1
|
Nikam R, Chattopadhyay A. A Computational Study Revealing the Unexplored Mechanisms of the Photo-isomerization of 4H-imidazole N-oxides and the Reverse Thermal Isomerization of their Photo-Products. Chem Asian J 2025; 20:e202401396. [PMID: 39946206 DOI: 10.1002/asia.202401396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
The current computational study explores the photo-isomerization mechanisms of 4H-imidazole N-oxide systems leading to the formations of their experimentally reported photoproducts. Additionally, the reverse thermal isomerization reactions are also investigated. Quantum mechanical studies on 5-phenyl-4,4-dimethyl-4H-imidazole 3-oxides (IMO) and 1,3-dioxides(IMDO) with substitutions at 2-position reveal their excited state decay pathways forming the oxaziridine and trans,cis-dioxaziridine photoproducts, respectively. The vertically excited S2 state of 2-methyl-substituted IMO undergoes S2/S1 and S0/S1 conical intersections(CIs) through an upward CNO twist to form the respective oxaziridine. On the other hand, in the 2-phenyl-substituted IMO, a pathway through three consecutive CIs (S3/S2,S2/S1,S0/S1) leads to a downward twisted oxaziridine. The methyl-substituted IMDO is found to form both upward and downward twisted oxaziridines through low-lying S0/S1 CIs. The S0-S2 photo-excitation of these oxaziridines gives rise to their respective trans-dioxaziridines. The energy barriers of the oxaziridine→parent nitrone conversion processes are much lower in the studied IMO systems(27-33 kcal/mol) than their 2H-imidazole N-oxide analogues(~38 kcal/mol) which supports the experimentally reported faster thermal isomerizations of the former. These barrier heights in 4H-imidazole 3-oxides decrease from 2-methyl to 2-phenyl-substituted systems, and in the latter, it decreases with the increasing electron donating ability of the groups on phenyl (order of barrier height:-NO2>-OMe>-NMe2).
Collapse
Affiliation(s)
- Rajeshwari Nikam
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K. K. Birla Goa Campus, Sancole, 403726, South Goa, India
| | - Anjan Chattopadhyay
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K. K. Birla Goa Campus, Sancole, 403726, South Goa, India
| |
Collapse
|
2
|
Algarra M, Soto J, Pino-González MS, Gonzalez-Munoz E, Dučić T. Multifunctionalized Carbon Dots as an Active Nanocarrier for Drug Delivery to the Glioblastoma Cell Line. ACS OMEGA 2024; 9:13818-13830. [PMID: 38559983 PMCID: PMC10976390 DOI: 10.1021/acsomega.3c08459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Abstract
Nanoparticle-based nanocarriers represent a viable alternative to conventional direct administration in cancer cells. This advanced approach employs the use of nanotechnology to transport therapeutic agents directly to cancer cells, thereby reducing the risk of damage to healthy cells and enhancing the efficacy of treatment. By approving nanoparticle-based nanocarriers, the potential for targeted, effective treatment is greatly increased. The so-called carbon-based nanoparticles, or carbon dots, have been hydrothermally prepared and initiated by a polymerization process. We synthesized and characterized nanoparticles of 2-acrylamido-2-methylpropanesulfonic acid, which showed biocompatibility with glioblastoma cells, and further, we tested them as a carrier for the drug riluzole. The obtained nanoparticles have been extensively characterized by techniques to obtain the exact composition of their surface by using Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and nuclear magnetic resonance (NMR) spectroscopy, as well as cryo-transmission electron microscopy. We found that the surface of the synthesized nanoparticles (NPs) is covered mainly by sulfonated, carboxylic, and substituted amide groups. These functional groups make them suitable as carriers for drug delivery in cancer cells. Specifically, we have successfully utilized the NPs as a delivery system for the drug riluzole, which has shown efficacy in treating glioblastoma cancer cells. The effect of nanoparticles as carriers for the riluzole system on glioblastoma cells was studied using live-cell synchrotron-based FTIR microspectroscopy to monitor in situ biochemical changes. After applying nanoparticles as nanocarriers, we have observed changes in all biomacromolecules, including the nucleic acids and protein conformation. These findings provide a strong foundation for further exploration into the development of targeted treatments for glioblastoma.
