1
|
Nowakowska A, Marchelek-Myśliwiec M, Skórka-Majewicz M, Żwierełło W, Grzeszczak K, Gutowska I. The Impact of Recreational Diving to a Depth of 40 m on Selected Intracellular DAMPs. Int J Mol Sci 2025; 26:3061. [PMID: 40243713 PMCID: PMC11989067 DOI: 10.3390/ijms26073061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Increasingly popular, recreational diving is a physical activity that takes place under extreme environmental conditions, which include hyperoxia, hyperbaria and exposure to cold water. The effects of these factors on the human body induce increased levels of reactive oxygen and nitrogen species in divers' bodies, which may modulate damage-associated molecular pattern (DAMPs), their receptors and the antioxidant response. This study involved 21 divers who descended to a depth of 40 metres. Determinations of selected intracellular DAMPs (high-mobility group box protein 1,HMGB1, S100 calcium-binding proteins A9 and A8, S100A8 and S100A9, heat shock protein family A member 1A, HSPA1A (Hsp70), heat shock protein family B, (small) member 1, HSPB1(Hsp27), thioredoxin, TXN), their receptors (Toll-like receptor 4, TLR4 and receptors for advanced glycation end products, RAGE), nuclear factor-κB (NF-κB) and antioxidant defence markers were performed before, after and 1 h after the dive. A significant transient reduction in HMGB1 expression was observed immediately after the dive at both the mRNA and protein levels. We noted an increase in S100A9 expression, which occurred 1 h post-dive compared to the post-dive time point, and a post-dive decrease in TLR4 expression only at the mRNA level. Diving also influenced the expression of genes encoding key enzymes associated with glutathione synthesis, (glutamate-cysteine ligase, catalytic subunit, GCLC and glutathione synthetase, GSS), and reduced plasma glutathione levels. However, no significant changes were observed in the expression of NF-κB, nitric oxide synthase 2 (NOS2) or circulating DAMP receptors (TLR4 and RAGE). The findings suggest an adaptive response to diving-induced oxidative stress, which appears to be a protective mechanism against an excessive inflammatory response. To our knowledge, this is the first study to analyse the role of intracellular DAMPs in recreational divers.
Collapse
Affiliation(s)
- Anna Nowakowska
- Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| | - Małgorzata Marchelek-Myśliwiec
- Clinical Department of Nephrology, Transplantology & Internal Medicine, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (M.S.-M.); (W.Ż.)
| | - Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (M.S.-M.); (W.Ż.)
| | - Konrad Grzeszczak
- Department of Laboratory Diagnostics, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (M.S.-M.); (W.Ż.)
| |
Collapse
|
2
|
Kageyama N, Sawamura T. Effect of hyperbaric exposure on cognitive performance: an investigation conducting numerical Stroop tasks during a simulated 440 m sea water saturation diving. J Physiol Anthropol 2024; 43:24. [PMID: 39375772 PMCID: PMC11459827 DOI: 10.1186/s40101-024-00366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/16/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Saturation diving (SD) is useful and safe in deep diving for long durations. Japan Maritime Self-Defense Force (JMSDF) Undersea Medical Center (UMC) maintained safely deep 45 ATA SDHowever, cognitive performance was reportedly impaired by hyperbaric exposure in over 31 atmosphere absolute (ATA) SD. This study investigated the effects of hyperbaric exposure during 45 ATA deep SD on expert divers' cognitive function using Stroop tasks, a useful method to examine cognitive function, especially in narrow spaces such as SD chambers. METHODS Two numerical Stroop tasks were utilized to create two magnitude comparisons of a pair of single-digit numerical and physical tasks. Both numerical Stroop tasks were examined twice, at 1 and 45 ATAs, during a simulated 440 m of sea water depth for SD. Participants were 18 male expert JMSDF SD divers (age 36.58 ± 4.89 years). RESULTS In the numerical task, reaction time (RT) was significantly delayed at 45 ATA compared with 1 ATA in the incongruent condition. In the physical task, RT at 45 ATA was significantly delayed under all the conditions (congruent, incongruent, and neutral). The correct rates (CR) in both numerical Stroop tasks significantly decreased at 45 ATA compared with 1 ATA in the incongruent condition. CONCLUSIONS Our findings suggest that divers' cognition is impaired during 45 ATA deep SD. These results emphasize the importance of monitoring cognition in deep sea SD and highlight the need to educate and train for SD. Further examination combining Stroop tasks with other analyses such as event-related potential (ERP) is expected.
Collapse
Affiliation(s)
- Nozomu Kageyama
- Undersea Medical Center, JMSDF, Tauraminatocho Mubanchi, Yokosuka, Kanagawa, 237-0071, Japan.
| | - Takehito Sawamura
- Undersea Medical Center, JMSDF, Tauraminatocho Mubanchi, Yokosuka, Kanagawa, 237-0071, Japan
| |
Collapse
|
3
|
Johnson G, Tabner A, Tilbury N, Wesson A, Hughes GD, Elder R, Bryson P. Development of an algorithm to guide management of cardiorespiratory arrest in a diving bell. Resusc Plus 2024; 19:100724. [PMID: 39100390 PMCID: PMC11295632 DOI: 10.1016/j.resplu.2024.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Aim The management of cardiorespiratory arrest in a diving bell presents multiple clinical, technical, and environmental considerations that standard resuscitation algorithms do not address, and no situation-specific algorithm exists. The development and testing of an algorithm to guide the management of cardiorespiratory arrest in a bell is described. Methods An iterative approach to algorithm development was used. Phase 1 involved a small multidisciplinary group and took place in a simulation centre and a decommissioned diving bell. The algorithm was then refined in a purpose-build simulation complex with repeated simulation by a group of divers, and with input from industry experts. ALS principles were followed unless contextual or technical factors necessitated deviation. Results Clinical and technical aspects of the resuscitation are addressed. Key priorities that conflict with standard ALS principles are: prioritisation of rescue breaths; use of mechanical CPR when available; and the provision of CPR with the casualty in a seated position where necessary. Conclusion This is the first algorithm to guide the delivery of resuscitation in a diving bell. It incorporates adapted ALS principles and available data concerning compression technique effectiveness, and was informed by industry and clinical expertise. It provides guiding principles that can be adapted to setting-specific needs, and we would encourage its industry-wide international adoption.
Collapse
Affiliation(s)
- Graham Johnson
- University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, Uttoxeter Road, Derby DE22 3NE, UK
- University of Nottingham School of Medicine, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Andrew Tabner
- University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, Uttoxeter Road, Derby DE22 3NE, UK
- University of Nottingham School of Medicine, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Nicholas Tilbury
- University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, Uttoxeter Road, Derby DE22 3NE, UK
| | | | - Gareth D. Hughes
- University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, Uttoxeter Road, Derby DE22 3NE, UK
| | | | - Philip Bryson
- TAC Healthcare, Wellheads Crescent, Aberdeen AB21 7GA, UK
| |
Collapse
|
4
|
Vezzoli A, Mrakic-Sposta S, Brizzolari A, Balestra C, Camporesi EM, Bosco G. Oxy-Inflammation in Humans during Underwater Activities. Int J Mol Sci 2024; 25:3060. [PMID: 38474303 DOI: 10.3390/ijms25053060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Underwater activities are characterized by an imbalance between reactive oxygen/nitrogen species (RONS) and antioxidant mechanisms, which can be associated with an inflammatory response, depending on O2 availability. This review explores the oxidative stress mechanisms and related inflammation status (Oxy-Inflammation) in underwater activities such as breath-hold (BH) diving, Self-Contained Underwater Breathing Apparatus (SCUBA) and Closed-Circuit Rebreather (CCR) diving, and saturation diving. Divers are exposed to hypoxic and hyperoxic conditions, amplified by environmental conditions, hyperbaric pressure, cold water, different types of breathing gases, and air/non-air mixtures. The "diving response", including physiological adaptation, cardiovascular stress, increased arterial blood pressure, peripheral vasoconstriction, altered blood gas values, and risk of bubble formation during decompression, are reported.
Collapse
Affiliation(s)
- Alessandra Vezzoli
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20142 Milano, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20142 Milano, Italy
| | - Andrea Brizzolari
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
| | | | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
5
|
Cognitive Functions in Scuba, Technical and Saturation Diving. BIOLOGY 2023; 12:biology12020229. [PMID: 36829505 PMCID: PMC9953147 DOI: 10.3390/biology12020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Scuba diving as a recreational activity is becoming increasingly popular. However, the safety of this activity, especially in the out-of-comfort zone, has been discussed worldwide. The latest publications bring conclusions regarding negative effects on cognitive functions. We compare the acute and chronic effects of diving on cognitive functioning depending on the type of dive performed, including recreational, technical and saturation diving. However, the results of research show that acute and chronic effects on cognitive functions can be negative. While acute effects are reversible after the ascent, chronic effects include white matter lesions in magnetic resonance imaging scans. We believe that more investigations should be performed to determine the chronic effects that could be observed after a few months of observations in a group of regular, intense divers. In addition, publications referring to technical divers are very limited, which is disquieting, as this particular group of divers seems to be neglected in research concerning the effects of diving on cognitive functions.
