1
|
Schmidt G, Borchers F, Müller S, Ali Akbari A, Edinger F, Sander M, Koch C, Henrich M. Dobutamine, Epinephrine, and Milrinone Accelerate Particle Transport Velocity in Murine Tracheal Epithelium via Ca 2+ Release from Caffeine-Sensitive Internal Stores. Cells 2025; 14:228. [PMID: 39937019 PMCID: PMC11816908 DOI: 10.3390/cells14030228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/13/2025] Open
Abstract
Mucociliary clearance, the ability of the respiratory tract to protect the integrity of the airways through the mechanical removal of potentially harmful substances, is of enormous importance during intensive care treatment. The present study aimed to evaluate the influence of clinically relevant inotropic agents on mucociliary clearance. The particle transport velocity (PTV) of isolated murine tracheae was measured as a surrogate for mucociliary clearance in the presence of dobutamine, epinephrine, and milrinone. Inhibitory substances were applied to elucidate the signal transduction cascades and the value and origin of calcium ions which provoke alterations in mucociliary clearance function. Dobutamine, epinephrine, and milrinone increased the PTV in a dose-dependent manner with half maximal effective concentrations of 75.7 nM, 87.0 nM, and 13.7 µM, respectively. After the depletion of intracellular calcium stores, no increase in PTV was observed after administering any of the three inotropic agents. While dobutamine and epinephrine activated β-adrenergic receptors, epinephrine used both the phospholipase C (PLC) and protein kinase A (PKA) pathway to promote the release of intracellular Ca2+. However, dobutamine primarily acted on the PKA pathway, having only a minor influence on the PLC pathway. The induced changes in PTV following milrinone administration required both the PKA and PLC pathway, although the PKA pathway was responsible for most of the induced changes. In conclusion, the common inotropic agents dobutamine, epinephrine, and milrinone increase murine PTV in a concentration-dependent manner and ultimately release Ca2+ from intracellular calcium stores, suggesting the function of changes in mucociliary clearance in the respiratory tract.
Collapse
Affiliation(s)
- Götz Schmidt
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Rudolf-Buchheim-Strasse 7, 35392 Giessen, Germany; (F.B.); (S.M.); (A.A.A.); (F.E.); (M.S.); (C.K.)
| | - Frederic Borchers
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Rudolf-Buchheim-Strasse 7, 35392 Giessen, Germany; (F.B.); (S.M.); (A.A.A.); (F.E.); (M.S.); (C.K.)
| | - Sabrina Müller
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Rudolf-Buchheim-Strasse 7, 35392 Giessen, Germany; (F.B.); (S.M.); (A.A.A.); (F.E.); (M.S.); (C.K.)
| | - Amir Ali Akbari
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Rudolf-Buchheim-Strasse 7, 35392 Giessen, Germany; (F.B.); (S.M.); (A.A.A.); (F.E.); (M.S.); (C.K.)
| | - Fabian Edinger
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Rudolf-Buchheim-Strasse 7, 35392 Giessen, Germany; (F.B.); (S.M.); (A.A.A.); (F.E.); (M.S.); (C.K.)
| | - Michael Sander
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Rudolf-Buchheim-Strasse 7, 35392 Giessen, Germany; (F.B.); (S.M.); (A.A.A.); (F.E.); (M.S.); (C.K.)
| | - Christian Koch
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Rudolf-Buchheim-Strasse 7, 35392 Giessen, Germany; (F.B.); (S.M.); (A.A.A.); (F.E.); (M.S.); (C.K.)
| | - Michael Henrich
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine, Vidia St. Vincentius-Clinic Karlsruhe gAG, 76135 Karlsruhe, Germany;
| |
Collapse
|
2
|
Ke Y, Gannaban R, Liu J, Zhou Y. STIM1 and lipid interactions at ER-PM contact sites. Am J Physiol Cell Physiol 2025; 328:C107-C114. [PMID: 39620863 DOI: 10.1152/ajpcell.00634.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024]
Abstract
Store-operated calcium (Ca2+) entry (SOCE) represents a major route of Ca2+ permeation across the plasma membrane (PM) in nonexcitable cells, which plays an indispensable role in maintaining intracellular Ca2+ homeostasis. This process is orchestrated through the dynamic coupling between the endoplasmic reticulum (ER)-localized Ca2+ sensor stromal interaction molecule 1 (STIM1) and the PM-resident ORAI1 channel. Upon depletion of ER Ca2+ stores, STIM1 undergoes conformational rearrangements and oligomerization, leading to the translocation of activated STIM1 toward the PM. This movement is facilitated by the physical interactions between positively charged cytosolic domains within STIM1 and negatively charged phospholipids embedded in the PM, ultimately enabling its binding to and activation of the PM-embedded ORAI1 channel. In this mini-review, we provide an overview of STIM1-mediated Ca2+ signaling at ER-PM contact sites, highlighting the regulatory roles of phospholipids in the inner leaflet and sphingolipids in the outer leaflet of the PM. We also discuss the development of molecular tools that enable real-time visualization and manipulation of membrane contact sites (MCSs) at ER-PM junctions. Finally, we highlight recent progress in developing targeted therapies for human diseases linked to STIM1 mutations and dysregulated Ca2+ signaling at ER-PM MCSs.
