1
|
Singletary T, Iranmanesh N, Colosqui CE. The surface diffusivity of nanoparticles physically adsorbed at a solid-liquid interface. SOFT MATTER 2024; 20:8446-8454. [PMID: 39400204 DOI: 10.1039/d4sm00992d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
This work proposes an analytical model considering the effects of hydrodynamic drag and kinetic barriers induced by liquid solvation forces to predict the translational diffusivity of a nanoparticle on an adsorbing surface. Small nanoparticles physically adsorbed to a well-wetted surface can retain significant in-plane mobility through thermally activated stick-slip motion, which can result in surface diffusivities comparable to the bulk diffusivity due to free-space Brownian motion. Theoretical analysis and molecular dynamics simulations in this work show that the surface diffusivity is enhanced when (i) the Hamaker constant is smaller than a critical value prescribed by the interfacial surface energy and particle dimensions, and (ii) the nanoparticle is adsorbed at specific metastable separations of molecular dimensions away from the wall. Understanding and controlling this phenomenon can have significant implications for technical applications involving mass, charge, or energy transport by nanomaterials dispersed in liquids under micro/nanoscale confinement, such as membrane-based separation and ultrafiltration, surface electrochemistry and catalysis, and interfacial self-assembly.
Collapse
Affiliation(s)
- Troy Singletary
- Mechanical Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Nima Iranmanesh
- Mechanical Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Carlos E Colosqui
- Mechanical Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA.
- Applied Mathematics & Statistics Department, Stony Brook University, Stony Brook, NY 11794, USA
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| |
Collapse
|
2
|
Tang B, Gao JC, Chen K, Zhang TH, Tian WD. Escape of an active ring from an attractive surface: Behaving like a self-propelled Brownian particle. Phys Rev E 2024; 110:034609. [PMID: 39425371 DOI: 10.1103/physreve.110.034609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/05/2024] [Indexed: 10/21/2024]
Abstract
Escape of active agents from metastable states is of great interest in statistical and biological physics. In this paper, we investigate the escape of a flexible active ring, composed of active Brownian particles, from a flat attractive surface using Brownian dynamics simulations. To systematically explore the effects of activity, persistence time, and the shape of attractive potentials, we calculate escape time τ_{e} and effective temperature T_{eff}. We observe two distinct escape mechanisms: Kramers-like thermal activation at small persistence times, where ln(τ_{e})∼1/(k_{B}T_{eff}), and the maximal force problem at large persistence time, where τ_{e} is determined by persistence time. The escape time explicitly depends on the shape of the potential barrier at high activity and large persistence time. Moreover, when the propulsion force is biased along the ring's contour, escape becomes more difficult and is primarily driven by thermal noise. Our findings highlight that, despite its intricate configuration, the active ring can be effectively modeled as a self-propelled Brownian particle when studying its escape from a smooth surface.
Collapse
|
3
|
Bridge O, Lazzaroni P, Martinazzo R, Rossi M, Althorpe SC, Litman Y. Quantum rates in dissipative systems with spatially varying friction. J Chem Phys 2024; 161:024110. [PMID: 38984959 DOI: 10.1063/5.0216823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
We investigate whether making the friction spatially dependent on the reaction coordinate introduces quantum effects into the thermal reaction rates for dissipative reactions. Quantum rates are calculated using the numerically exact multi-configuration time-dependent Hartree method, as well as the approximate ring-polymer molecular dynamics (RPMD), ring-polymer instanton methods, and classical molecular dynamics. By conducting simulations across a wide range of temperatures and friction strengths, we can identify the various regimes that govern the reactive dynamics. At high temperatures, in addition to the spatial-diffusion and energy-diffusion regimes predicted by Kramer's rate theory, a (coherent) tunneling-dominated regime is identified at low friction. At low temperatures, incoherent tunneling dominates most of Kramer's curve, except at very low friction, when coherent tunneling becomes dominant. Unlike in classical mechanics, the bath's influence changes the equilibrium time-independent properties of the system, leading to a complex interplay between spatially dependent friction and nuclear quantum effects even at high temperatures. More specifically, a realistic friction profile can lead to an increase (or decrease) of the quantum (classical) rates with friction within the spatial-diffusion regime, showing that classical and quantum rates display qualitatively different behaviors. Except at very low frictions, we find that RPMD captures most of the quantum effects in the thermal reaction rates.
