such as active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Ruža Periz
- School of Biology and Chemistry and CellNanOs, Universität Osnabrück, Barbarastr. 7, 49076, Osnabrück, Germany
| | - Markus Geuß
- School of Biology and Chemistry and CellNanOs, Universität Osnabrück, Barbarastr. 7, 49076, Osnabrück, Germany
| | - Nadiia Mameka
- Helmholtz-Zentrum Hereon, Institute of Materials Mechanics, 21502, Geesthacht, Germany
| | - Jürgen Markmann
- Helmholtz-Zentrum Hereon, Institute of Materials Mechanics, 21502, Geesthacht, Germany
- Institute of Materials Physics and Technology, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Martin Steinhart
- School of Biology and Chemistry and CellNanOs, Universität Osnabrück, Barbarastr. 7, 49076, Osnabrück, Germany
| |
Collapse
|
9
|
Eder T, Mautner A, Xu Y, Reithofer MR, Bismarck A, Chin JM. Transparent PDMS Surfaces with Covalently Attached Lubricants for Enhanced Anti-adhesion Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10942-10952. [PMID: 38350021 PMCID: PMC10910447 DOI: 10.1021/acsami.3c17110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
Liquid-like surfaces featuring slippery, omniphobic, covalently attached liquids (SOCALs) reduce unwanted adhesion by providing a molecularly smooth and slippery surface arising from the high mobility of the liquid chains. Such SOCALs are commonly prepared on hard substrates, such as glass, wafers, or metal oxides, despite the importance of nonpolar elastomeric substrates, such as polydimethylsiloxane (PDMS) in anti-fouling or nonstick applications. Compared to polar elastomers, hydrophobic PDMS elastomer activation and covalent functionalization are significantly more challenging, as PDMS tends to display fast hydrophobic recovery upon activation as well as superficial cracking. Through the extraction of excess PDMS oligomers and fine-tuning of plasma activation parameters, homogeneously functionalized PDMS with fluorinated polysiloxane brushes could be obtained while at the same time reducing crack formation. Polymer brush mobility was increased through the addition of a smaller molecular silane linker to exhibit enhanced dewetting properties and reduced substrate swelling compared to functionalizations featuring hydrocarbon functionalities. Linear polymer brushes were verified by thermogravimetric analysis. The optical properties of PDMS remained unaffected by the activation in high-frequency plasma but were impacted by low-frequency plasma. Drastic decreases in solid adhesion of not just complex contaminants but even ice could be shown in horizontal push tests, demonstrating the potential of SOCAL-functionalized PDMS surfaces for improved nonstick applications.
Collapse
Affiliation(s)
- Tanja Eder
- Department
of Functional Materials and Catalysis, University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Institute
of Materials Chemistry and Research, University
of Vienna, Währinger
Straße 42, 1090 Vienna, Austria
| | - Andreas Mautner
- Institute
of Materials Chemistry and Research, University
of Vienna, Währinger
Straße 42, 1090 Vienna, Austria
- Institute
of Environmental Biotechnology, University
of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Donau, Austria
| | - Yufeng Xu
- Department
of Functional Materials and Catalysis, University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Michael R. Reithofer
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Alexander Bismarck
- Institute
of Materials Chemistry and Research, University
of Vienna, Währinger
Straße 42, 1090 Vienna, Austria
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, London SW7 2AZ, U.K.
| | - Jia Min Chin
- Department
of Functional Materials and Catalysis, University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| |
Collapse
|
10
|
Naik DA, Matonis S, Balakrishnan G, Bettinger CJ. Intestinal retentive systems - recent advances and emerging approaches. J Mater Chem B 2023; 12:64-78. [PMID: 38047746 DOI: 10.1039/d3tb01842c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Intestinal retentive devices (IRDs) are devices designed to anchor within the lumen of the intestines for long-term residence in the gastrointestinal tract. IRDs can enable impactful medical device technologies including sustained oral drug delivery systems, indwelling sensors, or real-time diagnostics. The design and testing of IRDs present a myriad of challenges, including precise deployment of the device at desired intestinal locations, secure anchoring within the gastrointestinal tract to allow for natural function, and safe removal of the IRD at user-defined times. Advancing the state-of-the-art of IRD is an interdisciplinary effort that requires innovations such as new materials, novel anchoring mechanisms, and medical device design with consistent input from clinical practitioners and end-users. This perspective briefly reviews the current state-of-the-art for IRDs and charts a path forward to inform the design of future concepts. Specifically, this article will highlight materials, retention mechanisms, and test beds to measure the efficacy of IRDs and their mechanisms. Finally, potential synergies between IRD and other medical device technologies are presented to identify future opportunities.
