1
|
Akamatsu S, Mitsuhashi S, Soga K, Mizukami H, Shiraishi M, Frith MC, Yamano Y. Targeted nanopore sequencing using the Flongle device to identify mitochondrial DNA variants. Sci Rep 2024; 14:25161. [PMID: 39448697 PMCID: PMC11502840 DOI: 10.1038/s41598-024-75749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Variants in mitochondrial genomes (mtDNA) can cause various neurological and mitochondrial diseases such as mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes (MELAS). Given the 16 kb length of mtDNA, continuous sequencing is feasible using long-read sequencing (LRS). Herein, we aimed to show a simple and accessible method for comprehensive mtDNA sequencing with potential diagnostic applications for mitochondrial diseases using the compact and affordable LRS flow cell "Flongle." Whole mtDNA amplification (WMA) was performed using genomic DNA samples derived from four patients with mitochondrial diseases, followed by LRS using Flongle. We compared these results to those obtained using Cas9 enrichment. Additionally, the accuracy of heteroplasmy rates was assessed by incorporating mtDNA variants at equimolar levels. Finally, mtDNA from 19 patients with Parkinson's disease (PD) was sequenced using Flongle to identify disease risk-associated variants. mtDNA variants were detected in all four patients with mitochondrial diseases, with results comparable to those obtained from Cas9 enrichment. Heteroplasmy levels were accurately detected (r2 > 0.99) via WMA using Flongle. A reported variant was identified in three patients with PD. In conclusion, Flongle can simplify the traditionally cumbersome and expensive mtDNA sequencing process, offering a streamlined and accessible approach to diagnosing mitochondrial diseases.
Collapse
Affiliation(s)
- Shintaro Akamatsu
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan
| | - Satomi Mitsuhashi
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan.
| | - Kaima Soga
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan
| | - Heisuke Mizukami
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan
| | - Makoto Shiraishi
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, AIST, Tokyo, Japan
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST, Tokyo, Japan
| | - Yoshihisa Yamano
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan.
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan.
| |
Collapse
|
2
|
Sutopo S, Lestari DA, Setiaji A, Bugiwati SRA, Dagong MIA, Hilmia N, Garnida D, Asmara IY, Kurnianto E. Revealing the complete mtDNA genome sequence of Cemani chicken (Gallus gallus) by using Nanopore sequencing analysis. Anim Biosci 2024; 37:1664-1672. [PMID: 38938041 PMCID: PMC11366513 DOI: 10.5713/ab.23.0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE This study aimed to identify, discover and explore the characteristics of the mtDNA genomes of Cemani chicken (Gallus gallus). METHODS This study used gDNA of Cemani chicken isolated from liver tissue. mtDNA sequencing was performed using WGS mtDNA analysis with nanopore technology by Oxford Nanopore Technologies GridION. Bioinformatics and data analysis were then performed. RESULTS This study showed that the length of the mtDNA genome is 16,789 bp, consisting of two ribosomal RNA (12S rRNA, 16S rRNA), 22 transfer RNA genes (trnR, trnG, trnK, trnD, trnS, trnY, trnC, trnN, trnA, trnW, trnM, trnQ, trnl, trnL, trnV, trnF, trnP, trnT, trnE, trnL, trnS, trnH), 13 protein-coding genes (PCGs) (ND4l, ND3, COX3, ATP6, ATP8, COX2, COX1, ND2, ND1, CYTB, ND6, ND5, ND4), and a noncoding control region (Dloop). Furthermore, analysis showed there were polymorphic sites and amino acid alterations when mtDNA Cemani chicken was aligned with references from GenBank. CONCLUSION Site (988T>*) in Dloop genes and (328A>G) in ND3 genes which alter glycine to stop codon, were specific markers found only in Cemani chicken.