Collapse
|
6
|
Bosco G, Giacon TA, Paolocci N, Vezzoli A, Noce CD, Paganini M, Agrimi J, Garetto G, Cialoni D, D'Alessandro N, Camporesi EM, Mrakic-Sposta S. Dopamine/BDNF loss underscores narcosis cognitive impairment in divers: a proof of concept in a dry condition. Eur J Appl Physiol 2023; 123:143-158. [PMID: 36214902 DOI: 10.1007/s00421-022-05055-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/18/2022] [Indexed: 01/20/2023]
Abstract
PURPOSE Divers can experience cognitive impairment due to inert gas narcosis (IGN) at depth. Brain-derived neurotrophic factor (BDNF) rules neuronal connectivity/metabolism to maintain cognitive function and protect tissues against oxidative stress (OxS). Dopamine and glutamate enhance BDNF bioavailability. Thus, we hypothesized that lower circulating BDNF levels (via lessened dopamine and/or glutamate release) underpin IGN in divers, while testing if BDNF loss is associated with increased OxS. METHODS To mimic IGN, we administered a deep narcosis test via a dry dive test (DDT) at 48 msw in a multiplace hyperbaric chamber to six well-trained divers. We collected: (1) saliva samples before DDT (T0), 25 msw (descending, T1), 48 msw (depth, T2), 25 msw (ascending, T3), 10 min after decompression (T4) to dopamine and/or reactive oxygen species (ROS) levels; (2) blood and urine samples at T0 and T4 for OxS too. We administered cognitive tests at T0, T2, and re-evaluated the divers at T4. RESULTS At 48 msw, all subjects experienced IGN, as revealed by the cognitive test failure. Dopamine and total antioxidant capacity (TAC) reached a nadir at T2 when ROS emission was maximal. At decompression (T4), a marked drop of BDNF/glutamate content was evidenced, coinciding with a persisting decline in dopamine and cognitive capacity. CONCLUSIONS Divers encounter IGN at - 48 msw, exhibiting a marked loss in circulating dopamine levels, likely accounting for BDNF-dependent impairment of mental capacity and heightened OxS. The decline in dopamine and BDNF appears to persist at decompression; thus, boosting dopamine/BDNF signaling via pharmacological or other intervention types might attenuate IGN in deep dives.
Collapse
Affiliation(s)
- Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Institute of Clinical Physiology, National Research Council (CNR), 20162, Milano, Italy
- ATIP Center for Hyperbaric Medicine, Padova, Italy
| | | | - Nazareno Paolocci
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), 20162, Milano, Italy
| | - Cinzia Della Noce
- Institute of Clinical Physiology, National Research Council (CNR), 20162, Milano, Italy
| | - Matteo Paganini
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Jacopo Agrimi
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Danilo Cialoni
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Institute of Clinical Physiology, National Research Council (CNR), 20162, Milano, Italy
- ATIP Center for Hyperbaric Medicine, Padova, Italy
- Dan Europe Foundation, Research Division, Roseto degli Abbruzzi, Teramo, Italy
| | | | | | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162, Milano, Italy.
| |
Collapse
|
7
|
Wekre SL, Landsverk HD, Lautridou J, Hjelde A, Imbert JP, Balestra C, Eftedal I. Hydration status during commercial saturation diving measured by bioimpedance and urine specific gravity. Front Physiol 2022; 13:971757. [PMID: 36246118 PMCID: PMC9559868 DOI: 10.3389/fphys.2022.971757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive fluid loss triggered by hyperbaric pressure, water immersion and hot water suits causes saturation divers to be at risk of dehydration. Dehydration is associated with reductions in mental and physical performance, resulting in less effective work and an increased risk of work-related accidents. In this study we examined the hydration status of 11 male divers over 19 days of a commercial saturation diving campaign to a working depth of 74 m, using two non-invasive methods: Bioelectrical impedance analysis (BIA) and urine specific gravity (USG). Measurements were made daily before and after bell runs, and the BIA data was used to calculated total body water (TBW). We found that BIA and USG were weakly negatively correlated, probably reflecting differences in what they measure. TBW was significantly increased after bell runs for all divers, but more so for bellmen than for in-water divers. There were no progressing changes in TBW over the 19-day study period, indicating that the divers’ routines were sufficient for maintaining their hydration levels on short and long term.
Collapse
Affiliation(s)
- Stian Lande Wekre
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Stian Lande Wekre,
| | - Halvor Dagssøn Landsverk
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Jacky Lautridou
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Astrid Hjelde
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Costantino Balestra
- Environmental and Occupational Physiology Laboratory, Haute Ecole Bruxelles-Brabant HE2B, Brussels, Belgium
- DAN Europe Research, Brussels, Belgium
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
8
|
Romsbotn S, Eftedal I, Vaag JR. A Work Environment Under Pressure: Psychosocial Job Demands and Resources Among Saturation Divers. Front Public Health 2022; 10:765197. [PMID: 35570940 PMCID: PMC9095950 DOI: 10.3389/fpubh.2022.765197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Saturation divers work and live under high physiological and social demands for weeks on end. Even though physiological research has contributed insights to the work conditions of saturation divers, research on the qualities of the divers' psychosocial work environment is lacking. This study aimed to explore which job demands and resources are viewed as characteristic among saturation divers working within an isolated and confined environment. Based on data from 6 in-depth semi-structured interviews, template analysis was applied to map unique characteristics. By using the theoretical framework of the job demands-resources model, we found that the work environment in saturation diving was characterized by shifting demands and big contrasts, requiring adaptability in each individual diver. One major demand described by the informants was an unpredictable future, somewhat due to the changes in the oil and gas industry. Another important demand was the conflict between family and work/leisure when committing to work for extended periods in isolated environments. The monotony that characterizes the work environment is a challenge that must be managed. High wages, periods of leisure, and a prestigious job provide external motivation, while personal resources such as mental endurance and flexibility, a willingness to learn, and keeping up small personal routines, may benefit the divers' mental health. This is also affected by the quality of team climate-with features such as being sociable and considerate, having a dark sense of humor and having trust in one another.
Collapse
Affiliation(s)
- Siri Romsbotn
- Department of Psychology, Faculty of Social Sciences and Educational Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Jonas Rennemo Vaag
- Department of Psychology, Faculty of Social Sciences and Educational Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Social Sciences, Nord University, Bodø, Norway
| |
Collapse
|
9
|
Monnoyer R, Lautridou J, Deb S, Hjelde A, Eftedal I. Using Salivary Biomarkers for Stress Assessment in Offshore Saturation Diving: A Pilot Study. Front Physiol 2021; 12:791525. [PMID: 34916964 PMCID: PMC8669759 DOI: 10.3389/fphys.2021.791525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Health monitoring during offshore saturation diving is complicated due to restricted access to the divers, the desire to keep invasive procedures to a minimum, and limited opportunity for laboratory work onboard dive support vessels (DSV). In this pilot study, we examined whether measuring salivary biomarkrers in samples collected by the divers themselves might be a feasible approach to environmental stress assessment. Nine saturation divers were trained in the passive drool method for saliva collection and proceeded to collect samples at nine time points before, during, and after an offshore commercial saturation diving campaign. Samples collected within the hyperbaric living chambers were decompressed and stored frozen at −20°C onboard the DSV until they were shipped to land for analysis. Passive drool samples were collected without loss and assayed for a selection of salivary biomarkers: secretory immunoglobulin A (SIgA), C-reactive protein (CRP), tumor necrosis factor (TNF)-α, interleukins IL-6, IL-8, IL-1β, as well as cortisol and alpha-amylase. During the bottom phase of the hyperbaric saturation, SIgA, CRP, TNF-α, IL-8 and IL-1β increased significantly, whereas IL-6, cortisol and alpha-amylase were unchanged. All markers returned to pre-dive levels after the divers were decompressed back to surface pressure. We conclude that salivary biomarker analysis may be a feasible approach to stress assessment in offshore saturation diving. The results of our pilot test are consonant with an activation of the sympathetic nervous system related to systemic inflammation during hyperbaric and hyperoxic saturation.
Collapse
Affiliation(s)
- Roxane Monnoyer
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Jacky Lautridou
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Sanjoy Deb
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Astrid Hjelde
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| |
Collapse
|
10
|
Balestra C, Guerrero F, Theunissen S, Germonpré P, Lafère P. Physiology of repeated mixed gas 100-m wreck dives using a closed-circuit rebreather: a field bubble study. Eur J Appl Physiol 2021; 122:515-522. [PMID: 34839432 PMCID: PMC8627581 DOI: 10.1007/s00421-021-04856-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/19/2021] [Indexed: 10/25/2022]
Abstract
PURPOSE Data regarding decompression stress after deep closed-circuit rebreather (CCR) dives are scarce. This study aimed to monitor technical divers during a wreck diving expedition and provide an insight in venous gas emboli (VGE) dynamics. METHODS Diving practices of ten technical divers were observed. They performed a series of three consecutive daily dives around 100 m. VGE counts were measured 30 and 60 min after surfacing by both cardiac echography and subclavian Doppler graded according to categorical scores (Eftedal-Brubakk and Spencer scale, respectively) that were converted to simplified bubble grading system (BGS) for the purpose of analysis. Total body weight and fluids shift using bioimpedancemetry were also collected pre- and post-dive. RESULTS Depth-time profiles of the 30 recorded man-dives were 97.3 ± 26.4 msw [range: 54-136] with a runtime of 160 ± 65 min [range: 59-270]. No clinical decompression sickness (DCS) was detected. The echographic frame-based bubble count par cardiac cycle was 14 ± 13 at 30 min and 13 ± 13 at 60 min. There is no statistical difference neither between dives, nor between time of measurements (P = 0.07). However, regardless of the level of conservatism used, a high incidence of high-grade VGE was detected. Doppler recordings with the O'dive were highly correlated with echographic recordings (Spearman r of 0.81, P = 0.008). CONCLUSION Although preliminary, the present observation related to real CCR deep dives questions the precedence of decompression algorithm over individual risk factors and pleads for an individual approach of decompression.