Collapse
Affiliation(s)
- Durva A Naik
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
| | - Spencer Matonis
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
| | - Gaurav Balakrishnan
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
| | - Christopher J Bettinger
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
- Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall 4N201, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Kalita N, Gogoi S, Minteer SD, Goswami P. Advances in Bioelectrode Design for Developing Electrochemical Biosensors. ACS MEASUREMENT SCIENCE AU 2023; 3:404-433. [PMID: 38145027 PMCID: PMC10740130 DOI: 10.1021/acsmeasuresciau.3c00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023]
Abstract
The critical performance factors such as selectivity, sensitivity, operational and storage stability, and response time of electrochemical biosensors are governed mainly by the function of their key component, the bioelectrode. Suitable design and fabrication strategies of the bioelectrode interface are essential for realizing the requisite performance of the biosensors for their practical utility. A multifaceted attempt to achieve this goal is visible from the vast literature exploring effective strategies for preparing, immobilizing, and stabilizing biorecognition elements on the electrode surface and efficient transduction of biochemical signals into electrical ones (i.e., current, voltage, and impedance) through the bioelectrode interface with the aid of advanced materials and techniques. The commercial success of biosensors in modern society is also increasingly influenced by their size (and hence portability), multiplexing capability, and coupling in the interface of the wireless communication technology, which facilitates quick data transfer and linked decision-making processes in real-time in different areas such as healthcare, agriculture, food, and environmental applications. Therefore, fabrication of the bioelectrode involves careful selection and control of several parameters, including biorecognition elements, electrode materials, shape and size of the electrode, detection principles, and various fabrication strategies, including microscale and printing technologies. This review discusses recent trends in bioelectrode designs and fabrications for developing electrochemical biosensors. The discussions have been delineated into the types of biorecognition elements and their immobilization strategies, signal transduction approaches, commonly used advanced materials for electrode fabrication and techniques for fabricating the bioelectrodes, and device integration with modern electronic communication technology for developing electrochemical biosensors of commercial interest.
Collapse
Affiliation(s)
- Nabajyoti Kalita
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sudarshan Gogoi
- Department
of Chemistry, Sadiya College, Chapakhowa, Assam 786157, India
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pranab Goswami
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
12
|
Aggarwal RT, Lai L, Li H. Microarray fabrication techniques for multiplexed bioassay applications. Anal Biochem 2023; 683:115369. [PMID: 37914004 DOI: 10.1016/j.ab.2023.115369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Microarrays are powerful tools for high-throughput bioassays that can extract information from tens of thousands of micro-spots consisting of biomolecules. This information is invaluable to many applications, such as drug discovery and disease diagnostics. Different applications of these microarrays need spots of different shapes, sizes, and chemistries to achieve their goals. Micro/nano-fabrication techniques are used to make microarrays with different feature structures and array densities for required assay procedures. Understanding these fabrication methods is essential to creating an effective microarray. The purpose of this article is to critically review fabrication methods used in recent microarray-based bioassay studies. We summarized commonly used microarray fabrication techniques and filled the gap in recent literature on relevant topics. We discussed recent examples of how microarrays were fabricated and used in a variety of bioassays. Specifically, we examined microarray printing, various microlithography techniques, and microfluidics-based microarray fabrication. We evaluated how their application shaped the fabrication methods and compared their performance based on different applications. In the end, we discussed current challenges and outlined potential future directions. This review addressed the gap in literature and provided important insights for choosing appropriate fabrication techniques towards different applications.
