1
|
Zhao Z, Zou D, Ji A, Wu Y, Guo A, Wei X. Rational design of S-adenosylmethionine decarboxylase SpeD and spermidine synthase SpeE for green synthesis of spermidine. Int J Biol Macromol 2025; 316:144680. [PMID: 40447007 DOI: 10.1016/j.ijbiomac.2025.144680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/13/2025] [Accepted: 05/24/2025] [Indexed: 06/11/2025]
Abstract
Spermidine, a natural polyamine, possesses multiple biological activities and holds excellent application value. However, the low-activity enzymes in spermidine synthesis pathway limits spermidine production, including S-adenosylmethionine decarboxylase (SpeD) and spermidine synthase (SpeE). In Bacillus amyloliquefaciens PM1 with xylose as substrate, this study performed the alanine scanning mutagenesis to screen the beneficial mutants of SpeD and SpeE by rational design. Therein, the spermidine titers of mutants PM1/speDI39A/D22A and PM1/speEI108A/T54A were improved by 53 % and 44 % compared to the control strain, respectively, and the enzyme activities of the SpeDI39A/D22A and SpeEI108A/T54A increased by 58 % and 44 % accordingly. The mechanism of the enhanced enzymatic activity was further explained by molecular dynamics simulations. Moreover, the optimal engineering strain PM1::D/E was constructed by combination of speDI39A/D22A and speEI108A/T54A to enhance spermidine pathway. Through fed-batch fermentation, the maximum spermidine titer reached 683.14 mg/L, representing a 16.38-fold increase in spermidine production compared with the unmodified strain PM1. This study provides a novel strategy for green synthesis of spermidine from xylose, which will promote the clean and efficient production of spermidine.
Collapse
Affiliation(s)
- Ziyue Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dian Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - AnYing Ji
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingchao Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ailing Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Menozzi E, Schapira AHV. Prospects for Disease Slowing in Parkinson Disease. Annu Rev Pharmacol Toxicol 2025; 65:237-258. [PMID: 39088860 DOI: 10.1146/annurev-pharmtox-022124-033653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The increasing prevalence of Parkinson disease (PD) highlights the need to develop interventions aimed at slowing or halting its progression. As a result of sophisticated disease modeling in preclinical studies, and refinement of specific clinical/genetic/pathological profiles, our understanding of PD pathogenesis has grown over the years, leading to the identification of several targets for disease modification. This has translated to the development of targeted therapies, many of which have entered clinical trials. Nonetheless, up until now, none of these treatments have satisfactorily shown disease-modifying effects in PD. In this review, we present the most up-to-date disease-modifying pharmacological interventions in the clinical trial pipeline for PD. We focus on agents that have reached more advanced stages of clinical trials testing, highlighting both positive and negative results, and critically reflect on strengths, weaknesses, and challenges of current disease-modifying therapeutic avenues in PD.
Collapse
Affiliation(s)
- Elisa Menozzi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom;
| | - Anthony H V Schapira
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom;
| |
Collapse
|
3
|
Roy RK, Sharma M, Patra N. SARS-CoV-2 variants and bebtelovimab: immune escape mechanisms revealed by computational studies. Phys Chem Chem Phys 2024; 26:29929-29939. [PMID: 39618233 DOI: 10.1039/d4cp03031a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The receptor binding domain (RBD) of SARS-CoV-2 (coronavirus) targets and facilitates the binding with the human ACE2 receptor and is also a target for most monoclonal antibodies for the inhibition process. The emerging mutations in the RBD of SARS-CoV-2 are problematic, as their local and non-local effects can disrupt the binding mechanism of the antibody with the coronavirus's viral protein, thus compromising the antibody's inhibitory function. In this study, we have employed molecular dynamics to elucidate the binding mechanism between human-derived monoclonal antibody, bebtelovimab, and the RBD of the viral spike protein and the effects of mutations on this binding. We have analyzed the unbinding process using molecular dynamics with enhanced sampling methods, such as umbrella sampling. Our findings revealed that certain residues, including 440(N/K), Lys444, 452(L/R), 484(E/A), 498(Q/R), and THR500, are directly or indirectly responsible for altering the binding position and efficacy of bebtelovimab antibody with the RBD when mutations are introduced. The binding energy studies on three different variants, wild-type, delta, and omicron, revealed that the binding efficacy of bebtelovimab with the RBD diminished over time as additional mutations were introduced.