Collapse
Affiliation(s)
- Manuel Algarra
- INAMAT—Institute for Advanced Materials and Mathematics,
Dept. Science, Public University of Navarra, Campus Arrosadía, 31006 Pamplona, Spain
| | - Juan Soto
- Dept.
Physical Chemistry, Faculty of Science, University of Málaga, Avda. Cervantes, 2, 29071 Málaga, Spain
| | | | - Elena Gonzalez-Munoz
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina-IBIMA Plataforma BIONAND., C/Severo Ochoa, 35, 29590 Málaga, Spain
- Dept.
Cell Biology, Genetics and Physiology, University
of Málaga, 29071 Málaga, Spain
| | - Tanja Dučić
- ALBA-CELLS
Synchrotron Light Source, Consorcio para
la Construccion Equipamiento y Explotacion del Laboratorio de Luz
Sincrotron, C. de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
3
|
Algarra M, Carrillo C, Nešić MD, Tričković JF, Žakula J, Korićanac L, Jiménez-Jiménez J, Rodriguez-Castellón E, Bandosz TJ, Petković M, Soto J. Testing of black-carrots-derived fluorescence imaging and anti-metastatic potential. J Mol Struct 2024; 1300:137245. [DOI: 10.1016/j.molstruc.2023.137245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Mu D, Li QS. A theoretical study on the photochemical generation of phenylborylene from phenyldiazidoborane. Phys Chem Chem Phys 2023; 25:8074-8081. [PMID: 36876656 DOI: 10.1039/d2cp05349g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Organic borylenes are a kind of highly reactive species, which play important roles in a lot of reactions as vigorous intermediates. In this work, we investigated the photochemical generation mechanisms of phenylborylene (PhB) together with the side product N-phenylnitrenoiminoborane (PhNBN) from phenyldiazidoborane (PhBN6) by extrusion of dinitrogen in the two lowest electronic singlet states (S0 and S1) based on the complete active space self-consistent field (CASSCF) and its second-order perturbation (CASPT2) methods combined with time-dependent density functional theory (TD-DFT) calculations. Our results show that the reaction PhBN6 → PhB + 3N2 involves stepwise N2 extrusion three times and the azido region rearrangement. Moreover, we found that the studied photo-induced processes are kinetically feasible because the highest energy barrier is only 0.36 eV and excitation with light of wavelength 254 nm can provide enough excess energy to overcome these energy barriers. Importantly, we revealed that several conical intersections between S1 and S0 states participate and facilitate the studied photochemical processes. Our results not only clarify the experimental observations, (H. F. Bettinger, J. Am. Chem. Soc. 2006, 128, 2534), but also provide valuable insights into borylene chemistry.
Collapse
Affiliation(s)
- Di Mu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Quan-Song Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
5
|
Algarra M, López Escalante MC, Martínez de Yuso MV, Soto J, Cuevas AL, Benavente J. Nanoporous Alumina Support Covered by Imidazole Moiety-Based Ionic Liquids: Optical Characterization and Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234131. [PMID: 36500754 PMCID: PMC9736403 DOI: 10.3390/nano12234131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 06/12/2023]
Abstract
This work analyzes chemical surface and optical characteristics of a commercial nanoporous alumina structure (NPAS) as a result of surface coverage by different imidazolium-based ionic liquids (1-butyl-3-metylimidazolium hexafluorophosphate, 3-methyl-1-octylimidazolium hexafluorophosphate, or 1-ethyl-3-methylimidazolium tetrafluoroborate). Optical characteristics of the IL/NPAS samples were determined by photoluminescence (at different excitation wavelengths (from 300 nm to 400 nm), ellipsometry spectroscopy, and light transmittance/reflectance measurements for a range of wavelengths that provide information on modifications related to both visible and near-infrared regions. Chemical surface characterization of the three IL/NPAS samples was performed by X-ray photoelectron spectroscopy (XPS), which indicates almost total support coverage by the ILs. The IL/NPAS analyzed samples exhibit different photoluminescence behavior, high transparency (<85%), and a reflection maximum at wavelength ~380 nm, with slight differences depending on the IL, while the refractive index values are rather similar to those shown by the ILs. Moreover, the illuminated I−V curves (under standard conditions) of the IL/NPAS samples were also measured for determining the efficiency energy conversion to estimate their possible application as solar cells. On the other hand, a computational quantum mechanical modeling method (DFT) was used to establish the most stable bond between the ILs and the NPAS support.