Collapse
Affiliation(s)
- Costantino Balestra
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Avenue Schaller, 91, 1160, Brussels, Belgium.,Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.,DAN Europe Research Department, Brussels, Belgium
| | - François Guerrero
- Laboratoire ORPHY, EA 4324, Université de Bretagne Occidentale, Brest, France
| | - Sigrid Theunissen
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Avenue Schaller, 91, 1160, Brussels, Belgium
| | - Peter Germonpré
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Avenue Schaller, 91, 1160, Brussels, Belgium.,Centre for Hyperbaric Oxygen Therapy, Military Hospital Queen Astrid, Brussels, Belgium.,DAN Europe Research Department, Brussels, Belgium
| | - Pierre Lafère
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Avenue Schaller, 91, 1160, Brussels, Belgium. .,Centre for Hyperbaric Oxygen Therapy, Military Hospital Queen Astrid, Brussels, Belgium. .,Laboratoire ORPHY, EA 4324, Université de Bretagne Occidentale, Brest, France. .,DAN Europe Research Department, Brussels, Belgium.
| |
Collapse
|
11
|
Monnoyer R, Eftedal I, Hjelde A, Deb S, Haugum K, Lautridou J. Functional Profiling Reveals Altered Metabolic Activity in Divers' Oral Microbiota During Commercial Heliox Saturation Diving. Front Physiol 2021; 12:702634. [PMID: 34721054 PMCID: PMC8548618 DOI: 10.3389/fphys.2021.702634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The extreme environment in saturation diving affects all life forms, including the bacteria that reside on human skin and mucosa. The oral cavity alone is home to hundreds of different bacteria. In this study, we examined the metabolic activity of oral bacteria from healthy males during commercial heliox saturation diving. We focused on environmentally induced changes that might affect the divers’ health and fitness. Methods: We performed pathway abundance analysis using PICRUSt2, a bioinformatics software package that uses marker gene data to compute the metabolic activity of microbial communities. The analysis is based on 16S rRNA metagenomic data generated from the oral microbiota of 23 male divers before, during, and after 4weeks of commercial heliox saturation diving. Environmentally induced changes in bacterial metabolism were computed from differences in predicted pathway abundances at baseline before, versus during, and immediately after saturation diving. Results and Conclusion: The analysis predicted transient changes that were primarily associated with the survival and growth of bacteria in oxygenated environments. There was a relative increase in the abundance of aerobic metabolic pathways and a concomitant decrease in anaerobic metabolic pathways, primarily comprising of energy metabolism, oxidative stress responses, and adenosylcobalamin biosynthesis. Adenosylcobalamin is a bioactive form of vitamin B12 (vitB12), and a reduction in vitB12 biosynthesis may hypothetically affect the divers’ physiology. While host effects of oral bacterial vitamin metabolism are uncertain, this is a finding that concurs with the existing recommendations for vitB12 supplements as part of the divers’ diet, whether to boost antioxidant defenses in bacteria or their host or to improve oxygen transport during saturation diving.
Collapse
Affiliation(s)
- Roxane Monnoyer
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Astrid Hjelde
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sanjoy Deb
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Kjersti Haugum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jacky Lautridou
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
12
|
BOSCO G, VERRATTI V, PAGANINI M, RIZZATO A, D’ALESSANDRO N, PIETRANGELO T, ZANON V, CAMPORESI E. Psychophysiological factors in prolonged scuba-diving: a longitudinal case study of an elite diver. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2021. [DOI: 10.23736/s0393-3660.19.04282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Robinson NJ, García-Párraga D, Stacy BA, Costidis AM, Blanco GS, Clyde-Brockway CE, Haas HL, Harms CA, Patel SH, Stacy NI, Fahlman A. A Baseline Model For Estimating the Risk of Gas Embolism in Sea Turtles During Routine Dives. Front Physiol 2021; 12:678555. [PMID: 34539425 PMCID: PMC8440993 DOI: 10.3389/fphys.2021.678555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Sea turtles, like other air-breathing diving vertebrates, commonly experience significant gas embolism (GE) when incidentally caught at depth in fishing gear and brought to the surface. To better understand why sea turtles develop GE, we built a mathematical model to estimate partial pressures of N2 (PN2), O2 (PO2), and CO2 (PCO2) in the major body-compartments of diving loggerheads (Caretta caretta), leatherbacks (Dermochelys coriacea), and green turtles (Chelonia mydas). This model was adapted from a published model for estimating gas dynamics in marine mammals and penguins. To parameterize the sea turtle model, we used values gleaned from previously published literature and 22 necropsies. Next, we applied this model to data collected from free-roaming individuals of the three study species. Finally, we varied body-condition and cardiac output within the model to see how these factors affected the risk of GE. Our model suggests that cardiac output likely plays a significant role in the modulation of GE, especially in the deeper diving leatherback turtles. This baseline model also indicates that even during routine diving behavior, sea turtles are at high risk of GE. This likely means that turtles have additional behavioral, anatomical, and/or physiologic adaptions that serve to reduce the probability of GE but were not incorporated in this model. Identifying these adaptations and incorporating them into future iterations of this model will further reveal the factors driving GE in sea turtles.
Collapse
Affiliation(s)
- Nathan J. Robinson
- Department of Research, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
| | - Daniel García-Párraga
- Department of Research, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
| | - Brian A. Stacy
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, University of Florida (duty station), Washington, DC, United States
| | | | - Gabriela S. Blanco
- Instituto de Biología de Organismos Marinos (IBIOMAR-CCT CONICET-CENPAT), Puerto Madryn, Argentina
| | | | - Heather L. Haas
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Woods Hole, MA, United States
| | - Craig A. Harms
- Department of Clinical Sciences and Center for Marine Sciences and Technology, North Carolina State University, Raleigh, NC, United States
| | - Samir H. Patel
- Coonamessett Farm Foundation, East Falmouth, MA, United States
| | - Nicole I. Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Andreas Fahlman
- Department of Research, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
- Global Diving Research, Inc., Ottawa, ON, Canada
| |
Collapse
|
14
|
Dugrenot E, Balestra C, Gouin E, L'Her E, Guerrero F. Physiological effects of mixed-gas deep sea dives using a closed-circuit rebreather: a field pilot study. Eur J Appl Physiol 2021; 121:3323-3331. [PMID: 34435274 DOI: 10.1007/s00421-021-04798-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Deep diving using mixed gas with closed-circuit rebreathers (CCRs) is increasingly common. However, data regarding the effects of these dives are still scarce. This preliminary field study aimed at evaluating the acute effects of deep (90-120 msw) mixed-gas CCR bounce dives on lung function in relation with other physiological parameters. METHODS Seven divers performed a total of sixteen open-sea CCR dives breathing gas mixture of helium, nitrogen and oxygen (trimix) within four days at 2 depths (90 and 120 msw). Spirometric parameters, SpO2, body mass, hematocrit, short term heart rate variability (HRV) and critical flicker fusion frequency (CFFF) were measured at rest 60 min before the dive and 120 min after surfacing. RESULTS The median [1st-3rd quartile] of the forced vital capacity was lower (84% [76-93] vs 91% [74-107] of predicted values; p = 0.029), whereas FEV1/FVC was higher (98% [95-99] vs 95% [89-99]; p = 0.019) after than before the dives. The other spirometry values and SpO2 were unchanged. Body mass decreased from 73.5 kg (72.0-89.6) before the dives to 70.0 kg (69.2-85.8) after surfacing (p = 0.001), with no change of hematocrit or CFFT. HRV was increased as indicated by the higher SDNN, RMSSD and pNN50 after than before dives. CONCLUSION The present observation represents the first original data regarding the effects of deep repeated CCR dives. The body mass loss and decrease of FVC after bounce dives at depth of about 100 msw may possibly impose an important physiological stress for the divers.
Collapse
Affiliation(s)
- Emmanuel Dugrenot
- TEK diving SAS, F-29200, Brest, France
- Univ Brest, ORPHY, IBSAM, 6 avenue Le Gorgeu, F-29200, Brest, France
| | - Costantino Balestra
- Environmental and Occupational Physiology Laboratory, (ISEK), Haute Ecole Bruxelles-Brabant (HE2B), 1160, Brussels, Belgium
| | | | - Erwan L'Her
- Médecine Intensive et Réanimation, CHRU de Brest, Brest, NA, France
| | - François Guerrero
- Univ Brest, ORPHY, IBSAM, 6 avenue Le Gorgeu, F-29200, Brest, France.
| |
Collapse
|
15
|
Deb SK, Dolan E, Hambly C, Speakman JR, Eftedal O, Zariwala MG, Eftedal I. The Assessment of Daily Energy Expenditure of Commercial Saturation Divers Using Doubly Labelled Water. Front Physiol 2021; 12:687605. [PMID: 34149460 PMCID: PMC8208080 DOI: 10.3389/fphys.2021.687605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/03/2021] [Indexed: 12/02/2022] Open
Abstract
Commercial saturation divers are exposed to unique environmental conditions and are required to conduct work activity underwater. Consequently, divers' physiological status is shown to be perturbed and therefore, appropriate strategies and guidance are required to manage the stress and adaptive response. This study aimed to evaluate the daily energy expenditure (DEE) of commercial saturation divers during a 21-day diving operation in the North Sea. Ten saturation divers were recruited during a diving operation with a living depth of 72 metres seawater (msw) and a maximum working dive depth of 81 msw. Doubly labelled water (DLW) was used to calculate DEE during a 10-day measurement period. Energy intake was also recorded during this period by maintaining a dietary log. The mean DEE calculated was 3030.9 ± 513.0 kcal/day, which was significantly greater than the mean energy intake (1875.3 ± 487.4 kcal; p = 0.005). There was also a strong positive correction correlation between DEE and total time spent performing underwater work (r = 0.7, p = 0.026). The results suggested saturation divers were in a negative energy balance during the measurement period with an intraindividual variability in the energy cost present that may be influenced by time spent underwater.