Collapse
MESH Headings
- SARS-CoV-2/immunology
- SARS-CoV-2/drug effects
- SARS-CoV-2/genetics
- Humans
- Molecular Dynamics Simulation
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Mutation
- Protein Binding
- Immune Evasion
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Binding Sites
- Angiotensin-Converting Enzyme 2/metabolism
- Angiotensin-Converting Enzyme 2/chemistry
- COVID-19/virology
- COVID-19/immunology
Collapse
Affiliation(s)
- Rakesh Kumar Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad - 826004, India.
| | - Madhur Sharma
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad - 826004, India.
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad - 826004, India.
| |
Collapse
|
4
|
Roy RK, Bera A, Patra N. Insights into Allosteric Inhibition of the AcrB Efflux Pump: Role of Distinct Binding Pockets, Protomer Preferences, and Crosstalk Disruption. J Chem Inf Model 2024; 64:5964-5976. [PMID: 39011748 DOI: 10.1021/acs.jcim.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
AcrB, a key component in bacterial efflux processes, exhibits distinct binding pockets that influence inhibitor interactions. In addition to the well-known distal binding pocket within the periplasmic domain, a noteworthy pocket amidst the transmembrane (TM) helices serves as an alternate binding site for inhibitors. The bacterial efflux mechanism involves a pivotal functional rotation of the TM protein, inducing conformational changes in each protomer and propelling drugs toward the outer membrane domain. Surprisingly, inhibitors binding to the TM domain display a preference for L protomers over T protomers. Metadynamics simulations elucidate that Lys940 in the TM domain of AcrB can adopt two conformations in L protomers, whereas the energy barrier for such transitions is higher in T protomers. This phenomenon results in stable inhibitor binding in l protomers. Upon a detailed analysis of unbinding pathways using random accelerated molecular dynamics and umbrella sampling, we have identified three distinct routes for ligand exit from the allosteric site, specifically involving regions within the TM domains─TM4, TM5, and TM10. To explore allosteric crosstalk, we focused on the following key residues: Val452 from the TM domain and Ala831 from the porter domain. Surprisingly, our findings reveal that inhibitor binding disrupts this communication. The shortest path connecting Val452 and Ala831 increases upon inhibitor binding, suggesting sabotage of the natural interdomain communication dynamics. This result highlights the intricate interplay between inhibitor binding and allosteric signaling within our studied system.
Collapse
Affiliation(s)
- Rakesh Kumar Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Abhishek Bera
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
5
|
Chakraborty G, Patra N. Elucidating the Molecular Basis of 14-3-3 Interaction with α-Synuclein: Insights from Molecular Dynamics Simulations and the Design of a Novel Protein-Protein Interaction Inhibitor. J Phys Chem B 2024; 128:7068-7085. [PMID: 38857533 DOI: 10.1021/acs.jpcb.4c01743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Parkinson's disease is a widespread age-related neurodegenerative disorder characterized by the loss of dopaminergic neurons in the midbrain along with the appearance of protein aggregates, termed as "Lewy bodies" in the surviving neuronal cells. The components of Lewy bodies include proteins such as α-synuclein, 14-3-3, Parkin, and LRRK2, along with other cellular organelles, which, in their native state, perform a plethora of vital biological functions within the human biome. Formation of these aggregates renders these components inactive, thereby interfering with homeostasis. In this regard, the current study attempts to investigate the complexation behavior of all human-based 14-3-3 isoforms with α-synuclein via a combination of classical and enhanced sampling techniques and thereby determine the causality of these protein-protein interactions. The study indicated that upon complexation, the aggregation propensity of both 14-3-3 and α-synuclein increases, and this increment is propelled by the interfacial residues on either protein. Furthermore, mutagenesis studies revealed that Lys214 of 14-3-3 (henceforth termed K214A) is crucial for the formation of this binary complex. Principal component analysis combined with clustering studies unveiled the stability of these complexes in terms of their conformational distribution across the entire MD trajectory. For K214A, these clustered states were sparsely located, thereby making the transitions between them slightly difficult. Dynamic cross-correlation maps (DCCM) revealed the role of residues in the range 80-130 of 14-3-3 having a potential allosteric role in driving this complexation process. Finally, a novel peptide-based supramolecular inhibitor was designed, which exhibited higher proficiency in limiting the 14-3-3/α-synuclein interaction compared to the previous inhibitor model. It was also revealed that the presence of this inhibitor induces structural rigidity in α-synuclein, making changes in its conformations extremely difficult, as observed through Umbrella Sampling studies. Based on available information, the current study provides an insight into the molecular-level understanding of protein-protein interactions underlying Parkinson's disease and adds on to the methods of devising novel therapeutic approaches to treat the same.