Collapse
Affiliation(s)
- Sutopo Sutopo
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275,
Indonesia
| | - Dela Ayu Lestari
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275,
Indonesia
| | - Asep Setiaji
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275,
Indonesia
| | | | - Muhammad Ihsan Andi Dagong
- Department of Animal Production, Faculty of Animal Science, Universitas Hasanuddin, Makassar, 90245,
Indonesia
| | - Nena Hilmia
- Department of Animal Production, Faculty of Animal Husbandry, Universitas Padjajaran, Bandung, 45363,
Indonesia
| | - Dani Garnida
- Department of Animal Production, Faculty of Animal Husbandry, Universitas Padjajaran, Bandung, 45363,
Indonesia
| | - Indrawati Yudha Asmara
- Department of Animal Production, Faculty of Animal Husbandry, Universitas Padjajaran, Bandung, 45363,
Indonesia
| | - Edy Kurnianto
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275,
Indonesia
| |
Collapse
|
3
|
Velasquez-Restrepo S, Corrales Orozco M, Franco-Sierra ND, Martínez-Cerón JM, Díaz-Nieto JF. Identification of non-model mammal species using the MinION DNA sequencer from Oxford Nanopore. PeerJ 2024; 12:e17887. [PMID: 39346050 PMCID: PMC11438440 DOI: 10.7717/peerj.17887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 10/01/2024] Open
Abstract
Background The Neotropics harbors the largest species richness of the planet; however, even in well-studied groups, there are potentially hundreds of species that lack a formal description, and likewise, many already described taxa are difficult to identify using morphology. Specifically in small mammals, complex morphological diagnoses have been facilitated by the use of molecular data, particularly from mitochondrial sequences, to obtain accurate species identifications. Obtaining mitochondrial markers implies the use of PCR and specific primers, which are largely absent for non-model organisms. Oxford Nanopore Technologies (ONT) is a new alternative for sequencing the entire mitochondrial genome without the need for specific primers. Only a limited number of studies have employed exclusively ONT long-reads to assemble mitochondrial genomes, and few studies have yet evaluated the usefulness of such reads in multiple non-model organisms. Methods We implemented fieldwork to collect small mammals, including rodents, bats, and marsupials, in five localities in the northern extreme of the Cordillera Central of Colombia. DNA samples were sequenced using the MinION device and Flongle flow cells. Shotgun-sequenced data was used to reconstruct the mitochondrial genome of all the samples. In parallel, using a customized computational pipeline, species-level identifications were obtained based on sequencing raw reads (Whole Genome Sequencing). ONT-based identifications were corroborated using traditional morphological characters and phylogenetic analyses. Results A total of 24 individuals from 18 species were collected, morphologically identified, and deposited in the biological collection of Universidad EAFIT. Our different computational pipelines were able to reconstruct mitochondrial genomes from exclusively ONT reads. We obtained three new mitochondrial genomes and eight new molecular mitochondrial sequences for six species. Our species identification pipeline was able to obtain accurate species identifications for up to 75% of the individuals in as little as 5 s. Finally, our phylogenetic analyses corroborated the identifications from our automated species identification pipeline and revealed important contributions to the knowledge of the diversity of Neotropical small mammals. Discussion This study was able to evaluate different pipelines to reconstruct mitochondrial genomes from non-model organisms, using exclusively ONT reads, benchmarking these protocols on a multi-species dataset. The proposed methodology can be applied by non-expert taxonomists and has the potential to be implemented in real-time, without the need to euthanize the organisms and under field conditions. Therefore, it stands as a relevant tool to help increase the available data for non-model organisms, and the rate at which researchers can characterize life specially in highly biodiverse places as the Neotropics.
Collapse
Affiliation(s)
| | | | - Nicolás D Franco-Sierra
- Syndesis Health, Palm Beach Gardens, Florida, United States
- Corporación de Investigación e Innovación (VEDAS CII), VEDAS, Medellín, Antioquia, Colombia
| | - Juan M Martínez-Cerón
- Natural Systems and Sustainability Area, Universidad EAFIT, Medellín, Antioquia, Colombia
| | - Juan F Díaz-Nieto
- Natural Systems and Sustainability Area, Universidad EAFIT, Medellín, Antioquia, Colombia
| |
Collapse
|
4
|
Dobner J, Nguyen T, Pavez-Giani MG, Cyganek L, Distelmaier F, Krutmann J, Prigione A, Rossi A. mtDNA analysis using Mitopore. Mol Ther Methods Clin Dev 2024; 32:101231. [PMID: 38572068 PMCID: PMC10988129 DOI: 10.1016/j.omtm.2024.101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Mitochondrial DNA (mtDNA) analysis is crucial for the diagnosis of mitochondrial disorders, forensic investigations, and basic research. Existing pipelines are complex, expensive, and require specialized personnel. In many cases, including the diagnosis of detrimental single nucleotide variants (SNVs), mtDNA analysis is still carried out using Sanger sequencing. Here, we developed a simple workflow and a publicly available webserver named Mitopore that allows the detection of mtDNA SNVs, indels, and haplogroups. To simplify mtDNA analysis, we tailored our workflow to process noisy long-read sequencing data for mtDNA analysis, focusing on sequence alignment and parameter optimization. We implemented Mitopore with eliBQ (eliminate bad quality reads), an innovative quality enhancement that permits the increase of per-base quality of over 20% for low-quality data. The whole Mitopore workflow and webserver were validated using patient-derived and induced pluripotent stem cells harboring mtDNA mutations. Mitopore streamlines mtDNA analysis as an easy-to-use fast, reliable, and cost-effective analysis method for both long- and short-read sequencing data. This significantly enhances the accessibility of mtDNA analysis and reduces the cost per sample, contributing to the progress of mtDNA-related research and diagnosis.