Collapse
Affiliation(s)
- Sanjoy K. Deb
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London, United Kingdom
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, University of São Paulo, São Paulo, Brazil
| | - Catherine Hambly
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - John R. Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Centre of Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | | | - Mohammed Gulrez Zariwala
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| |
Collapse
|
16
|
Monnoyer R, Haugum K, Lautridou J, Flatberg A, Hjelde A, Eftedal I. Shifts in the Oral Microbiota During a Four-Week Commercial Saturation Dive to 200 Meters. Front Physiol 2021; 12:669355. [PMID: 33986696 PMCID: PMC8110926 DOI: 10.3389/fphys.2021.669355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
During commercial saturation diving, divers live and work under hyperbaric and hyperoxic conditions. The myriads of bacteria that live in and on the human body must adjust to the resultant hyperbaric stress. In this study, we examined the shifts in bacterial content in the oral cavity of saturation divers, using a metagenomic approach to determine the diversity in the composition of bacterial phyla and genera in saliva from 23 male divers before, during, and immediately after 4 weeks of commercial heliox saturation diving to a working depth of circa 200 m. We found that the bacterial diversity fell during saturation, and there was a change in bacterial composition; with a decrease at the phylum level of obligate anaerobe Fusobacteria, and an increase of the relative abundance of Actinobacteria and Proteobacteria. At the genus level, Fusobacterium, Leptotrichia, Oribacterium, and Veillonella decreased, whereas Neisseria and Rothia increased. However, at the end of the decompression, both the diversity and composition of the microbiota returned to pre-dive values. The results indicate that the hyperoxic conditions during saturation may suppress the activity of anaerobes, leaving a niche for other bacteria to fill. The transient nature of the change could imply that hyperbaric heliox saturation has no lasting effect on the oral microbiota, but it is unknown whether or how a shift in oral bacterial diversity and abundance during saturation might impact the divers’ health or well-being.
Collapse
Affiliation(s)
- Roxane Monnoyer
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Kjersti Haugum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jacky Lautridou
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnar Flatberg
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Astrid Hjelde
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| |
Collapse
|
17
|
Berenji Ardestani S, Matchkov VV, Hansen K, Jespersen NR, Pedersen M, Eftedal I. Extensive Simulated Diving Aggravates Endothelial Dysfunction in Male Pro-atherosclerotic ApoE Knockout Rats. Front Physiol 2021; 11:611208. [PMID: 33424633 PMCID: PMC7786538 DOI: 10.3389/fphys.2020.611208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction The average age of the diving population is rising, and the risk of atherosclerosis and cardiovascular disease in divers are accordingly increasing. It is an open question whether this risk is altered by diving per se. In this study, we examined the effect of 7-weeks simulated diving on endothelial function and mitochondrial respiration in atherosclerosis-prone rats. Methods Twenty-four male ApoE knockout (KO) rats (9-weeks-old) were fed a Western diet for 8 weeks before 12 rats were exposed to simulated heliox dry-diving in a pressure chamber (600 kPa for 60 min, decompression of 50 kPa/min). The rats were dived twice-weekly for 7 weeks, resulting in a total of 14 dives. The remaining 12 non-diving rats served as controls. Endothelial function of the pulmonary and mesenteric arteries was examined in vitro using an isometric myograph. Mitochondrial respiration in cardiac muscle tissues was measured using high-resolution respirometry. Results and Conclusion Both ApoE KO diving and non-diving rats showed changes in endothelial function at the end of the intervention, but the extent of these changes was larger in the diving group. Altered nitric oxide signaling was primarily involved in these changes. Mitochondrial respiration was unaltered. In this pro-atherosclerotic rat model of cardiovascular changes, extensive diving appeared to aggravate endothelial dysfunction rather than promote adaptation to oxidative stress.
Collapse
Affiliation(s)
- Simin Berenji Ardestani
- MEMBRANES, Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Vladimir V Matchkov
- MEMBRANES, Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Kasper Hansen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.,Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| |
Collapse
|
18
|
Change in Oxidative Stress Biomarkers During 30 Days in Saturation Dive: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197118. [PMID: 32998440 PMCID: PMC7579105 DOI: 10.3390/ijerph17197118] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Saturation diving allows divers to reduce the risk of decompression sickness while working at depth for prolonged periods but may increase reactive oxygen species (ROS) production. Such modifications can affect endothelial function by exacerbating oxidative stress. This study investigated the effects of saturation diving on oxidative stress damage. Redox status was evaluated through: ROS production; total antioxidant capacity (TAC); nitric oxide metabolites (NOx); nitrotyrosine (3-NT); and lipid peroxidation (8-iso-PGF2α) assessment. Creatinine and neopterin were analyzed as markers of renal function and damage. Measurements were performed on saliva and urine samples obtained at four time points: pre; deep; post; and 24 h post. Four divers were included in the study. After the saturation dive (post), significant (p < 0.05) increases in ROS (0.12 ± 0.03 vs. 0.36 ± 0.06 µmol.min-1), TAC (1.88 ± 0.03 vs. 2.01 ± 0.08 mM), NOx (207.0 ± 103.3 vs. 441.8 ± 97.3 µM), 3-NT (43.32 ± 18.03 vs. 18.64 ± 7.45 nM·L-1), and 8-iso-PGF2α (249.7 ± 45.1 vs. 371.9 ± 54.9 pg·mg-1 creatinine) were detected. Markers of renal damage were increased as well after the end of the saturation dive (creatinine 0.54 ± 0.22 vs. 2.72 ± 1.12 g-L-1; neopterin 73.3 ± 27.9 vs. 174.3 ± 20.53 μmol·mol-1 creatinine). These results could ameliorate commercial or military diving protocols or improve the understanding of symptoms caused by oxygen level elevation.
Collapse
|
19
|
ONOSE Y, SUZUKI S, YOSHINO K, ISHIZUKA Y, SATOU R, KAMIJYO H, SUGIHARA N. Relationship between oral symptoms during diving work and preventative dental visits in Japanese male occupational divers. INDUSTRIAL HEALTH 2020; 58:238-245. [PMID: 31611469 PMCID: PMC7286707 DOI: 10.2486/indhealth.2019-0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
This cross-sectional study examined the relationship between dental symptoms experienced by occupational divers during diving and their participation in preventative dental visits. The questionnaire for this study was sent by post to 160 establishments and 215 members of the Japan Diving Association and participants were asked to complete a self-reported questionnaire. Data from 242 occupational divers (male, aged 20-79 yr) were analyzed. Multiple logistic regression analysis and correspondence analysis were performed to determine the relationship between dental symptoms experienced during diving and participation in preventative dental visits. We found that divers who experienced tooth pain while diving had not undergone preventative dental visits within the previous year (odds ratio: 2.76, 95% confidence interval: 1.12-6.80). This was also confirmed by correspondence analysis These findings suggested that not undergoing preventative dental visits was related to tooth pain during diving.
Collapse
Affiliation(s)
- Yuuki ONOSE
- Department of Epidemiology and Public Health, Tokyo Dental
College, Japan
| | - Seitaro SUZUKI
- Department of Epidemiology and Public Health, Tokyo Dental
College, Japan
| | - Koichi YOSHINO
- Department of Epidemiology and Public Health, Tokyo Dental
College, Japan
| | - Yoichi ISHIZUKA
- Department of Epidemiology and Public Health, Tokyo Dental
College, Japan
| | - Ryouichi SATOU
- Department of Epidemiology and Public Health, Tokyo Dental
College, Japan
| | - Hideyuki KAMIJYO
- Department of Social Security for Dentistry, Tokyo Dental
College, Japan
| | - Naoki SUGIHARA
- Department of Epidemiology and Public Health, Tokyo Dental
College, Japan
| |
Collapse
|
20
|
Effects of recreational scuba diving on erythropoiesis-"normobaric oxygen paradox" or "plasma volume regulation" as a trigger for erythropoietin? Eur J Appl Physiol 2020; 120:1689-1697. [PMID: 32488585 DOI: 10.1007/s00421-020-04395-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Previous studies have shown an increase in erythrocyte lipid peroxidation and a decrease in red blood cell (RBC) count, hemoglobin, and hematocrit after only one recreational scuba diving session. The aim of this study was to examine the effect of repetitive scuba diving on RBC parameters and erythropoiesis. METHODS Divers (N = 14) conducted one dive per week over 5 weeks at a depth of 20-30 m for 30 min. For measuring RBC parameters, erythropoietin, iron, and ferritin, blood samples were collected before and after the first, third, and fifth dive. RESULTS Between pre- and post-dive results, a statistically significant increase in RBC count, hemoglobin, hematocrit, mean corpuscular volume (MCV), RBC distribution width (RDW), iron, and ferritin was observed. Analysis of the results between the first, third, and fifth dive showed that the erythropoietin increase at the third (pre-dive p = 0.009; post-dive p = 0.004) and fifth dive (pre-dive p < 0.001; post-dive p = 0.003) was not accompanied by changes in RBC count, hemoglobin, iron, and ferritin. In parallel, a continuous increase in hematocrit, MCV, and RDW was observed, whereas mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) decreased. CONCLUSIONS Changes in RBC indices and EPO elevation indicate that the occasional switch from hyperoxia to normoxia or mechanisms for plasma volume regulation may be a step in the maintenance of erythropoiesis.