Collapse
Affiliation(s)
| | - Leyun Lai
- School of Engineering, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | - Huiyan Li
- School of Engineering, University of Guelph, Guelph, Ontario, N1G2W1, Canada.
| |
Collapse
|
13
|
Mishra S, Kumarasamy M. Microfluidics engineering towards personalized oncology-a review. IN VITRO MODELS 2023; 2:69-81. [PMID: 39871996 PMCID: PMC11756504 DOI: 10.1007/s44164-023-00054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 01/29/2025]
Abstract
Identifying and monitoring the presence of cancer metastasis and highlighting inter-and intratumoral heterogeneity is a central tenet of targeted precision oncology medicine (POM). This process of relocation of cancer cells is often referred to as the missing link between a tumor and metastasis. In recent years, microfluidic technologies have been developed to isolate a plethora of different biomarkers, such as circulating tumor cells (CTCs), tumor-derived vesicles (exosomes), or cell/free nucleic acids and proteins directly from patients' blood samples. With the advent of microfluidic developments, minimally invasive and quantitative assessment of different tumors is becoming a reality. This short review article will touch briefly on how microfluidics at early-stage achievements can be combined or developed with the active vs passive microfluidic technologies, depending on whether they utilize external fields and forces (active) or just microchannel geometry and inherent fluid forces (passive) from the market to precision oncology research and our future prospectives in terms of the emergence of ultralow cost and rapid prototyping of microfluidics in precision oncology.
Collapse
Affiliation(s)
- Sushmita Mishra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur (NIPERHajipur) Export Promotion Industrial Park (EPIP), Industrial Area, Vaishali, 844102 Bihar India
| | - Murali Kumarasamy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur (NIPERHajipur) Export Promotion Industrial Park (EPIP), Industrial Area, Vaishali, 844102 Bihar India
| |
Collapse
|
14
|
Borriello M, Tarabella G, D’Angelo P, Liboà A, Barra M, Vurro D, Lombari P, Coppola A, Mazzella E, Perna AF, Ingrosso D. Lab on a Chip Device for Diagnostic Evaluation and Management in Chronic Renal Disease: A Change Promoting Approach in the Patients' Follow Up. BIOSENSORS 2023; 13:373. [PMID: 36979584 PMCID: PMC10046018 DOI: 10.3390/bios13030373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Lab-on-a-chip (LOC) systems are miniaturized devices aimed to perform one or several analyses, normally carried out in a laboratory setting, on a single chip. LOC systems have a wide application range, including diagnosis and clinical biochemistry. In a clinical setting, LOC systems can be associated with the Point-of-Care Testing (POCT) definition. POCT circumvents several steps in central laboratory testing, including specimen transportation and processing, resulting in a faster turnaround time. Provider access to rapid test results allows for prompt medical decision making, which can lead to improved patient outcomes, operational efficiencies, patient satisfaction, and even cost savings. These features are particularly attractive for healthcare settings dealing with complicated patients, such as those affected by chronic kidney disease (CKD). CKD is a pathological condition characterized by progressive and irreversible structural or functional kidney impairment lasting for more than three months. The disease displays an unavoidable tendency to progress to End Stage Renal Disease (ESRD), thus requiring renal replacement therapy, usually dialysis, and transplant. Cardiovascular disease (CVD) is the major cause of death in CKD, with a cardiovascular risk ten times higher in these patients than the rate observed in healthy subjects. The gradual decline of the kidney leads to the accumulation of uremic solutes, with negative effect on organs, especially on the cardiovascular system. The possibility to monitor CKD patients by using non-invasive and low-cost approaches could give advantages both to the patient outcome and sanitary costs. Despite their numerous advantages, POCT application in CKD management is not very common, even if a number of devices aimed at monitoring the CKD have been demonstrated worldwide at the lab scale by basic studies (low Technology Readiness Level, TRL). The reasons are related to both technological and clinical aspects. In this review, the main technologies for the design of LOCs are reported, as well as the available POCT devices for CKD monitoring, with a special focus on the most recent reliable applications in this field. Moreover, the current challenges in design and applications of LOCs in the clinical setting are briefly discussed.
Collapse
Affiliation(s)
- Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| | | | | | - Aris Liboà
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (G.T.)
| | - Mario Barra
- CNR-SPIN, c/o Dipartimento di Fisica “Ettore Pancini”, P.le Tecchio, 80, 80125 Naples, Italy
| | - Davide Vurro
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (G.T.)