Collapse
Affiliation(s)
- Manuel Algarra
- INAMAT-Institute for Advanced Materials and Mathematics, Departamento de Ciencias, Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain
| | - Mª Cruz López Escalante
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Mª Valle Martínez de Yuso
- X-ray Photoelectron Spectroscopy Lab., Central Service to Support Research Building (SCAI), University of Málaga, 29071 Málaga, Spain
| | - Juan Soto
- Departamento de Química-Física, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Ana L. Cuevas
- Unidad de Nanotecnología, Centro de Supercomputación y Bioinnovación, Servicios Centrales de Investigación, Universidad de Málaga, 29071 Málaga, Spain
| | - Juana Benavente
- Departamento de Física Aplicada I, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
6
|
Soto J. Photochemistry of 1-Phenyl-1-diazopropane and Its Diazirine Isomer: A CASSCF and MS-CASPT2 Study. J Phys Chem A 2022; 126:8372-8379. [PMID: 36335481 PMCID: PMC9677432 DOI: 10.1021/acs.jpca.2c04816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/10/2022] [Indexed: 11/07/2022]
Abstract
In this work, we studied the wavelength (520 or 350 nm) dependence of the photochemical decomposition of 1-phenyl-1-diazopropane (PDP) and 1-phenyl-1-propyl diazirine (PED) by means of high-level ab initio quantum chemical calculations (CASSCF and MS-CASPT2) to obtain qualitative and quantitative results. It is found that the photochemistry of PDP is governed by nonradiative deactivation processes that can involve one or two S1/S0 conical intersections (CI1 and CI2) depending on the wavelength of the radiation; CI2 is only accessible at the shortest wavelength. It is demonstrated that the main intermediate of the photochemistry of the titled compounds is 1-ethyl-1-phenyl carbene (EPC). Upon irradiation of PDP with the 520 nm light, the carbene is always generated in its ground state as closed-shell singlet carbene. In contrast, the 350 nm radiation can directly decompose PDP into S1 carbene (open shell) and N2 when the conical intersection CI2 is avoided. Once the carbene is formed in the S1 state, it can experience excited state intramolecular proton transfer along a seam of crossing (ESIPT-SC) of the S1 and S0 states to yield the alkene derivative; that is, the proton transfer reaction takes places on a degenerate potential energy surface where the two electronic states have equal energy. In addition, it is found that EPC absorbs at 350 nm (double excitations); therefore, there is another possible route that can induce as well a slightly different photochemistry in changing the wavelength of the radiation because the shortest wavelength (when it is intense enough) decreases the amount of available EPC or generates a highly vibrationally excited state of the carbene; that is, after 350 nm excitation, the carbene intermediate can deactivate via radiation emission or can decay through a cascade of conical intersections to its first excited state (S1), where ESIPT-SC is operative again.
