1
|
Pollock RD, Hodkinson PD, Smith TG. Oh G: The x, y and z of human physiological responses to acceleration. Exp Physiol 2021; 106:2367-2384. [PMID: 34730860 DOI: 10.1113/ep089712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/18/2021] [Indexed: 01/06/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review focuses on the main physiological challenges associated with exposure to acceleration in the Gx, Gy and Gz directions and to microgravity. What advances does it highlight? Our current understanding of the physiology of these environments and latest strategies to protect against them are discussed in light of the limited knowledge we have in some of these areas. ABSTRACT The desire to go higher, faster and further has taken us to environments where the accelerations placed on our bodies far exceed or are much lower than that attributable to Earth's gravity. While on the ground, racing drivers of the fastest cars are exposed to high degrees of lateral acceleration (Gy) during cornering. In the air, while within the confines of the lower reaches of Earth's atmosphere, fast jet pilots are routinely exposed to high levels of acceleration in the head-foot direction (Gz). During launch and re-entry of suborbital and orbital spacecraft, astronauts and spaceflight participants are exposed to high levels of chest-back acceleration (Gx), whereas once in space the effects of gravity are all but removed (termed microgravity, μG). Each of these environments has profound effects on the homeostatic mechanisms within the body and can have a serious impact, not only for those with underlying pathology but also for healthy individuals. This review provides an overview of the main challenges associated with these environments and our current understanding of the physiological and pathophysiological adaptations to them. Where relevant, protection strategies are discussed, with the implications of our future exposure to these environments also being considered.
Collapse
Affiliation(s)
- Ross D Pollock
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Peter D Hodkinson
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Thomas G Smith
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK.,Department of Anaesthesia, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Wu F, Chen L, Huang J, Fan W, Yang J, Zhang X, Jin Y, Yang F, Zheng C. Total Lung and Lobar Quantitative Assessment Based on Paired Inspiratory-Expiratory Chest CT in Healthy Adults: Correlation with Pulmonary Ventilatory Function. Diagnostics (Basel) 2021; 11:diagnostics11101791. [PMID: 34679488 PMCID: PMC8534441 DOI: 10.3390/diagnostics11101791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Objective: To provide the quantitative volumetric data of the total lung and lobes in inspiration and expiration from healthy adults, and to explore the value of paired inspiratory–expiratory chest CT scan in pulmonary ventilatory function and further explore the influence of each lobe on ventilation. Methods: A total of 65 adults (29 males and 36 females) with normal clinical pulmonary function test (PFT) and paired inspiratory–expiratory chest CT scan were retrospectively enrolled. The inspiratory and expiratory volumetric indexes of the total lung (TL) and 5 lobes (left upper lobe [LUL], left lower lobe [LLL], right upper lobe [RUL], right middle lobe [RML], and right lower lobe [RLL]) were obtained by Philips IntelliSpace Portal image postprocessing workstation, including inspiratory lung volume (LVin), expiratory lung volume (LVex), volume change (∆LV), and well-aerated lung volume (WAL, lung tissue with CT threshold between −950 and −750 HU in inspiratory scan). Spearman correlation analysis was used to explore the correlation between CT quantitative indexes of the total lung and ventilatory function indexes (including total lung capacity [TLC], residual volume [RV], and force vital capacity [FVC]). Multiple stepwise regression analysis was used to explore the influence of each lobe on ventilation. Results: At end-inspiratory phase, the LVin-TL was 4664.6 (4282.7, 5916.2) mL, the WALTL was 4173 (3639.6, 5250.9) mL; both showed excellent correlation with TLC (LVin-TL: r = 0.890, p < 0.001; WALTL: r = 0.879, p < 0.001). From multiple linear regression analysis with lobar CT indexes as variables, the LVin and WAL of these two lobes, LLL and RUL, showed a significant relationship with TLC. At end-expiratory phase, the LVex-TL was 2325.2 (1969.7, 2722.5) mL with good correlation with RV (r = 0.811, p < 0.001), of which the LVex of RUL and RML had a significant relationship with RV. For the volumetric change within breathing, the ∆LVTL was 2485.6 (2169.8, 3078.1) mL with good correlation with FVC (r = 0.719, p < 0.001), moreover, WALTL showed a better correlation with FVC (r = 0.817, p < 0.001) than that of ∆LVTL. Likewise, there was also a strong association between ∆LV, WAL of these two lobes (LLL and RUL), and FVC. Conclusions: The quantitative indexes derived from paired inspiratory–expiratory chest CT could reflect the clinical pulmonary ventilatory function, LLL, and RUL give greater impact on ventilation. Thus, the pulmonary functional evaluation needs to be more precise and not limited to the total lung level.