| | - Patrizia Lombari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| | - Annapaola Coppola
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| | - Elvira Mazzella
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, via Via Pansini, Bldg 17, 80131 Naples, Italy
| | - Alessandra F. Perna
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, via Via Pansini, Bldg 17, 80131 Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|
15
|
Kalidindi S, Yi H. Robust and Reliable Fabrication of Gelatin Films Containing Micropatterned Opal Structures via Evaporative Deposition and Thermal Gelation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57481-57491. [PMID: 36512441 DOI: 10.1021/acsami.2c20266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Biopolymeric hydrogel materials containing tunable optical properties such as micropatterned artificial opal structures hold significant potential in various applications. Despite recent advances in fabrication techniques, simple, reliable, and tunable production of stimuli-responsive micropatterned opal hydrogels under mild conditions remains challenging. We report a simple micromolding-based evaporative deposition-thermal gelation technique for gelatin films that capture uniform opal micropatterns, aided by a potent aminopolysaccharide chitosan (CS) that provides binding affinity and structural stability. Our results show reliable, tunable, and high-fidelity fabrication of gelatin hydrogel films containing CS-opal micropatterns, while the as-prepared films show responsiveness to pH, ionic strength, and water content indicating a robust nature. Uniform CS-opal microparticles can also be readily prepared via removal of the gelatin through various simple routes, illustrating the crucial roles of CS and gelatin. We envision that this robust, reliable, and simple evaporative deposition-thermal gelation technique can be readily extended to prepare responsive biopolymeric materials for various applications.
Collapse
Affiliation(s)
- Subhash Kalidindi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts02155, United States
| | - Hyunmin Yi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts02155, United States
| |
Collapse
|
16
|
Suzuki Y, Onozato S, Shinagawa Y, Matsumoto A. Microporous Structure Formation of Poly(methyl methacrylate) via Polymerization-Induced Phase Separation in the Presence of Poly(ethylene glycol). ACS OMEGA 2022; 7:38933-38941. [PMID: 36340152 PMCID: PMC9631874 DOI: 10.1021/acsomega.2c04690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
It has been demonstrated that nano- or micro-structured polymeric materials have huge potential as advanced materials. However, most of the current fabricating methods have limitations either in cost or in size. Here, we investigate the bulk polymerization of methyl methacrylate in the presence of poly(ethylene glycol) (PEG). We found that phase separation occurs during bulk polymerization. After removal of PEG via sonication, microscopic structures of poly(methyl methacrylate), including porous structures, co-continuous monolith structures, or particle aggregation structures, are formed. These structures can be controlled by the amount of PEG added and the reaction temperature. The results are summarized in phase diagrams. The addition of PEG significantly affects the reaction kinetics. Phase separation is coupled with the reaction acceleration known as the Trommsdorff effect. As a result, the reaction completes in a shorter time when the PEG amount is higher. We demonstrate surface coating to fabricate an amphiphobic surface, repelling both water and oil. The methods presented here have the potential to fabricate microscopic structures in large areas cost-effectively.
Collapse
Affiliation(s)
- Yasuhito Suzuki
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shodai Onozato
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yuya Shinagawa
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Akikazu Matsumoto
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
17
|
Mao LB, Meng YF, Meng XS, Yang B, Yang YL, Lu YJ, Yang ZY, Shang LM, Yu SH. Matrix-Directed Mineralization for Bulk Structural Materials. J Am Chem Soc 2022; 144:18175-18194. [PMID: 36162119 DOI: 10.1021/jacs.2c07296] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mineral-based bulk structural materials (MBSMs) are known for their long history and extensive range of usage. The inherent brittleness of minerals poses a major problem to the performance of MBSMs. To overcome this problem, design principles have been extracted from natural biominerals, in which the extraordinary mechanical performance is achieved via the hierarchical organization of minerals and organics. Nevertheless, precise and efficient fabrication of MBSMs with bioinspired hierarchical structures under mild conditions has long been a big challenge. This Perspective provides a panoramic view of an emerging fabrication strategy, matrix-directed mineralization, which imitates the in vivo growth of some biominerals. The advantages of the strategy are revealed by comparatively analyzing the conventional fabrication techniques of artificial hierarchically structured MBSMs and the biomineral growth processes. By introducing recent advances, we demonstrate that this strategy can be used to fabricate artificial MBSMs with hierarchical structures. Particular attention is paid to the mass transport and the precursors that are involved in the mineralization process. We hope this Perspective can provide some inspiring viewpoints on the importance of biomimetic mineralization in material fabrication and thereby spur the biomimetic fabrication of high-performance MBSMs.