Collapse
Affiliation(s)
- Juan Soto
- Department of Physical Chemistry,
Faculty of Science, University of Málaga, 29071 Málaga, Spain
| |
Collapse
|
7
|
Soto J, Algarra M, Peláez D. Nitrene formation is the first step of the thermal and photochemical decomposition reactions of organic azides. Phys Chem Chem Phys 2022; 24:5109-5115. [PMID: 35156109 DOI: 10.1039/d1cp05785e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, the decomposition of a prototypical azide, isopropyl azide, both in the ground and excited states, has been investigated through the use of multiconfigurational CASSCF and MS-CASPT2 electronic structure approaches. Particular emphasis has been placed on the thermal reaction starting at the S0 ground state surface. It has been found that the azide thermally decomposes via a stepwise mechanism, whose rate-determining step is the formation of isopropyl nitrene, which is, in turn, the first step of the global mechanism. After that, the nitrene isomerizes to the corresponding imine derivative. Two routes are possible for such a decomposition: (i) a spin-allowed path involving a transition state; and (ii) a spin-forbidden one via a S0/T0 intersystem crossing. Both intermediates have been determined and characterised. Their associated relative energies have been found to be quite similar, 45.75 and 45.52 kcal mol-1, respectively. To complete this study, the kinetics of the singlet and triplet channels are modeled with the MESMER (Master Equation Solver for Multi-Energy Well Reactions) code by applying the RRKM and Landau-Zener (with WKB tunnelling correction) theories, respectively. It is found that the canonical rate-coefficients of the singlet path are 2-orders of magnitude higher than the rate-coefficients of the forbidden reaction. In addition, the concerted mechanism has been investigated that would lead to the formation of the imine derivative and nitrogen extrusion in the first step of the decomposition. After a careful analysis of CASSCF calculations with different active spaces and their comparison with single electronic configuration methods (MP2 and B3LYP), the concerted mechanism is discarded.
Collapse
Affiliation(s)
- Juan Soto
- Department of Physical Chemistry, Faculty of Science, University of Málaga, E-29071 Málaga, Spain.
| | - Manuel Algarra
- INAMAT2 Institute for Advanced Materials and Mathematics, Department of Sciences, Campus de Arrosadia, 31006 Pamplona, Spain
| | - Daniel Peláez
- Institut des Sciences Moléculaires d'Orsay (ISMO) - UMR 8214, Université Paris-Saclay, 91405 Orsay Cedex, Spain
| |
Collapse
|
8
|
Soto J, Algarra M. Electronic Structure of Nitrobenzene: A Benchmark Example of the Accuracy of the Multi-State CASPT2 Theory. J Phys Chem A 2021; 125:9431-9437. [PMID: 34677962 PMCID: PMC8573753 DOI: 10.1021/acs.jpca.1c04595] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
The electronic structure
of nitrobenzene (C6H5NO2) has been
studied by means of the complete active
space self-consistent field (CASSCF) and multi-state second-order
perturbation (MS-CASPT2) methods. To this end, an active space of
20 electrons distributed in 17 orbitals has been selected to construct
the reference wave function. In this work, we have calculated the
vertical excitation energies and the energy barrier for the dissociation
of the molecule on the ground state into phenyl and nitrogen dioxide.
After applying the corresponding vibrational corrections to the electronic
energies, it is demonstrated that the MS-CASPT2//CASSCF values obtained
in this work yield an excellent agreement between calculated and experimental
data. In addition, other active spaces of lower size have been applied
to the system in order to check the active space dependence in the
results.
Collapse
Affiliation(s)
- Juan Soto
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Málaga 29071, Spain
| | - Manuel Algarra
- Department of Inorganic Chemistry, Faculty of Science, University of Málaga, Málaga 29071, Spain
| |
Collapse
|
9
|
Houdová D, Soto J, Castro R, Rodrigues J, Soledad Pino-González M, Petković M, Bandosz TJ, Algarra M. Chemically heterogeneous carbon dots enhanced cholesterol detection by MALDI TOF mass spectrometry. J Colloid Interface Sci 2021; 591:373-383. [PMID: 33631525 DOI: 10.1016/j.jcis.2021.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
A binary system composed of carbon dots (CDs) and N-doped CDs (N-CDs) embedded in an organic matrix was used for the analysis of cholesterol by MALDI (matrix-assisted laser desorption and ionization time-of-flight) mass spectrometry, as a model for detection of small, biologically relevant molecules. The results showed that both CDs are sensitive to the cholesterol and can be used either alone or in a binary system with 2,5-dihydroxybenzoic acid (DHB) to enhance the detection process. It was found that both COOH and NH2 groups on CDs surface contributed to the enhancement in the cholesterol detection by MALDI mass spectrometry in the presence of inorganic cations. Nevertheless, in the presence of NaCl, N-CDs led to a better reproducibility of results. It was due to the coexistence of positive and negative charge on N-CDs surface that led to a homogeneous analyte/substrate distribution, which is an important detection parameter. The enhancing effect of carbon dots was linked to a negative Gibbs energy of the complex formation between CDs, Na+, cholesterol and DHB, and it was supported by theoretical calculations. Moreover, upon the addition of CDs/N-CDs, such features as a low ionization potential, vertical excitation, dipole moment and oscillator strength positively affected the cholesterol detection by MALDI in the presence of Na+.