Collapse
|
21
|
Łuczyński D, Lautridou J, Hjelde A, Monnoyer R, Eftedal I. Hemoglobin During and Following a 4-Week Commercial Saturation Dive to 200 m. Front Physiol 2019; 10:1494. [PMID: 31866879 PMCID: PMC6909923 DOI: 10.3389/fphys.2019.01494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Commercial saturation divers must acclimatize to hyperbaric hyperoxia in their work environment, and subsequently readjust to breathing normal air when their period in saturation is over. In this study, we measured hemoglobin (Hb) during and following 4 weeks of heliox saturation diving in order to monitor anemia development and the time for Hb to recover post-saturation. Male commercial saturation divers reported their capillary blood Hb daily, before, and during 28 days of heliox saturation to a working depth of circa 200 m (n = 11), and for 12 days at surface post-saturation (n = 9–7), using HemoCue 201+ Hb devices. Hb remained in normal range during the bottom phase, but fell during the decompression; reaching levels of mild anemia (≤13.6 g/dl) the day after the divers’ return to the surface. Hb was significantly lower than the pre-saturation baseline (14.7 ± 1.1 g/dl) on the fifth day post-saturation (12.8 ± 1.8 g/dl, p = 0.028), before reverting to normal after 6–7 days. At the end of the 12-day post-saturation period, Hb was not statistically different from the pre-saturation baseline. The observed Hb changes, although significant, were modest. While we cannot rule out effect of other factors, the presence of mild anemia may partially explain the transient fatigue that commercial saturation divers experience post-saturation.
Collapse
Affiliation(s)
- Damian Łuczyński
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Jacky Lautridou
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Astrid Hjelde
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Roxane Monnoyer
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| |
Collapse
|
22
|
Berenji Ardestani S, Matchkov VV, Eftedal I, Pedersen M. A Single Simulated Heliox Dive Modifies Endothelial Function in the Vascular Wall of ApoE Knockout Male Rats More Than Females. Front Physiol 2019; 10:1342. [PMID: 31695628 PMCID: PMC6817487 DOI: 10.3389/fphys.2019.01342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction The number of divers is rising every year, including an increasing number of aging persons with impaired endothelial function and concomitant atherosclerosis. While diving is an independent modulator of endothelial function, little is known about how diving affects already impaired endothelium. In this study, we questioned whether diving exposure leads to further damage of an already impaired endothelium. Methods A total of 5 male and 5 female ApoE knockout (KO) rats were exposed to simulated diving to an absolute pressure of 600 kPa in heliox gas (80% helium, 20% oxygen) for 1 h in a dry pressure chamber. 10 ApoE KO rats (5 males, 5 females) and 8 male Sprague-Dawley rats served as controls. Endothelial function was examined in vitro by isometric myography of pulmonary and mesenteric arteries. Lipid peroxidation in blood plasma, heart and lung tissue was used as measures of oxidative stress. Expression and phosphorylation of endothelial NO synthase were quantified by Western blot. Results and Conclusion A single simulated dive was found to induce endothelial dysfunction in the pulmonary arteries of ApoE KO rats, and this was more profound in male than female rats. Endothelial dysfunction in males was associated with changing in production or bioavailability of NO; while in female pulmonary arteries an imbalance in prostanoid signaling was observed. No effect of diving was found on mesenteric arteries from rats of either sex. Our findings suggest that changes in endothelial dysfunction were specific for pulmonary circulation. In future, human translation of these findings may suggest caution for divers who are elderly or have prior reduced endothelial function.
Collapse
Affiliation(s)
- Simin Berenji Ardestani
- Department of Clinical Medicine, Comparative Medicine Lab, Aarhus University, Aarhus, Denmark.,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU: Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU: Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Michael Pedersen
- Department of Clinical Medicine, Comparative Medicine Lab, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Oxidative stress assessment in breath-hold diving. Eur J Appl Physiol 2019; 119:2449-2456. [PMID: 31520216 DOI: 10.1007/s00421-019-04224-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/03/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE Breath-hold diving results in significant changes in blood gases' levels. Challenging variations in oxygen partial pressures may induce reactive oxygen species (ROS) production that exacerbate oxidative stress and, consequently, affect endothelial function. The aim of this study was to investigate the effects of breath-hold diving on oxidative stress damage, assessing ROS production. Nitric oxide metabolites, inducible nitric oxide synthase (iNOS), aminothiols, and renal function were evaluated too as markers of redox status and renal damage. METHODS ROS production was assessed with electron paramagnetic resonance. Oxidative status values were measured at pre- and post-40 m dive in a deep swimming pool (Y-40) from six divers (mean age 46.6 ± 9.3 years; height 176 ± 4 cm; BMI 25 ± 2.9 kg/m2). RESULTS Significant (p < 0.05) increases at post-dive of ROS production rate (0.158 ± 0.003 vs 0.195 ± 0.006 μmol min-1), lipid peroxidation (8-isoprostane: 375.67 ± 195.62 vs 420.49 ± 232.31 pg mg-1 creatinine), nitrate (27.91 ± 19.71 vs 30.80 ± 20.44 μM), iNOS (31.30 ± 4.52 vs 35.68 ± 6.72 IU mL-1) and neopterin concentration (96.20 ± 40.41 vs 118.76 ± 27.84 μmol mol-1 creatinine) were recorded. Conversely, the antioxidant capacity significantly decreased (3.423 ± 0.089 vs 3.015 ± 0.284 mM) after immersion. CONCLUSION Overproduction of ROS and consequent oxidative damage to lipids of membrane and antioxidant capacity decreasing reflect also a hypoxic condition, which in the breath-hold diving typically occurs in the last few meters below the surface. iNOS produces NO in large quantities under the examined extreme conditions. Neopterin and creatinine concentration level increased, suggesting an "impairment of renal function" as a likely physiological response to PaO2 variations during dive activity.
Collapse
|
24
|
Šegrt Ribičić I, Valić M, Božić J, Obad A, Glavaš D, Glavičić I, Valić Z. Influence of oxygen enriched gases during decompression on bubble formation and endothelial function in self-contained underwater breathing apparatus diving: a randomized controlled study. Croat Med J 2019. [PMID: 31187955 PMCID: PMC6563167 DOI: 10.3325/cmj.2019.60.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim To assess the effect of air, gas mixture composed of 50% nitrogen and 50% oxygen (nitrox 50), or gas mixture composed of 1% nitrogen and 99% oxygen (nitrox 99) on bubble formation and vascular/endothelial function during decompression after self-contained underwater breathing apparatus diving. Methods This randomized controlled study, conducted in 2014, involved ten divers. Each diver performed three dives in a randomized protocol using three gases: air, nitrox 50, or nitrox 99 during ascent. The dives were performed on three different days limited to 45 m sea water (msw) depth with 20 min bottom time. Nitrogen bubbles formation was assessed by ultrasound detection after dive. Arterial/endothelial function was evaluated by brachial artery flow mediated dilatation (FMD) before and after dive. Results Nitrox 99 significantly reduced bubble formation after cough compared with air and nitrox 50 (grade 1 vs 3 and vs 3, respectively, P = 0.026). Nitrox 50 significantly decreased post-dive FMD compared with pre-dive FMD (3.62 ± 5.57% vs 12.11 ± 6.82% P = 0.010), while nitrox 99 did not cause any significant change. Conclusion Nitrox 99 reduced bubble formation, did not change post-dive FMD, and decreased total dive duration, indicating that it might better preserve endothelial function compared with air and nitrox 50 dive protocols.
Collapse
Affiliation(s)
| | - Maja Valić
- Maja Valić, Department of Neuroscience, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia,
| | | | | | | | | | | |
Collapse
|
25
|
Rocco M, Pelaia P, Di Benedetto P, Conte G, Maggi L, Fiorelli S, Mercieri M, Balestra C, De Blasi RA. Inert gas narcosis in scuba diving, different gases different reactions. Eur J Appl Physiol 2019; 119:247-255. [PMID: 30350155 DOI: 10.1007/s00421-018-4020-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/13/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Underwater divers face several potential neurological hazards when breathing compressed gas mixtures including nitrogen narcosis which can impact diver's safety. Various human studies have clearly demonstrated brain impairment due to nitrogen narcosis in divers at 4 ATA using critical flicker fusion frequency (CFFF) as a cortical performance indicator. However, recently some authors have proposed a probable adaptive phenomenon during repetitive exposure to high nitrogen pressure in rats, where they found a reversal effect on dopamine release. METHODS Sixty experienced divers breathing Air, Trimix or Heliox, were studied during an open water dive to a depth of 6 ATA with a square profile testing CFFF measurement before (T0), during the dive upon arriving at the bottom (6 ATA) (T1), 20 min of bottom time (T2), and at 5 m (1.5 ATA) (T3). RESULTS CFFF results showed a slight increase in alertness and arousal during the deep dive regardless of the gas mixture breathed. The percent change in CFFF values at T1 and T2 differed among the three groups being lower in the air group than in the other groups. All CFFF values returned to basal values 5 min before the final ascent at 5 m (T3), but the Trimix measurements were still slightly better than those at T0. CONCLUSIONS Our results highlight that nitrogen and oxygen alone and in combination can produce neuronal excitability or depression in a dose-related response.