Collapse
Affiliation(s)
- Li-Bo Mao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Feng Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Sen Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bo Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Lu Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Jie Lu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Yuan Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Li-Mei Shang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Verma N, Pandya A. Challenges and opportunities in micro/nanofluidic and lab-on-a-chip. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:289-302. [PMID: 35033289 DOI: 10.1016/bs.pmbts.2021.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fluidic systems are prevalent in many areas of science due to its advantage in miniaturization, development of unique tools for diseases diagnosis and biomolecule separation. In the chapter, we will describe some of the key features of microfluidic/nanofluidic (MF/NF) and lab-on-a-chip system in diverse field over the past years. In addition, we will highlight the major challenges for the microfluidic/nanofluidic and lab-on-a-chip system. All-purpose and universal micro/nanofluidic platforms that can perform multiplexed assays on real biological samples are in high demand. However, the adoption of novel microfluidic devices has been carried out at a slow pace due to translation gap in development of new devices to realization into commercialization. By addressing the challenges of system integration, low-cost technology availability, rapid regulatory approval, and clinical acceptance, a pipeline of promising microdevice technologies can be developed.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Alok Pandya
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gandhinagar, Gujarat, India.
| |
Collapse
|
19
|
Chen Z, Yuan H, Wu P, Zhang W, Juodkazis S, Huang H, Cao X. Variable focus convex microlens array on K9 glass substrate based on femtosecond laser processing and hot embossing lithography. OPTICS LETTERS 2022; 47:22-25. [PMID: 34951873 DOI: 10.1364/ol.448344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
We propose a high-precision method for the fabrication of variable focus convex microlens arrays on K9 glass substrate by combining femtosecond laser direct writing and hot embossing lithography. A sapphire master mold with a blind cylindrical hole array was prepared first by femtosecond laser ablation. The profile control of microlenses dependent on the temperature and the diameter of the blind hole in the sapphire mold was investigated. The curvature radius of the microlens decreased with temperature and increased with diameter. Uniform convex microlens arrays were fabricated with good imaging performance. Further, variable focus convex microlens arrays were fabricated by changing the diameter of the blind hole in sapphire, which produced the image at variable z planes. This method provides a highly precise fabrication of convex microlens arrays and is well suited for batch production of micro-optical elements.
Collapse
|
20
|
Chen Z, Lv Z, Zhang Z, Weitz DA, Zhang H, Zhang Y, Cui W. Advanced microfluidic devices for fabricating multi-structural hydrogel microsphere. EXPLORATION (BEIJING, CHINA) 2021; 1:20210036. [PMID: 37323691 PMCID: PMC10191056 DOI: 10.1002/exp.20210036] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/02/2021] [Indexed: 06/15/2023]
Abstract
Hydrogel microspheres are a novel functional material, arousing much attention in various fields. Microfluidics, a technology that controls and manipulates fluids at the micron scale, has emerged as a promising method for fabricating hydrogel microspheres due to its ability to generate uniform microspheres with controlled geometry. With the development of microfluidic devices, more complicated hydrogel microspheres with multiple structures can be constructed. This review presents an overview of advances in microfluidics for designing and engineering hydrogel microspheres. It starts with an introduction to the features of hydrogel microspheres and microfluidic techniques, followed by a discussion of material selection for fabricating microfluidic devices. Then the progress of microfluidic devices for single-component and composite hydrogel microspheres is described, and the method for optimizing microfluidic devices is also given. Finally, this review discusses the key research directions and applications of microfluidics for hydrogel microsphere in the future.