Collapse
Affiliation(s)
- Jochen Dobner
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Thach Nguyen
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Mario Gustavo Pavez-Giani
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Lukas Cyganek
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jean Krutmann
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
- Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andrea Rossi
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Dobner J, Nguyen T, Dunkel A, Prigione A, Krutmann J, Rossi A. Mitochondrial DNA integrity and metabolome profile are preserved in the human induced pluripotent stem cell reference line KOLF2.1J. Stem Cell Reports 2024; 19:343-350. [PMID: 38402620 PMCID: PMC10937150 DOI: 10.1016/j.stemcr.2024.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Quality control of human induced pluripotent stem cells (iPSCs) is critical to ensure reproducibility of research. Recently, KOLF2.1J was characterized and published as a male iPSC reference line to study neurological disorders. Emerging evidence suggests potential negative effects of mtDNA mutations, but its integrity was not analyzed in the original publication. To assess mtDNA integrity, we conducted a targeted mtDNA analysis followed by untargeted metabolomics analysis. We found that KOLF2.1J mtDNA integrity was intact at the time of publication and is still preserved in the commercially distributed cell line. In addition, the basal KOLF2.1J metabolome profile was similar to that of the two commercially available iPSC lines IMR90 and iPSC12, but clearly distinct from an in-house-generated ERCC6R683X/R683X iPSC line modeling Cockayne syndrome. Conclusively, we validate KOLF2.1J as a reference iPSC line, and encourage scientists to conduct mtDNA analysis and unbiased metabolomics whenever feasible.
Collapse
Affiliation(s)
- Jochen Dobner
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Thach Nguyen
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jean Krutmann
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Andrea Rossi
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
6
|
Setiaji A, Lestari DA, Pandupuspitasari NS, Agusetyaningsih I, Khan FA. Genetic characteristics of complete mtDNA genome sequence of Indonesian local rabbit (Oryctolagus cuniculus). J Genet Eng Biotechnol 2023; 21:96. [PMID: 37812313 PMCID: PMC10562326 DOI: 10.1186/s43141-023-00546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Indonesian local rabbit (Oryctolagus cuniculus) is a local breed in Indonesia. We reveal the mitochondrial genome sequence of the Indonesian local Rabbit for the first time. A better understanding of the mechanisms underlying these beneficial aspects of local breeds over imported ones requires detailed genetic investigations, of which mtDNA genome sequencing is of particular importance. Such an investigation will solve the major issues of misidentification with Javanese hares (Lepus nigricollis) and maternal lineage. In addition, this information will guide better statistics on the Indonesian local rabbit breed population and strategies for its conservation and breeding plans. This study aimed to identify and explore the characteristics of the mtDNA genomes of Indonesian local rabbits. RESULT This study observed that the length of the mtDNA genome is 17,469 bp, consisting of two ribosomal RNA (12S rRNA, 16S rRNA), 22 transfer RNA genes (trnR, trnG, trnK, trnD, trnS, trnY, trnC, trnN, trnA, trnW, trnM, trnQ, trnl, trnL, trnV, trnF, trnP, trnT, trnE, trnL, trnS, trnH), 13 protein-coding genes (PCGs) (ND4l, ND3, COX3, ATP6, ATP8, COX2, COX1, ND2, ND1, CYTB, ND6, ND5, ND4), a replication origin, and a noncoding control region (D-loop). CONCLUSIONS mtDNA genome of Indonesian local rabbit was the longest and had the most extended D-loop sequence among the other references of Oryctolagus cuniculus. Other specific differences were also found in the percentage of nucleotides and variation in most of the PCGs when they were aligned with Oryctolagus cuniculus references from GenBank. Indonesian local Rabbits strongly suspected brought from Europe during the colonial period in Indonesia.