Collapse
Affiliation(s)
- Monica Rocco
- Department of Surgical and Medical Science and Translational Medicine, Anesthesia and Intensive Care, Sapienza University, Rome, Italy.
| | - P Pelaia
- Department of Biomedical Sciences and Public Health, Anesthesia and Intensive Care, Università Politecnica delle Marche Torrette, Ancona, Italy
| | - P Di Benedetto
- Azienda Ospedaliero, Universitaria Sant'Andrea, Rome, Italy
| | - G Conte
- Department of Informatics Engineering, University Politecnica delle Marche, Ancona, Italy
| | - L Maggi
- Anesthesia and Intensive Care, Università Campus Biomedico, Rome, Italy
| | - S Fiorelli
- Department of Surgical and Medical Science and Translational Medicine, Anesthesia and Intensive Care, Sapienza University, Rome, Italy
| | - M Mercieri
- Department of Surgical and Medical Science and Translational Medicine, Anesthesia and Intensive Care, Sapienza University, Rome, Italy
| | - C Balestra
- Environmental, Occupational and Ageing (Integrative) Physiology Lab, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
| | - R A De Blasi
- Department of Surgical and Medical Science and Translational Medicine, Anesthesia and Intensive Care, Sapienza University, Rome, Italy
| |
Collapse
|
26
|
McVey MJ, Kuebler WM. Extracellular vesicles: biomarkers and regulators of vascular function during extracorporeal circulation. Oncotarget 2018; 9:37229-37251. [PMID: 30647856 PMCID: PMC6324688 DOI: 10.18632/oncotarget.26433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are generated at increased rates from parenchymal and circulating blood cells during exposure of the circulation to abnormal flow conditions and foreign materials associated with extracorporeal circuits (ExCors). This review describes types of EVs produced in different ExCors and extracorporeal life support (ECLS) systems including cardiopulmonary bypass circuits, extracorporeal membrane oxygenation (ECMO), extracorporeal carbon dioxide removal (ECCO2R), apheresis, dialysis and ventricular assist devices. Roles of EVs not only as biomarkers of adverse events during ExCor/ECLS use, but also as mediators of vascular dysfunction are explored. Manipulation of the number or subtypes of circulating EVs may prove a means of improving vascular function for individuals requiring ExCor/ECLS support. Strategies for therapeutic manipulation of EVs during ExCor/ECLS use are discussed such as accelerating their clearance, preventing their genesis or pharmacologic options to reduce or select which and how many EVs circulate. Strategies to reduce or select for specific types of EVs may prove beneficial in preventing or treating other EV-related diseases such as cancer.
Collapse
Affiliation(s)
- Mark J McVey
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, SickKids, Toronto, ON, Canada
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Heart Institute, Berlin, Germany
| |
Collapse
|
27
|
Ferguson SAH, Eves ND, Roy BD, Hodges GJ, Cheung SS. Effects of mild whole body hypothermia on self-paced exercise performance. J Appl Physiol (1985) 2018; 125:479-485. [PMID: 29672229 DOI: 10.1152/japplphysiol.01134.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined self-paced, high-intensity exercise during mild hypothermia and whether hyperoxia might offset any potential impairment. Twelve trained males each completed 15-km time trials in three environmental conditions: Neutral (23°C, [Formula: see text] 0.21), Cold (0°C, [Formula: see text] 0.21), and Cold+Hyper (0°C, [Formula: see text] 0.40). Cold and Cold+Hyper trials occurred after a 0.5°C drop in rectal temperature. Rectal temperature was higher ( P ≤ 0.016) throughout Neutral compared with Cold and Cold+Hyper; Cold had a higher ( P ≤ 0.035) rectal temperature than Cold+Hyper from 2.5 to 7.5 km, and hyperoxia did not alter thermal sensation or comfort. Oxyhemoglobin saturation decreased from ~98% to ~94% with Neutral and Cold, but was maintained at ~99% in Cold+Hyper ( P < 0.01). Cerebral tissue oxygenation index (TOI) was higher in Neutral than in Cold throughout the time trial (TT) ( P ≤ 0.001), whereas Cold+Hyper were unchanged ( P ≥ 0.567) from Neutral by 2.5 km. Muscle TOI was maintained in Cold+Hyper compared with Neutral and was higher ( P ≤ 0.046) than Cold throughout the entire TT. Power output during Cold (246 ± 41 W) was lower than Neutral (260 ± 38 W) at all 2.5-km intervals ( P ≤ 0.012) except at 12.5 km. Power output during Cold+Hyper (256 ± 42 W) was unchanged ( P ≥ 0.161) from Neutral throughout the TT, and was higher than Cold from 7.5 km onward. Average cadence was higher in Neutral (93 ± 8 rpm) than in either Cold or Cold+Hyper (Cold: 89 ± 7 and Cold+Hyper: 90 ± 8 rpm, P = 0.031). In conclusion, mild hypothermia reduced self-paced exercise performance; hyperoxia during mild hypothermia restored performance to thermoneutral levels, likely due to maintenance of oxygen availability rather than any thermogenic benefit. NEW & NOTEWORTHY We examined self-paced, high-intensity exercise with 0.5°C rectal temperature decreases in a 0°C ambient environment, along with whether hyperoxia could offset any potential impairment. During a 15-km time trial, power output was lower with hypothermia than with thermoneutral. However, with hypothermia, hyperoxia of [Formula: see text] = 0.40 restored power output despite there being no thermophysiological improvement. Hypothermia impairs exercise performance, whereas hyperoxia likely restored performance due to maintenance of oxygen availability rather than any thermogenic benefit.
Collapse
Affiliation(s)
- Steven A H Ferguson
- Department of Kinesiology, Brock University , St. Catharines, Ontario , Canada
| | - Neil D Eves
- Centre for Heart, Lung and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| | - Brian D Roy
- Department of Kinesiology, Brock University , St. Catharines, Ontario , Canada
| | - Gary J Hodges
- Department of Kinesiology, Brock University , St. Catharines, Ontario , Canada
| | - Stephen S Cheung
- Department of Kinesiology, Brock University , St. Catharines, Ontario , Canada
| |
Collapse
|
28
|
Kiboub FZ, Møllerløkken A, Hjelde A, Flatberg A, Loennechen Ø, Eftedal I. Blood Gene Expression and Vascular Function Biomarkers in Professional Saturation Diving. Front Physiol 2018; 9:937. [PMID: 30061845 PMCID: PMC6054983 DOI: 10.3389/fphys.2018.00937] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/26/2018] [Indexed: 11/16/2022] Open
Abstract
Saturation diving is an established way to conduct subsea operations with human intervention. While working, the divers must acclimatize to the hyperbaric environments. In this study, genome-wide gene expression and selected plasma biomarkers for vascular function were investigated. We also examined whether antioxidant vitamin supplements affected the outcome. The study included 20 male professional divers, 13 of whom took vitamin C and E supplements in doses of 1,000 and 30 mg daily during saturation periods that lasted 7-14 days. The dives were done in a heliox atmosphere with 40 kPa oxygen partial pressure (ppO2) to a depth of 100-115 m of sea-water (msw), from which the divers performed in-water work excursions to a maximum depth of 125 msw with 60 kPa ppO2. Venous blood was collected immediately before and after saturation. Following gene expression profiling, post-saturation gene activity changes were analyzed. Protein biomarkers for inflammation, endothelial function, and fibrinolysis: Il-6, CRP, ICAM-1, fibrinogen, and PAI-1, were measured in plasma. Post-saturation gene expression changes indicated acclimatization to elevated ppO2 by extensive downregulation of factors involved in oxygen transport, including heme, hemoglobin, and erythrocytes. Primary endogenous antioxidants; superoxide dismutase 1, catalase, and glutathione synthetase, were upregulated, and there was increased expression of genes involved in immune activity and inflammatory signaling pathways. The antioxidant vitamin supplements had no effect on post-saturation gene expression profiles or vascular function biomarkers, implying that the divers preserved their homeostasis through endogenous antioxidant defenses.
Collapse
Affiliation(s)
- Fatima Z. Kiboub
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- TechnipFMC, Stavanger, Norway
| | - Andreas Møllerløkken
- Institute of Aviation Medicine, Norwegian Defense Medical Services, Oslo, Norway
| | - Astrid Hjelde
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnar Flatberg
- Microarray Core Facility, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| |
Collapse
|
29
|
Ostrowski RP, Stępień K, Pucko E, Matyja E. The efficacy of hyperbaric oxygen in hemorrhagic stroke: experimental and clinical implications. Arch Med Sci 2017; 13:1217-1223. [PMID: 28883864 PMCID: PMC5575217 DOI: 10.5114/aoms.2017.65081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/10/2016] [Indexed: 02/07/2023] Open
Abstract
Hemorrhagic stroke, accounting for 10-30% of stroke cases, carries high rates of morbidity and mortality. This review presents the current knowledge on the efficacy of hyperbaric oxygen (HBO)-based modalities in the preclinical research on hemorrhagic stroke. Both preconditioning and post-treatment with HBO are considered as prospective therapeutic options. High efficacy of HBO therapy (HBOT) for brain hemorrhage has been noted. We found that moderate hyperbaric pressures appear optimal for therapeutic effect, while the therapeutic window of opportunity is short. HBO preconditioning offers more modest neuroprotective benefit as compared to HBO post-treatment for experimental intracerebral hemorrhage. We advocate for mandatory calculations of percent changes in the experimentally investigated indexes of HBO effectiveness and stress the need to design new clinical trials on HBO for hemorrhagic stroke.