Collapse
Affiliation(s)
- Yuepeng Ke
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Ritchel Gannaban
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States
| | - Junchen Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States
- Graduate School of Biological Sciences, M. D. Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
3
|
Yang K, Zhang P, Li J, Zhang G, Chang X. Potential of natural drug modulation of endoplasmic reticulum stress in the treatment of myocardial injury. J Pharm Anal 2024; 14:101034. [PMID: 39720623 PMCID: PMC11667710 DOI: 10.1016/j.jpha.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/09/2024] [Accepted: 06/29/2024] [Indexed: 12/26/2024] Open
Abstract
Myocardial injury (MI) is a common occurrence in clinical practice caused by various factors such as ischemia, hypoxia, infection, metabolic abnormalities, and inflammation. Such damages are characterized by a reduction in myocardial function and cardiomyocyte death that can result in dangerous outcomes such as cardiac failure and arrhythmias. An endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) is triggered by several stressors, and its intricate signaling networks are instrumental in both cell survival and death. Cardiac damage frequently triggers ERS in response to different types of injuries and stress. High levels of ERS can exacerbate myocardial damage by inducing necrosis and apoptosis. To target ERS in MI prevention and treatment, current medical research is focused on identifying effective therapy approaches. Traditional Chinese medicine (TCM) is frequently used because of its vast range of applications and low risk of adverse effects. Various studies have demonstrated that active components of Chinese medicines, including polyphenols, saponins, and alkaloids, can reduce myocardial cell death, inflammation, and modify the ERS pathway, thus preventing and mitigating cardiac injury. Thus, this paper aims to provide a new direction and scientific basis for targeting ERS in MI prevention and treatment. We specifically summarize recent research progress on the regulation mechanism of ERS in MI by active ingredients of TCM.
Collapse
Affiliation(s)
- Kai Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ping Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jixin Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Genming Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
4
|
Schmidt G, Greif I, Müller S, Markmann M, Edinger F, Sander M, Koch C, Henrich M. Dopamine, norepinephrine, and vasopressin accelerate particle transport velocity in murine tracheal epithelium via substance-specific receptor pathways: dependency on intra- and extracellular Ca 2+ sources. Front Pharmacol 2024; 15:1401983. [PMID: 39309009 PMCID: PMC11415866 DOI: 10.3389/fphar.2024.1401983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Background The unique ability of the respiratory tract to protect the integrity of the airways by removing potentially harmful substances is defined as mucociliary clearance. This complex physiological mechanism protects the lower airways by ridding them of pollutants and pathogens. This study aimed to evaluate the potential influence of clinically relevant vasopressors on mucociliary clearance. Material and methods The particle transport velocity (PTV) of isolated murine tracheae was measured as a surrogate for mucociliary clearance under the influence of dopamine, norepinephrine, and vasopressin. Inhibitory substances were applied to elucidate relevant signal transduction cascades and the value and origin of calcium ions. Reverse-transcription polymerase chain reactions (RT-PCR) were performed to identify the expression of vasopressin receptor subtypes. Results Dopamine, norepinephrine, and vasopressin significantly increased the PTV in a dose-dependent manner with half maximal effective concentrations of 0.58 µM, 1.21 µM, and 0.10 µM, respectively. Each substance increased the PTV via separate receptor pathways. While dopamine acted on D1-like receptors to increase the PTV, norepinephrine acted on β-adrenergic receptors, and vasopressin acted on V1a receptors. RT-PCR revealed the expression of V1a in the murine whole trachea and tracheal epithelium. PTV increased when protein kinase A was inhibited and norepinephrine or vasopressin were applied, but not when dopamine was applied. Phospholipase C inhibition decreased the PTV when vasopressin was applied. In general, maximum PTV was significantly reduced when extracellular calcium entry was inhibited. When intracellular calcium stores were depleted, no increase in PTV was observed after administering all three substances. Inositol trisphosphate receptor activation was found to be pivotal in the increase in murine PTV after applying dopamine and vasopressin. Discussion Dopamine, norepinephrine, and vasopressin accelerate the murine PTV via substance-specific receptor pathways. Further investigations should assess the value and interaction of these substances on mucociliary clearance in clinical practice.