Collapse
Affiliation(s)
- Dominika Houdová
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Juan Soto
- Department of Physical Chemistry. Faculty of Science, University of Málaga. Campus de Teatinos s/n, 29071 Malaga, Spain
| | - Rita Castro
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Mª Soledad Pino-González
- Department of Organic Chemistry. Faculty of Science, University of Málaga. Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Marijana Petković
- VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Teresa J Bandosz
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA.
| | - Manuel Algarra
- Department of Inorganic Chemistry. Faculty of Science, University of Málaga. Campus de Teatinos s/n, 29071 Málaga, Spain.
| |
Collapse
|
10
|
Soto J, Peláez D, Otero JC. A SA-CASSCF and MS-CASPT2 study on the electronic structure of nitrosobenzene and its relation to its dissociation dynamics. J Chem Phys 2021; 154:044307. [PMID: 33514099 DOI: 10.1063/5.0033181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The photodissociation channels of nitrosobenzene (PhNO) induced by a 255 nm photolytic wavelength have been studied using the complete active space self-consistent method and the multistate second-order multiconfigurational perturbation theory. It is found that there exists a triplet route for photodissociation of the molecule. The reaction mechanism consists of a complex cascade of nonadiabatic electronic transitions involving triple and double conical intersections as well as intersystem crossing. Several of the relevant states (S2, S4, and S5 states) correspond to double excitations. It is worth noting that the last step of the photodissociation implies an internal conversion process. The experimentally observed velocity pattern of the NO fragment is a signature of such a conical intersection.
Collapse
Affiliation(s)
- Juan Soto
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Andalucía Tech., E-29071 Málaga, SpainInstitut des Sciences Moléculaires d'Orsay (ISMO) - UMR 8214, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Daniel Peláez
- Institut des Sciences Moléculaires d'Orsay (ISMO) - UMR 8214, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Juan C Otero
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Andalucía Tech., E-29071 Málaga, Spain
| |
Collapse
|
11
|
Li J, Liu MK, Li QS, Li ZS. Theoretical study on the photochemistry of furoylazides: Curtius rearrangement and subsequent reactions. Phys Chem Chem Phys 2020; 22:28317-28324. [PMID: 33300534 DOI: 10.1039/d0cp05539e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Organic azides are an efficient source of nitrenes, which serve as vigorous intermediates in many useful organic reactions. In this work, the complete active space self-consistent field (CASSCF) and its second-order perturbation (CASPT2) methods were employed to study the photochemistry of 2-furoylazide 1 and 3-furoylazide 5, including the Curtius rearrangement to two furylisocyanates (3 and 7) and subsequent reactions to the final product cyanoacrolein 9. Our calculations show that the photoinduced Curtius rearrangement of the two furoylazides takes place through similar stepwise mechanisms via two bistable furoylnitrenes 2 and 6. However, the decarbonylation and ring-opening process of 7 to 9 prefers a stepwise mechanism involving the 3-furoylnitrene intermediate 8, while 3 to 9 goes in a concerted asynchronous way without the corresponding 2-furoylnitrene intermediate 4. Importantly, we revealed that several conical intersections play key roles in the photochemistry of furoylazides. Our results are not only consistent and also make clear the experimental observations (X. Zeng, et al., J. Am. Chem. Soc., 2018, 140, 10-13), but additionally provide important information on the chemistry of furoylazides and nitrenes.
Collapse
Affiliation(s)
- Jian Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | |
Collapse
|