Collapse
Affiliation(s)
- Robert P Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Stępień
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Emanuela Pucko
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Matyja
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
30
|
Simmons EE, Bergeron ER, Florian JP. The impact of repetitive long-duration water immersion on vascular function. PLoS One 2017; 12:e0181673. [PMID: 28750006 PMCID: PMC5531465 DOI: 10.1371/journal.pone.0181673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/04/2017] [Indexed: 01/11/2023] Open
Abstract
While physiological responses to water immersion (WI) are well-studied, the vascular responses after WI are less understood. Fifteen male subjects performed six-hour resting thermoneutral water immersions (WI) at 1.35 atmospheres absolute for four consecutive days, with follow-up on the fifth day. Measurements included peripheral endothelial function and augmentation index (PAT, peripheral arterial tonometry), beat-to-beat blood pressure (BP, photoplethysmography), heart rate (HR), and plasma volume (PV) calculated from changes in hemoglobin and hematocrit. The reactive hyperemia index (RHI), a marker of peripheral endothelial function, increased with repeated immersions (p = 0.008). By WI2 and WI3, RHI increased 12% and 16%, respectively, compared to WI1 values, but no significant differences were detected between WI4 and WI1 for either measure. Absolute augmentation index (AI) increased by an average of 33% (p<0.001) and AI normalized for HR (AI@75) by 11% (p = 0.12) following each WI. PV decreased significantly by 13.2% following WI and remained 6.8% lower at follow-up compared to pre-WI. Systolic blood pressure significantly decreased by an average of 2.5% following each WI (p = 0.012). Compared to pre-WI HR, average post-WI HR decreased 4.3% lower (p<0.001), but increased overall by 8.2% over the course of repeated WI (p<0.001). Total peripheral resistance increased by an average of 13.1% following WI (p = 0.003). Thus, peripheral endothelial function increases after two days of WI, and PAT-derived measures of arterial stiffness increase transiently post-WI. Additionally, BP and PAT-derived endothelial function diverge from their usual associations with arterial stiffness (i.e. augmentation index) in the context of WI.
Collapse
Affiliation(s)
- Erin E. Simmons
- Navy Experimental Diving Unit, Panama City, Florida, United States of America
| | | | - John P. Florian
- Navy Experimental Diving Unit, Panama City, Florida, United States of America
- * E-mail:
| |
Collapse
|
31
|
Domoto H, Iwaya K, Ikomi F, Matsuo H, Tadano Y, Fujii S, Tachi K, Itoh Y, Sato M, Inoue K, Shinomiya N. Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia. PLoS One 2016; 11:e0163804. [PMID: 27741252 PMCID: PMC5065185 DOI: 10.1371/journal.pone.0163804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/14/2016] [Indexed: 01/04/2023] Open
Abstract
Saturation diving (SD) is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI) of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw). The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD.
Collapse
Affiliation(s)
- Hideharu Domoto
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Yokosuka, Kanagawa, Japan
| | - Keiichi Iwaya
- Department of Pathology, SASAKI Institute, Kyoundo Hospital, Chiyoda, Tokyo, Japan
- * E-mail:
| | - Fumitaka Ikomi
- National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yutaka Tadano
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Yokosuka, Kanagawa, Japan
| | - Shigenori Fujii
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Yokosuka, Kanagawa, Japan
| | - Kazuyoshi Tachi
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Yokosuka, Kanagawa, Japan
| | | | - Michiya Sato
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Yokosuka, Kanagawa, Japan
| | - Kimitoshi Inoue
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Yokosuka, Kanagawa, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
32
|
Freiberger JJ, Derrick BJ, Natoli MJ, Akushevich I, Schinazi EA, Parker C, Stolp BW, Bennett PB, Vann RD, Dunworth SAS, Moon RE. Assessment of the interaction of hyperbaric N2, CO2, and O2 on psychomotor performance in divers. J Appl Physiol (1985) 2016; 121:953-964. [PMID: 27633739 DOI: 10.1152/japplphysiol.00534.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/02/2016] [Indexed: 11/22/2022] Open
Abstract
Diving narcosis results from the complex interaction of gases, activities, and environmental conditions. We hypothesized that these interactions could be separated into their component parts. Where previous studies have tested single cognitive tasks sequentially, we varied inspired partial pressures of CO2, N2, and O2 in immersed, exercising subjects while assessing multitasking performance with the Multi-Attribute Task Battery II (MATB-II) flight simulator. Cognitive performance was tested under 20 conditions of gas partial pressure and exercise in 42 male subjects meeting U.S. Navy age and fitness profiles. Inspired nitrogen (N2) and oxygen (O2) partial pressures were 0, 4.5, and 5.6 ATA and 0.21, 1.0, and 1.22 ATA, respectively, at rest and during 100-W immersed exercise with and without 0.075-ATA CO2 Linear regression modeled the association of gas partial pressure with task performance while controlling for exercise, hypercapnic ventilatory response, dive training, video game frequency, and age. Subjects served as their own controls. Impairment of memory, attention, and planning, but not motor tasks, was associated with N2 partial pressures >4.5 ATA. Sea level O2 at 0.925 ATA partially rescued motor and memory reaction time impaired by 0.075-ATA CO2; however, at hyperbaric pressures an unexpectedly strong interaction between CO2, N2, and exercise caused incapacitating narcosis with amnesia, which was augmented by O2 Perception of narcosis was not correlated with actual scores. The relative contributions of factors associated with diving narcosis will be useful to predict the effects of gas mixtures and exercise conditions on the cognitive performance of divers. The O2 effects are consistent with O2 narcosis or enhanced O2 toxicity.
Collapse
Affiliation(s)
- J J Freiberger
- Duke Center for Hyperbaric Medicine and Environmental Physiology and Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - B J Derrick
- Duke Center for Hyperbaric Medicine and Environmental Physiology and Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - M J Natoli
- Duke Center for Hyperbaric Medicine and Environmental Physiology and Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - I Akushevich
- Duke Center for Hyperbaric Medicine and Environmental Physiology and Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - E A Schinazi
- Duke Center for Hyperbaric Medicine and Environmental Physiology and Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - C Parker
- Duke Center for Hyperbaric Medicine and Environmental Physiology and Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - B W Stolp
- Duke Center for Hyperbaric Medicine and Environmental Physiology and Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - P B Bennett
- Duke Center for Hyperbaric Medicine and Environmental Physiology and Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - R D Vann
- Duke Center for Hyperbaric Medicine and Environmental Physiology and Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - S A S Dunworth
- Duke Center for Hyperbaric Medicine and Environmental Physiology and Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - R E Moon
- Duke Center for Hyperbaric Medicine and Environmental Physiology and Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
33
|
Balestra C, Germonpré P. Correlation between Patent Foramen Ovale, Cerebral "Lesions" and Neuropsychometric Testing in Experienced Sports Divers: Does Diving Damage the Brain? Front Psychol 2016; 7:696. [PMID: 27242609 PMCID: PMC4863080 DOI: 10.3389/fpsyg.2016.00696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/26/2016] [Indexed: 11/13/2022] Open
Abstract
SCUBA diving exposes divers to decompression sickness (DCS). There has been considerable debate whether divers with a Patent Foramen Ovale of the heart have a higher risk of DCS because of the possible right-to-left shunt of venous decompression bubbles into the arterial circulation. Symptomatic neurological DCS has been shown to cause permanent damage to brain and spinal cord tissue; it has been suggested that divers with PFO may be at higher risk of developing subclinical brain lesions because of repeated asymptomatic embolization of decompression-induced nitrogen bubbles. These studies however suffer from several methodological flaws, including self-selection bias. We recruited 200 volunteer divers from a recreational diving population who had never suffered from DCS; we then randomly selected 50 of those for further investigation. The selected divers underwent brain Magnetic Resonance Imaging to detect asymptomatic brain lesions, contrast trans-oesophageal echocardiography for PFO, and extensive neuro-psychometric testing. Neuro-psychometry results were compared with a control group of normal subjects and a separate control group for subjects exposed to neurotoxic solvents. Forty two divers underwent all the tests and are included in this report. Grade 2 Patent Foramen Ovale was found in 16 (38%) of the divers; brain Unidentified Bright Objects (UBO's) were found in 5 (11.9%). There was no association between PFO and the presence of UBO's (P = 0.693) or their size (p = 0.5) in divers. Neuropsychometric testing in divers was significantly worse from controls in two tests, Digit Span Backwards (DSB; p < 0.05) and Symbol-Digit-Substitution (SDS; p < 0.01). Compared to subjects exposed to neurotoxic solvents, divers scored similar on DSB and SDS tests, but significantly better on the Simple Reaction Time (REA) and Hand-Eye Coordination (EYE) tests. There was no correlation between PFO, number of UBO's and any of the neuro-psychometric tests. We conclude that for uneventful recreational diving, PFO does not appear to influence the presence of UBO's. Diving by itself seems to cause some decrease of short-term memory and higher cognitive function, including visual-motor skills; this resembles some of the effects of nitrogen narcosis and we suggest that this may be a prolonged effect of diving.