Collapse
Affiliation(s)
- Zehao Chen
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiP. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Zhendong Lv
- Department of Spine SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Zhen Zhang
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiP. R. China
| | - David A. Weitz
- Department of Physics and Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi University and Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Yuhui Zhang
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiP. R. China
- Department of Spine SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| |
Collapse
|
21
|
Lee SY, Ma J, Khoo TS, Abdullah N, Nik Md Noordin Kahar NNF, Abdul Hamid ZA, Mustapha M. Polysaccharide-Based Hydrogels for Microencapsulation of Stem Cells in Regenerative Medicine. Front Bioeng Biotechnol 2021; 9:735090. [PMID: 34733829 PMCID: PMC8558675 DOI: 10.3389/fbioe.2021.735090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Stem cell-based therapy appears as a promising strategy to induce regeneration of damaged and diseased tissues. However, low survival, poor engraftment and a lack of site-specificity are major drawbacks. Polysaccharide hydrogels can address these issues and offer several advantages as cell delivery vehicles. They have become very popular due to their unique properties such as high-water content, biocompatibility, biodegradability and flexibility. Polysaccharide polymers can be physically or chemically crosslinked to construct biomimetic hydrogels. Their resemblance to living tissues mimics the native three-dimensional extracellular matrix and supports stem cell survival, proliferation and differentiation. Given the intricate nature of communication between hydrogels and stem cells, understanding their interaction is crucial. Cells are incorporated with polysaccharide hydrogels using various microencapsulation techniques, allowing generation of more relevant models and further enhancement of stem cell therapies. This paper provides a comprehensive review of human stem cells and polysaccharide hydrogels most used in regenerative medicine. The recent and advanced stem cell microencapsulation techniques, which include extrusion, emulsion, lithography, microfluidics, superhydrophobic surfaces and bioprinting, are described. This review also discusses current progress in clinical translation of stem-cell encapsulated polysaccharide hydrogels for cell delivery and disease modeling (drug testing and discovery) with focuses on musculoskeletal, nervous, cardiac and cancerous tissues.
Collapse
Affiliation(s)
- Si-Yuen Lee
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Jingyi Ma
- Duke-NUS Medical School, Singapore, Singapore
| | - Tze Sean Khoo
- UKM Medical Molecular Biology Institute, National University of Malaysia, Bangi, Malaysia
| | - Norfadhilatuladha Abdullah
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | | | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
22
|
Cai S, Sun Y, Chu H, Yang W, Yu H, Liu L. Microlenses arrays: Fabrication, materials, and applications. Microsc Res Tech 2021; 84:2784-2806. [PMID: 33988282 DOI: 10.1002/jemt.23818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/21/2021] [Accepted: 05/02/2021] [Indexed: 11/07/2022]
Abstract
Microlenses have become an indispensable optical element in many optical systems. The advancement of technology has led to a wider variety of microlenses fabrication methods, but these methods suffer from, more or less, some limitations. In this article, we review the manufacturing technology of microlenses from the direct and indirect perspectives. First, we present several fabrication methods and their advantages and disadvantages are discussed. Then, we discuss the commonly used materials for fabricating microlenses and the applications of microlenses in various fields. Finally, we point out the prospects for the future development of microlenses and their fabrication methods.
Collapse
Affiliation(s)
- Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, China
| | - Yalin Sun
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, China
| | - Honghui Chu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
23
|
Bouchard F, Soldera M, Baumann R, Lasagni AF. Hierarchical Microtextures Embossed on PET from Laser-Patterned Stamps. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1756. [PMID: 33918342 PMCID: PMC8038280 DOI: 10.3390/ma14071756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
Nowadays, the demand for surface functionalized plastics is constantly rising. To address this demand with an industry compatible solution, here a strategy is developed for producing hierarchical microstructures on polyethylene terephthalate (PET) by hot embossing using a stainless steel stamp. The master was structured using three laser-based processing steps. First, a nanosecond-Direct Laser Writing (DLW) system was used to pattern dimples with a depth of up to 8 µm. Next, the surface was smoothed by a remelting process with a high-speed laser scanning at low laser fluence. In the third step, Direct Laser Interference Patterning (DLIP) was utilized using four interfering sub-beams to texture a hole-like substructure with a spatial period of 3.1 µm and a depth up to 2 µm. The produced stamp was used to imprint PET foils under controlled temperature and pressure. Optical confocal microscopy and scanning electron microscopy imaging showed that the hierarchical textures could be accurately transferred to the polymer. Finally, the wettability of the single- and multi-scaled textured PET surfaces was characterized with a drop shape analyzer, revealing that the highest water contact angles were reached for the hierarchical patterns. Particularly, this angle was increased from 77° on the untreated PET up to 105° for a hierarchical structure processed with a DLW spot distance of 60 µm and with 10 pulses for the DLIP treatment.
Collapse
Affiliation(s)
- Felix Bouchard
- Institut für Fertigungstechnik, Technische Universität Dresden, George-Baehr-Str. 3c, 01069 Dresden, Germany; (M.S.); (R.B.); (A.F.L.)
| | - Marcos Soldera
- Institut für Fertigungstechnik, Technische Universität Dresden, George-Baehr-Str. 3c, 01069 Dresden, Germany; (M.S.); (R.B.); (A.F.L.)
