1
|
Kidd BE, Gemeinhardt ME, Mashni JA, Gesiorski JL, Bales LB, Limbach MN, Shchepin RV, Kovtunov KV, Koptyug IV, Chekmenev EY, Goodson BM. Hyperpolarizing DNA Nucleobases via NMR Signal Amplification by Reversible Exchange. Molecules 2023; 28:1198. [PMID: 36770865 PMCID: PMC9921525 DOI: 10.3390/molecules28031198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
The present work investigates the potential for enhancing the NMR signals of DNA nucleobases by parahydrogen-based hyperpolarization. Signal amplification by reversible exchange (SABRE) and SABRE in Shield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) of selected DNA nucleobases is demonstrated with the enhancement (ε) of 1H, 15N, and/or 13C spins in 3-methyladenine, cytosine, and 6-O-guanine. Solutions of the standard SABRE homogenous catalyst Ir(1,5-cyclooctadeine)(1,3-bis(2,4,6-trimethylphenyl)imidazolium)Cl ("IrIMes") and a given nucleobase in deuterated ethanol/water solutions yielded low 1H ε values (≤10), likely reflecting weak catalyst binding. However, we achieved natural-abundance enhancement of 15N signals for 3-methyladenine of ~3300 and ~1900 for the imidazole ring nitrogen atoms. 1H and 15N 3-methyladenine studies revealed that methylation of adenine affords preferential binding of the imidazole ring over the pyrimidine ring. Interestingly, signal enhancements (ε~240) of both 15N atoms for doubly labelled cytosine reveal the preferential binding of specific tautomer(s), thus giving insight into the matching of polarization-transfer and tautomerization time scales. 13C enhancements of up to nearly 50-fold were also obtained for this cytosine isotopomer. These efforts may enable the future investigation of processes underlying cellular function and/or dysfunction, including how DNA nucleobase tautomerization influences mismatching in base-pairing.
Collapse
Affiliation(s)
- Bryce E. Kidd
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Max E. Gemeinhardt
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Jamil A. Mashni
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Jonathan L. Gesiorski
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Liana B. Bales
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Miranda N. Limbach
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Roman V. Shchepin
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines & Technology, Rapid City, SD 57701, USA
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI) Wayne State University, Detroit, MI 48202, USA
| | - Boyd M. Goodson
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
2
|
Tickner BJ, Zhivonitko VV. Advancing homogeneous catalysis for parahydrogen-derived hyperpolarisation and its NMR applications. Chem Sci 2022; 13:4670-4696. [PMID: 35655870 PMCID: PMC9067625 DOI: 10.1039/d2sc00737a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Parahydrogen-induced polarisation (PHIP) is a nuclear spin hyperpolarisation technique employed to enhance NMR signals for a wide range of molecules. This is achieved by exploiting the chemical reactions of parahydrogen (para-H2), the spin-0 isomer of H2. These reactions break the molecular symmetry of para-H2 in a way that can produce dramatically enhanced NMR signals for reaction products, and are usually catalysed by a transition metal complex. In this review, we discuss recent advances in novel homogeneous catalysts that can produce hyperpolarised products upon reaction with para-H2. We also discuss hyperpolarisation attained in reversible reactions (termed signal amplification by reversible exchange, SABRE) and focus on catalyst developments in recent years that have allowed hyperpolarisation of a wider range of target molecules. In particular, recent examples of novel ruthenium catalysts for trans and geminal hydrogenation, metal-free catalysts, iridium sulfoxide-containing SABRE systems, and cobalt complexes for PHIP and SABRE are reviewed. Advances in this catalysis have expanded the types of molecules amenable to hyperpolarisation using PHIP and SABRE, and their applications in NMR reaction monitoring, mechanistic elucidation, biomedical imaging, and many other areas, are increasing.
Collapse
Affiliation(s)
- Ben J Tickner
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
| |
Collapse
|