Collapse
Affiliation(s)
- Costantino Balestra
- DAN Europe Research DivisionBrussels, Belgium; Faculté des Sciences de la Motricité, Université Libre de BruxellesBrussels, Belgium; Motor Sciences and Physiotherapy, Environmental and Occupational (Integrative) Physiology, Haute Ecole Paul Henri SpaakBrussels, Belgium
| | - Peter Germonpré
- DAN Europe Research DivisionBrussels, Belgium; Center for Hyperbaric Oxygen Therapy, Military Hospital Queen AstridBrussels, Belgium
| |
Collapse
|
34
|
Could some aviation deep vein thrombosis be a form of decompression sickness? J Thromb Thrombolysis 2016; 42:346-51. [PMID: 27106903 DOI: 10.1007/s11239-016-1368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Aviation deep vein thrombosis is a challenge poorly understood in modern aviation. The aim of the present project was to determine if cabin decompression might favor formation of vascular bubbles in commercial air travelers. Thirty commercial flights were taken. Cabin pressure was noted at take-off and at every minute following, until the pressure stabilized. These time-pressure profiles were imported into the statistics program R and analyzed using the package SCUBA. Greatest pressure differentials between tissues and cabin pressures were estimated for 20, 40, 60, 80 and 120 min half-time compartments. Time to decompress ranged from 11 to 47 min. The greatest drop in cabin pressure was from 1022 to 776 mBar, equivalent to a saturated diver ascending from 2.46 msw depth. Mean pressure drop in flights >2 h duration was 193 mBar, while mean pressure drop in flights <2 h was 165 mBar. The greatest drop in pressure over 1 min was 28 mBar. Over 30 commercial flights it was found that the drop in cabin pressure was commensurate with that found to cause bubbles in man. Both the US Navy and the Royal Navy mandate far slower decompression from states of saturation, being 1.7 and 1.9 mBar/min respectively. The median overall rate of decompression found in this study was 8.5 mBar/min, five times the rate prescribed for USN saturation divers. The tissues associated with hypobaric bubble formation are likely slower than those associated with bounce diving, with 60 min a potentially useful index.
Collapse
|
35
|
Deb SK, Swinton PA, Dolan E. Nutritional considerations during prolonged exposure to a confined, hyperbaric, hyperoxic environment: recommendations for saturation divers. EXTREME PHYSIOLOGY & MEDICINE 2016; 5:1. [PMID: 26744625 PMCID: PMC4704397 DOI: 10.1186/s13728-015-0042-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/23/2015] [Indexed: 02/01/2023]
Abstract
Saturation diving is an occupation that involves prolonged exposure to a confined, hyperoxic, hyperbaric environment. The unique and extreme environment is thought to result in disruption to physiological and metabolic homeostasis, which may impact human health and performance. Appropriate nutritional intake has the potential to alleviate and/or support many of these physiological and metabolic concerns, whilst enhancing health and performance in saturation divers. Therefore, the purpose of this review is to identify the physiological and practical challenges of saturation diving and consequently provide evidence-based nutritional recommendations for saturation divers to promote health and performance within this challenging environment. Saturation diving has a high-energy demand, with an energy intake of between 44 and 52 kcal/kg body mass per day recommended, dependent on intensity and duration of underwater activity. The macronutrient composition of dietary intake is in accordance with the current Institute of Medicine guidelines at 45-65 % and 20-35 % of total energy intake for carbohydrate and fat intake, respectively. A minimum daily protein intake of 1.3 g/kg body mass is recommended to facilitate body composition maintenance. Macronutrient intake between individuals should, however, be dictated by personal preference to support the attainment of an energy balance. A varied diet high in fruit and vegetables is highly recommended for the provision of sufficient micronutrients to support physiological processes, such as vitamin B12 and folate intake to facilitate red blood cell production. Antioxidants, such as vitamin C and E, are also recommended to reduce oxidised molecules, e.g. free radicals, whilst selenium and zinc intake may be beneficial to reinforce endogenous antioxidant reserves. In addition, tailored hydration and carbohydrate fueling strategies for underwater work are also advised.
Collapse
Affiliation(s)
- S. K. Deb
- />School of Health Sciences, Robert Gordon University, Aberdeen, AB10 7QG UK
- />Department of Sport and Physical Activity, Edgehill University, Ormskirk, Lancashire UK
| | - P. A. Swinton
- />School of Health Sciences, Robert Gordon University, Aberdeen, AB10 7QG UK
| | - E. Dolan
- />School of Health Sciences, Robert Gordon University, Aberdeen, AB10 7QG UK
- />Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Hou G, Zhang Y, Zhao N, Chen R, Xiao W, Yu H, Wang J, Yuan TF. Mental abilities and performance efficacy under a simulated 480-m helium-oxygen saturation diving. Front Psychol 2015. [PMID: 26217291 PMCID: PMC4496554 DOI: 10.3389/fpsyg.2015.00979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stress in extreme environment severely disrupts human physiology and mental abilities. The present study investigated the cognition and performance efficacy of four divers during a simulated 480 meters helium–oxygen saturation diving. We analyzed the spatial memory, 2D/3D mental rotation functioning, grip strength, and hand–eye coordination ability in four divers during the 0–480 m compression and decompression processes of the simulated diving. The results showed that except for its mild decrease on grip strength, the high atmosphere pressure condition significantly impaired the hand–eye coordination (especially above 300 m), the reaction time and correct rate of mental rotation, as well as the spatial memory (especially as 410 m), showing high individual variability. We conclude that the human cognition and performance efficacy are significantly affected during deep water saturation diving.
Collapse
Affiliation(s)
- Gonglin Hou
- Institute of Cognitive Neuroscience and Department of Psychology, Zhejiang Sci-Tech University Hangzhou, China
| | - Youlan Zhang
- Institute of Cognitive Neuroscience and Department of Psychology, Zhejiang Sci-Tech University Hangzhou, China
| | - Na Zhao
- Institute of Cognitive Neuroscience and Department of Psychology, Zhejiang Sci-Tech University Hangzhou, China
| | | | | | - Hao Yu
- Institute of Naval Medicine Shanghai, China
| | | | - Ti-Fei Yuan
- School of Psychology, Nanjing Normal University Nanjing, China
| |
Collapse
|
37
|
Kot J, Sicko Z, Doboszynski T. The Extended Oxygen Window Concept for Programming Saturation Decompressions Using Air and Nitrox. PLoS One 2015; 10:e0130835. [PMID: 26111113 PMCID: PMC4482426 DOI: 10.1371/journal.pone.0130835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 05/26/2015] [Indexed: 11/18/2022] Open
Abstract
Saturation decompression is a physiological process of transition from one steady state, full saturation with inert gas at pressure, to another one: standard conditions at surface. It is defined by the borderline condition for time spent at a particular depth (pressure) and inert gas in the breathing mixture (nitrogen, helium). It is a delicate and long lasting process during which single milliliters of inert gas are eliminated every minute, and any disturbance can lead to the creation of gas bubbles leading to decompression sickness (DCS). Most operational procedures rely on experimentally found parameters describing a continuous slow decompression rate. In Poland, the system for programming of continuous decompression after saturation with compressed air and nitrox has been developed as based on the concept of the Extended Oxygen Window (EOW). EOW mainly depends on the physiology of the metabolic oxygen window--also called inherent unsaturation or partial pressure vacancy--but also on metabolism of carbon dioxide, the existence of water vapor, as well as tissue tension. Initially, ambient pressure can be reduced at a higher rate allowing the elimination of inert gas from faster compartments using the EOW concept, and maximum outflow of nitrogen. Then, keeping a driving force for long decompression not exceeding the EOW allows optimal elimination of nitrogen from the limiting compartment with half-time of 360 min. The model has been theoretically verified through its application for estimation of risk of decompression sickness in published systems of air and nitrox saturation decompressions, where DCS cases were observed. Clear dose-reaction relation exists, and this confirms that any supersaturation over the EOW creates a risk for DCS. Using the concept of the EOW, 76 man-decompressions were conducted after air and nitrox saturations in depth range between 18 and 45 meters with no single case of DCS. In summary, the EOW concept describes physiology of decompression after saturation with nitrogen-based breathing mixtures.
Collapse
Affiliation(s)
- Jacek Kot
- National Centre for Hyperbaric Medicine, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Powstania Styczniowego, Gdynia, Poland
| | - Zdzislaw Sicko
- National Centre for Hyperbaric Medicine, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Powstania Styczniowego, Gdynia, Poland
| | - Tadeusz Doboszynski
- National Centre for Hyperbaric Medicine, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Powstania Styczniowego, Gdynia, Poland
| |
Collapse
|
38
|
Brubakk AO. Career perspective: Alf O. Brubakk-looking back to see ahead. EXTREME PHYSIOLOGY & MEDICINE 2015; 4:4. [PMID: 25767698 PMCID: PMC4357195 DOI: 10.1186/s13728-015-0023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/13/2015] [Indexed: 11/18/2022]
Abstract
The following describes my professional life up till today, but it also describes what I think lies ahead. I have led an interesting professional life and been lucky enough to be at the centre of some of the important development in modern medicine and diving, namely ultrasound in cardiology and the mechanisms of decompression. I therefore should be able to see some of the most challenging and exciting problems ahead. Ultrasound in cardiology has developed from simply listening to the Doppler signal to determine the velocity of blood flow to the complicated description of images presented today. Diving, in addition to being an important commercial and environmental activity, exposes the individual to intermittent hyperoxia and pressure reductions. These challenges evoke the production of radical oxygen species (ROS) and microparticles (MP) that also are central to many pathophysiologic mechanisms that are involved in a number of severe human diseases. Thus, diving can be regarded as an important model of disease and allows us to study their effects on healthy young individuals. The future thus points towards an integration of environmental physiology with detailed physiological and pathophysiological mechanisms and makes diving physiology a potentially very important field of study.
Collapse
Affiliation(s)
- Alf O Brubakk
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway ; Comparative Medicine Lab, Institute of Clinical Medicine, University of Aarhus, Aarhus, Denmark
| |
Collapse
|