- PROBIEN-CONICET, Dto. de Electrotecnia, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina
| | - Robert Baumann
- Institut für Fertigungstechnik, Technische Universität Dresden, George-Baehr-Str. 3c, 01069 Dresden, Germany; (M.S.); (R.B.); (A.F.L.)
| | - Andrés Fabián Lasagni
- Institut für Fertigungstechnik, Technische Universität Dresden, George-Baehr-Str. 3c, 01069 Dresden, Germany; (M.S.); (R.B.); (A.F.L.)
- Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstraße 28, 01277 Dresden, Germany
| |
Collapse
|
24
|
Lee SH, Seo SE, Kim KH, Lee J, Park CS, Jun BH, Park SJ, Kwon OS. Single photomask lithography for shape modulation of micropatterns. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Fang F, Tao X, Chen X, Wang H, Wu P, Zhang J, Zeng J, Zhu Z, Liu Z. Microlens Fabrication by Replica Molding of Electro-Hydrodynamic Printing Liquid Mold. MICROMACHINES 2020; 11:mi11020161. [PMID: 32028701 PMCID: PMC7074626 DOI: 10.3390/mi11020161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
In this paper, we synergistically combine electrohydrodynamic (EHD) printing and replica molding for the fabrication of microlenses. Glycerol solution microdroplets was sprayed onto the ITO glass to form liquid mold by an EHD printing process. The liquid mold is used as a master to fabricate a polydimethylsiloxane (PDMS) mold. Finally, the desired micro-optical device can be fabricated on any substrate using a PDMS soft lithography mold. We demonstrate our strategy by generating microlenses of photocurable polymers and by characterizing their optical properties. It is a new method to rapidly and cost-effectively fabricate molds with small diameters by exploiting the advantages of EHD printing, while maintaining the parallel nature of soft-lithography.
Collapse
Affiliation(s)
- Feiyu Fang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Jihua Laboratory, Foshan 528000, China
| | - Xulei Tao
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Jihua Laboratory, Foshan 528000, China
| | - Xun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Correspondence: (X.C.); (H.W.); (Z.L.); Tel.: +86-20-2388-0655 (H.W. & X.C.); +1-301-687-7799 (Z.L.)
| | - Han Wang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Jihua Laboratory, Foshan 528000, China
- Correspondence: (X.C.); (H.W.); (Z.L.); Tel.: +86-20-2388-0655 (H.W. & X.C.); +1-301-687-7799 (Z.L.)
| | - Peixuan Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiarong Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun Zeng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ziming Zhu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhen Liu
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA
- Correspondence: (X.C.); (H.W.); (Z.L.); Tel.: +86-20-2388-0655 (H.W. & X.C.); +1-301-687-7799 (Z.L.)
| |
Collapse
|
26
|
Wippold JA, Huang C, Stratis-Cullum D, Han A. Enhancing droplet transition capabilities using sloped microfluidic channel geometry for stable droplet operation. Biomed Microdevices 2020; 22:15. [PMID: 31965327 DOI: 10.1007/s10544-019-0466-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Droplet-based microfluidics technology allows for the generation and control of droplets that function as independent chemical and biological reactors, enabling broad ranges of high-throughput assays. As more complex multi-step assays are being realized in droplet format, maintaining droplet stability throughout the assay becomes a critical requirement. Unfortunately, as droplets go through multiple manipulation steps, droplet breakage is commonly seen, especially where droplets have to go through sharp transitions in direction and shape. Standard microfabrication techniques typically result in inherent sharp geometry in Z-direction due to their two-dimensional fabrication nature. Recent advancement in micro- and nano- fabrication technology using two-photon polymerization (2PP) is enabling complex 3D microstructures with sub-micrometer resolution to be readily fabricated. Here, utilizing this microfabrication technique, we present a simple solution to the droplet stability challenge by utilizing sloped-geometry microfluidic channels to enable microdroplets to smoothly transition between microfluidic channels having two different heights without breakage. The technique and innovation demonstrated here have the potential to replace conventional droplet microfluidic device fabrication approaches and enable droplet microfluidic platforms to achieve significantly higher level of efficiency, accuracy, and stability never realized before.
Collapse
Affiliation(s)
- Jose A Wippold
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | | | - Arum Han
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA. .,Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|