Collapse
Affiliation(s)
- Gourav Chakraborty
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
6
|
Naskar A, Roy RK, Srivastava D, Patra N. Decoding Inhibitor Egression from Wild-Type and G2019S Mutant LRRK2 Kinase: Insights into Unbinding Mechanisms for Precision Drug Design in Parkinson's Disease. J Phys Chem B 2024; 128:6657-6669. [PMID: 38822803 DOI: 10.1021/acs.jpcb.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) remains a viable target for drug development since the discovery of the association of its mutations with Parkinson's disease (PD). G2019S (in the kinase domain) is the most common mutation for LRRK2-based PD. Though various types of inhibitors have been developed for the kinase domain to reduce the effect of the mutation, understanding the working of these inhibitors at the molecular level is still ongoing. This study focused on the exploration of the dissociation mechanism (pathways) of inhibitors from (WT and G2019S) LRRK2 kinase (using homology model CHK1 kinase), which is one of the crucial aspects in drug discovery. Here, two ATP-competitive type I inhibitors, PF-06447475 and MLi-2 (Comp1 and Comp2 ), and one non-ATP-competitive type II inhibitor, rebastinib (Comp3), were considered for this investigation. To study the unbinding process, random accelerated molecular dynamics simulations were performed. The binding free energies of the three inhibitors for different egression paths were determined using umbrella sampling. This work found four major egression pathways that were adopted by the inhibitors Comp1 (path1, path2, and path3), Comp2 (path1, path2 and path3), and Comp3 (path3 and path4). Also, the mechanism of unbinding for each path and key residues involved in unbinding were explored. Mutation was not observed to impact the preference of the particular egression pathways for both LRRK2-Comp1 and -Comp2 systems. However, the findings suggested that the size of the inhibitor molecules might have an effect on the preference of the egression pathways. The binding energy and residence time of the inhibitors followed a similar trend to experimental observations. The findings of this work might provide insight into designing more potent inhibitors for the G2019S LRRK2 kinase.
Collapse
Affiliation(s)
- Avigyan Naskar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Rakesh K Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Diship Srivastava
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
7
|
Bhanja KK, Sharma M, Patra N. Uncovering the Structural and Binding Insights of Dual Inhibitors Simultaneously Targeting Two Distinct Sites on EGFR Kinase. J Phys Chem B 2023; 127:10749-10765. [PMID: 38055900 DOI: 10.1021/acs.jpcb.3c04337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Epidermal growth factor receptor (EGFR) is the first growth factor receptor identified in normal cells that is related to the receptor tyrosine kinase, which causes regular cell division. A point mutation in EGFR intracellular kinase domain forces the abnormal cell divisions throughout time, leading to non-small cell lung cancer (NSCLC) transformation. Thus, competitive inhibitors that bind to the ATP binding pocket have been developed as a targeted therapy for NSCLC. The third-generation kinase inhibitor Osimertinib is currently playing a very vital role in the treatment of NSCLC. However, it is not effective toward the C797S kinase domain mutation. For this reason, fourth-generation kinase noncompetitive inhibitors are introduced which work through binding to an allosteric pocket near the ATP binding region and act as a better binding agent for this mutated kinase domain. However, the problem is that these single fourth-generation kinase inhibitors may not be as effective as a single agent. The aim of this work was to apply combinations of these two inhibitors together in different binding regions of EGFR without overlapping the resistance mechanism to obtain the key direct and indirect interactions occurring between them. Moreover, the free energy of dissociation of an inhibitor from its binding sites in the presence of a second inhibitor immobilized in another binding site was also the focus of the study. To realize this aim, we performed conventional molecular dynamics simulations and principal component analysis and dynamic cross-correlation matrices along with umbrella sampling. Our results demonstrated that binding of dual inhibitors triggered conformational changes of the protein more toward the inactive state. Furthermore, allosteric inhibitors bound more strongly to protein kinase EGFR than the orthosteric inhibitors in the presence of dual inhibitors. Finally, the binding mechanism and important hydrogen-bonding residues during unbinding of the inhibitors were fully elucidated. This study provides insight into the binding of the receptor-orthosteric inhibitor-allosteric inhibitor, which can be helpful for further design of novel inhibitors that have a better inhibitory action.
Collapse
Affiliation(s)
- Kousik K Bhanja
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Madhur Sharma
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|