Collapse
Affiliation(s)
- Feihong Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; (F.W.); (L.C.); (J.H.); (W.F.); (J.Y.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Leqing Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; (F.W.); (L.C.); (J.H.); (W.F.); (J.Y.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jia Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; (F.W.); (L.C.); (J.H.); (W.F.); (J.Y.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; (F.W.); (L.C.); (J.H.); (W.F.); (J.Y.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jinrong Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; (F.W.); (L.C.); (J.H.); (W.F.); (J.Y.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaohui Zhang
- Clinical Science, Philips Healthcare, No. 718 Daning Rd., Jingan District, Shanghai 200233, China;
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China;
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; (F.W.); (L.C.); (J.H.); (W.F.); (J.Y.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Correspondence: (F.Y.); (C.Z.); Tel.: +86-027-8535-3238 (C.Z.)
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; (F.W.); (L.C.); (J.H.); (W.F.); (J.Y.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Correspondence: (F.Y.); (C.Z.); Tel.: +86-027-8535-3238 (C.Z.)
| |
Collapse
|
3
|
Pollock RD, Jolley CJ, Abid N, Couper JH, Estrada-Petrocelli L, Hodkinson PD, Leonhardt S, Magor-Elliott S, Menden T, Rafferty G, Richmond G, Robbins PA, Ritchie GAD, Segal MJ, Stevenson AT, Tank HD, Smith TG. Pulmonary Effects of Sustained Periods of High-G Acceleration Relevant to Suborbital Spaceflight. Aerosp Med Hum Perform 2021; 92:633-641. [PMID: 34503616 DOI: 10.3357/amhp.5790.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractBACKGROUND: Members of the public will soon be taking commercial suborbital spaceflights with significant Gx (chest-to-back) acceleration potentially reaching up to 6 Gx. Pulmonary physiology is gravity-dependent and is likely to be affected, which may have clinical implications for medically susceptible individuals.METHODS: During 2-min centrifuge exposures ranging up to 6 Gx, 11 healthy subjects were studied using advanced respiratory techniques. These sustained exposures were intended to allow characterization of the underlying pulmonary response and did not replicate actual suborbital G profiles. Regional distribution of ventilation in the lungs was determined using electrical impedance tomography. Neural respiratory drive (from diaphragm electromyography) and work of breathing (from transdiaphragmatic pressures) were obtained via nasoesophageal catheters. Arterial blood gases were measured in a subset of subjects. Measurements were conducted while breathing air and breathing 15 oxygen to simulate anticipated cabin pressurization conditions.RESULTS: Acceleration caused hypoxemia that worsened with increasing magnitude and duration of Gx. Minimum arterial oxygen saturation at 6 Gx was 86 1 breathing air and 79 1 breathing 15 oxygen. With increasing Gx the alveolar-arterial (A-a) oxygen gradient widened progressively and the relative distribution of ventilation reversed from posterior to anterior lung regions with substantial gas-trapping anteriorly. Severe breathlessness accompanied large progressive increases in work of breathing and neural respiratory drive.DISCUSSION: Sustained high-G acceleration at magnitudes relevant to suborbital flight profoundly affects respiratory physiology. These effects may become clinically important in the most medically susceptible passengers, in whom the potential role of centrifuge-based preflight evaluation requires further investigation.Pollock RD, Jolley CJ, Abid N, Couper JH, Estrada-Petrocelli L, Hodkinson PD, Leonhardt S, Mago-Elliott S, Menden T, Rafferty G, Richmond G, Robbins PA, Ritchie GAD, Segal MJ, Stevenson AT, Tank HD, Smith TG. Pulmonary effects of sustained periods of high-G acceleration relevant to suborbital spaceflight. Aerosp Med Hum Perform. 2021; 92(7):633641.
Collapse
|
4
|
Abstract
Structural and functional complexities of the mammalian lung evolved to meet a unique set of challenges, namely, the provision of efficient delivery of inspired air to all lung units within a confined thoracic space, to build a large gas exchange surface associated with minimal barrier thickness and a microvascular network to accommodate the entire right ventricular cardiac output while withstanding cyclic mechanical stresses that increase several folds from rest to exercise. Intricate regulatory mechanisms at every level ensure that the dynamic capacities of ventilation, perfusion, diffusion, and chemical binding to hemoglobin are commensurate with usual metabolic demands and periodic extreme needs for activity and survival. This article reviews the structural design of mammalian and human lung, its functional challenges, limitations, and potential for adaptation. We discuss (i) the evolutionary origin of alveolar lungs and its advantages and compromises, (ii) structural determinants of alveolar gas exchange, including architecture of conducting bronchovascular trees that converge in gas exchange units, (iii) the challenges of matching ventilation, perfusion, and diffusion and tissue-erythrocyte and thoracopulmonary interactions. The notion of erythrocytes as an integral component of the gas exchanger is emphasized. We further discuss the signals, sources, and limits of structural plasticity of the lung in alveolar hypoxia and following a loss of lung units, and the promise and caveats of interventions aimed at augmenting endogenous adaptive responses. Our objective is to understand how individual components are matched at multiple levels to optimize organ function in the face of physiological demands or pathological constraints.
Collapse
Affiliation(s)
- Connie C.W. Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dallas M. Hyde
- California National Primate Research Center, University of California at Davis, Davis, California, USA
| | | |
Collapse
|