Collapse
Affiliation(s)
- Asep Setiaji
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Dela Ayu Lestari
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275, Indonesia.
| | | | - Ikania Agusetyaningsih
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), South Tangerang, 15314, Indonesia
- Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
7
|
Lüth T, Schaake S, Grünewald A, May P, Trinh J, Weissensteiner H. Benchmarking Low-Frequency Variant Calling With Long-Read Data on Mitochondrial DNA. Front Genet 2022; 13:887644. [PMID: 35664331 PMCID: PMC9161029 DOI: 10.3389/fgene.2022.887644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Sequencing quality has improved over the last decade for long-reads, allowing for more accurate detection of somatic low-frequency variants. In this study, we used mixtures of mitochondrial samples with different haplogroups (i.e., a specific set of mitochondrial variants) to investigate the applicability of nanopore sequencing for low-frequency single nucleotide variant detection. Methods: We investigated the impact of base-calling, alignment/mapping, quality control steps, and variant calling by comparing the results to a previously derived short-read gold standard generated on the Illumina NextSeq. For nanopore sequencing, six mixtures of four different haplotypes were prepared, allowing us to reliably check for expected variants at the predefined 5%, 2%, and 1% mixture levels. We used two different versions of Guppy for base-calling, two aligners (i.e., Minimap2 and Ngmlr), and three variant callers (i.e., Mutserve2, Freebayes, and Nanopanel2) to compare low-frequency variants. We used F1 score measurements to assess the performance of variant calling. Results: We observed a mean read length of 11 kb and a mean overall read quality of 15. Ngmlr showed not only higher F1 scores but also higher allele frequencies (AF) of false-positive calls across the mixtures (mean F1 score = 0.83; false-positive allele frequencies < 0.17) compared to Minimap2 (mean F1 score = 0.82; false-positive AF < 0.06). Mutserve2 had the highest F1 scores (5% level: F1 score >0.99, 2% level: F1 score >0.54, and 1% level: F1 score >0.70) across all callers and mixture levels. Conclusion: We here present the benchmarking for low-frequency variant calling with nanopore sequencing by identifying current limitations.
Collapse
Affiliation(s)
- Theresa Lüth
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Anne Grünewald
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- *Correspondence: Joanne Trinh, ; Hansi Weissensteiner,
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Joanne Trinh, ; Hansi Weissensteiner,
| |
Collapse
|
8
|
Saravanabavan S, Rangan GK. Possible role of the mitochondrial genome in the pathogenesis of autosomal dominant polycystic kidney disease. Nephrology (Carlton) 2021; 26:920-930. [PMID: 34331378 DOI: 10.1111/nep.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic renal disease in adults and is due to heterozygous germ line variants in either PKD1, PKD2 or rarely other genes. It is characterized by marked intra-familial disease variability suggesting that other genetic and/or environmental factors are involved in determining the lifetime course ADPKD. Recently, research indicates that polycystin-mediated mitochondrial dysfunction and metabolic re-programming contributes to the progression of ADPKD. Although biochemical abnormalities have gained the most interest, variants in the mitochondrial genome could be one of the mechanisms underlying the phenotypic variability in ADPKD. This narrative review aims to evaluate the role of the mitochondrial genome in the pathogenesis of APDKD.