Collapse
Affiliation(s)
- Oliver Bridge
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Paolo Lazzaroni
- MPI for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Rocco Martinazzo
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Mariana Rossi
- MPI for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Stuart C Althorpe
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yair Litman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
4
|
Pollak E. A personal perspective of the present status and future challenges facing thermal reaction rate theory. J Chem Phys 2024; 160:150902. [PMID: 38639316 DOI: 10.1063/5.0199557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
Reaction rate theory has been at the center of physical chemistry for well over one hundred years. The evolution of the theory is not only of historical interest. Reliable and accurate computation of reaction rates remains a challenge to this very day, especially in view of the development of quantum chemistry methods, which predict the relevant force fields. It is still not possible to compute the numerically exact rate on the fly when the system has more than at most a few dozen anharmonic degrees of freedom, so one must consider various approximate methods, not only from the practical point of view of constructing numerical algorithms but also on conceptual and formal levels. In this Perspective, I present some of the recent analytical results concerning leading order terms in an ℏ2m series expansion of the exact rate and their implications on various approximate theories. A second aspect has to do with the crossover temperature between tunneling and thermal activation. Using a uniform semiclassical transmission probability rather than the "primitive" semiclassical theory leads to the conclusion that there is no divergence problem associated with a "crossover temperature." If one defines a semiclassical crossover temperature as the point at which the tunneling energy of the instanton equals the barrier height, then it is a factor of two higher than its previous estimate based on the "primitive" semiclassical approximation. In the low temperature tunneling regime, the uniform semiclassical theory as well as the "primitive" semiclassical theory were based on the classical Euclidean action of a periodic orbit on the inverted potential. The uniform semiclassical theory wrongly predicts that the "half-point," which is the energy at which the transmission probability equals 1/2, for any barrier potential, is always the barrier energy. We describe here how augmenting the Euclidean action with constant terms of order ℏ2 can significantly improve the accuracy of the semiclassical theory and correct this deficiency. This also leads to a deep connection with and improvement of vibrational perturbation theory. The uniform semiclassical theory also enables an extension of the quantum version of Kramers' turnover theory to temperatures below the "crossover temperature." The implications of these recent advances on various approximate methods used to date are discussed at length, leading to the conclusion that reaction rate theory will continue to challenge us both on conceptual and practical levels for years to come.
Collapse
Affiliation(s)
- Eli Pollak
- Chemical and Biological Physics Department, Weizmann Institute of Science, 76100 Rehovoth, Israel
| |
Collapse
|
5
|
Sabik A, Ellis J, Hedgeland H, Ward DJ, Jardine AP, Allison W, Antczak G, Tamtögl A. Single-molecular diffusivity and long jumps of large organic molecules: CoPc on Ag(100). Front Chem 2024; 12:1355350. [PMID: 38380395 PMCID: PMC10876995 DOI: 10.3389/fchem.2024.1355350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
Energy dissipation and the transfer rate of adsorbed molecules do not only determine the rates of chemical reactions but are also a key factor that often dictates the growth of organic thin films. Here, we present a study of the surface dynamical motion of cobalt phthalocyanine (CoPc) on Ag(100) in reciprocal space based on the helium spin-echo technique in comparison with previous scanning tunnelling microscopy studies. It is found that the activation energy for lateral diffusion changes from 150 meV at 45-50 K to ≈100 meV at 250-350 K, and that the process goes from exclusively single jumps at low temperatures to predominantly long jumps at high temperatures. We thus illustrate that while the general diffusion mechanism remains similar, upon comparing the diffusion process over widely divergent time scales, indeed different jump distributions and a decrease of the effective diffusion barrier are found. Hence a precise molecular-level understanding of dynamical processes and thin film formation requires following the dynamics over the entire temperature scale relevant to the process. Furthermore, we determine the diffusion coefficient and the atomic-scale friction of CoPc and establish that the molecular motion on Ag(100) corresponds to a low friction scenario as a consequence of the additional molecular degrees of freedom.
Collapse
Affiliation(s)
- Agata Sabik
- Institute of Experimental Physics, University of Wrocław, Wrocław, Poland
- Department of Semiconductor Materials Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| | - John Ellis
- Cavendish Laboratory, Cambridge, United Kingdom
| | | | | | | | | | - Grażyna Antczak
- Institute of Experimental Physics, University of Wrocław, Wrocław, Poland
| | - Anton Tamtögl
- Institute of Experimental Physics, Graz University of Technology, Graz, Austria
| |
Collapse
|