Collapse
Affiliation(s)
- Sayanthooran Saravanabavan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Gopala K Rangan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
9
|
mtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences. Life (Basel) 2021; 11:life11070633. [PMID: 34209862 PMCID: PMC8307225 DOI: 10.3390/life11070633] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is predominately uniparentally transmitted. This results in organisms with a single type of mtDNA (homoplasmy), but two or more mtDNA haplotypes have been observed in low frequency in several species (heteroplasmy). In this review, we aim to highlight several aspects of heteroplasmy regarding its origin and its significance on mtDNA function and evolution, which has been progressively recognized in the last several years. Heteroplasmic organisms commonly occur through somatic mutations during an individual’s lifetime. They also occur due to leakage of paternal mtDNA, which rarely happens during fertilization. Alternatively, heteroplasmy can be potentially inherited maternally if an egg is already heteroplasmic. Recent advances in sequencing techniques have increased the ability to detect and quantify heteroplasmy and have revealed that mitochondrial DNA copies in the nucleus (NUMTs) can imitate true heteroplasmy. Heteroplasmy can have significant evolutionary consequences on the survival of mtDNA from the accumulation of deleterious mutations and for its coevolution with the nuclear genome. Particularly in humans, heteroplasmy plays an important role in the emergence of mitochondrial diseases and determines the success of the mitochondrial replacement therapy, a recent method that has been developed to cure mitochondrial diseases.
Collapse
|
10
|
Macken WL, Vandrovcova J, Hanna MG, Pitceathly RDS. Applying genomic and transcriptomic advances to mitochondrial medicine. Nat Rev Neurol 2021; 17:215-230. [PMID: 33623159 DOI: 10.1038/s41582-021-00455-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has increased our understanding of the molecular basis of many primary mitochondrial diseases (PMDs). Despite this progress, many patients with suspected PMD remain without a genetic diagnosis, which restricts their access to in-depth genetic counselling, reproductive options and clinical trials, in addition to hampering efforts to understand the underlying disease mechanisms. Although they represent a considerable improvement over their predecessors, current methods for sequencing the mitochondrial and nuclear genomes have important limitations, and molecular diagnostic techniques are often manual and time consuming. However, recent advances in genomics and transcriptomics offer realistic solutions to these challenges. In this Review, we discuss the current genetic testing approach for PMDs and the opportunities that exist for increased use of whole-genome NGS of nuclear and mitochondrial DNA (mtDNA) in the clinical environment. We consider the possible role for long-read approaches in sequencing of mtDNA and in the identification of novel nuclear genomic causes of PMDs. We examine the expanding applications of RNA sequencing, including the detection of cryptic variants that affect splicing and gene expression and the interpretation of rare and novel mitochondrial transfer RNA variants.
Collapse
Affiliation(s)
- William L Macken
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
11
|
Mader M, Schroeder H, Schott T, Schöning-Stierand K, Leite Montalvão AP, Liesebach H, Liesebach M, Fussi B, Kersten B. Mitochondrial Genome of Fagus sylvatica L. as a Source for Taxonomic Marker Development in the Fagales. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1274. [PMID: 32992588 PMCID: PMC7650814 DOI: 10.3390/plants9101274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
European beech, Fagus sylvatica L., is one of the most important and widespread deciduous tree species in Central Europe and is widely managed for its hard wood. The complete DNA sequence of the mitochondrial genome of Fagus sylvatica L. was assembled and annotated based on Illumina MiSeq reads and validated using long reads from nanopore MinION sequencing. The genome assembled into a single DNA sequence of 504,715 bp in length containing 58 genes with predicted function, including 35 protein-coding, 20 tRNA and three rRNA genes. Additionally, 23 putative protein-coding genes were predicted supported by RNA-Seq data. Aiming at the development of taxon-specific mitochondrial genetic markers, the tool SNPtax was developed and applied to select genic SNPs potentially specific for different taxa within the Fagales. Further validation of a small SNP set resulted in the development of four CAPS markers specific for Fagus, Fagaceae, or Fagales, respectively, when considering over 100 individuals from a total of 69 species of deciduous trees and conifers from up to 15 families included in the marker validation. The CAPS marker set is suitable to identify the genus Fagus in DNA samples from tree tissues or wood products, including wood composite products.
Collapse
Affiliation(s)
- Malte Mader
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Hilke Schroeder
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Thomas Schott
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Katrin Schöning-Stierand
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
- Center for Bioinformatics, Universität Hamburg, 20146 Hamburg, Germany
| | - Ana Paula Leite Montalvão
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Heike Liesebach
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Mirko Liesebach
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Barbara Fussi
- Bavarian Office for Forest Genetics, 83317 Teisendorf, Germany;
| | - Birgit Kersten
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| |
Collapse
|