Collapse
Affiliation(s)
- Götz Schmidt
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Giessen, Germany
| | - Isabelle Greif
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Giessen, Germany
| | - Sabrina Müller
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Giessen, Germany
| | - Melanie Markmann
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Giessen, Germany
| | - Fabian Edinger
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Sander
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Koch
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Henrich
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine, Vidia St. Vincentius-Clinic Karlsruhe gAG, Karlsruhe, Germany
| |
Collapse
|
5
|
Zhuang Z, Meng Y, Xue Y, Wang Y, Cheng X, Jing J. Adaptation of STIM1 structure-function relationships for optogenetic control of calcium signaling. J Biol Chem 2024; 300:107636. [PMID: 39122007 PMCID: PMC11402311 DOI: 10.1016/j.jbc.2024.107636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
In cellular contexts, the oscillation of calcium ions (Ca2+) is intricately linked to various physiological processes, such as cell proliferation, metabolism, and survival. Stromal interaction molecule 1 (STIM1) proteins form a crucial regulatory component in the store-operated calcium entry process. The structural attributes of STIM1 are vital for its functionality, encompassing distinct domains situated in the endoplasmic reticulum lumen and the cytoplasm. The intraluminal domain enables the timely detection of diminishing Ca2+ concentrations, prompting structural modifications that activate the cytoplasmic domain. This activated cytoplasmic domain undergoes conformational alterations and engages with membrane components, opening a channel that facilitates the influx of Ca2+ from the extracellular environment. Given its multiple domains and interaction mechanisms, STIM1 plays a foundational role in cellular biology. This review focuses on the design of optogenetic tools inspired by the structure and function of STIM1. These tools offer a groundbreaking approach for studying and manipulating intracellular Ca2+ signaling with precise spatiotemporal control. We further explore the practical applications of these tools, spanning fundamental scientific research, clinical studies, and their potential for translational research.
Collapse
Affiliation(s)
- Zirui Zhuang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou, China
| | - Yuxin Meng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yu Xue
- School of Life Science, Tianjin University, Tianjin, China
| | - Yan Wang
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ji Jing
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China; Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Zhang Q, Wang C, He L. ORAI Ca 2+ Channels in Cancers and Therapeutic Interventions. Biomolecules 2024; 14:417. [PMID: 38672434 PMCID: PMC11048467 DOI: 10.3390/biom14040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The ORAI proteins serve as crucial pore-forming subunits of calcium-release-activated calcium (CRAC) channels, pivotal in regulating downstream calcium-related signaling pathways. Dysregulated calcium homeostasis arising from mutations and post-translational modifications in ORAI can lead to immune disorders, myopathy, cardiovascular diseases, and even cancers. Small molecules targeting ORAI present an approach for calcium signaling modulation. Moreover, emerging techniques like optogenetics and optochemistry aim to offer more precise regulation of ORAI. This review focuses on the role of ORAI in cancers, providing a concise overview of their significance in the initiation and progression of cancers. Additionally, it highlights state-of-the-art techniques for ORAI channel modulation, including advanced optical tools, potent pharmacological inhibitors, and antibodies. These novel strategies offer promising avenues for the functional regulation of ORAI in research and may inspire innovative approaches to cancer therapy targeting ORAI.
Collapse
Affiliation(s)
| | | | - Lian He
- Department of Pharmacology, Joint Laboratory of Guangdong–Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| |
Collapse
|
7
|
Wang J, Zhao J, Zhao K, Wu S, Chen X, Hu W. The Role of Calcium and Iron Homeostasis in Parkinson's Disease. Brain Sci 2024; 14:88. [PMID: 38248303 PMCID: PMC10813814 DOI: 10.3390/brainsci14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Calcium and iron are essential elements that regulate many important processes of eukaryotic cells. Failure to maintain homeostasis of calcium and iron causes cell dysfunction or even death. PD (Parkinson's disease) is the second most common neurological disorder in humans, for which there are currently no viable treatment options or effective strategies to cure and delay progression. Pathological hallmarks of PD, such as dopaminergic neuronal death and intracellular α-synuclein deposition, are closely involved in perturbations of iron and calcium homeostasis and accumulation. Here, we summarize the mechanisms by which Ca2+ signaling influences or promotes PD progression and the main mechanisms involved in ferroptosis in Parkinson's disease. Understanding the mechanisms by which calcium and iron imbalances contribute to the progression of this disease is critical to developing effective treatments to combat this devastating neurological disorder.
Collapse
Affiliation(s)
- Ji Wang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China;
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| | - Jindong Zhao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| | - Kunying Zhao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| | - Shangpeng Wu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| | - Xinglong Chen
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Weiyan Hu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| |
Collapse
|
8
|
Tscherrig D, Bhardwaj R, Biner D, Dernič J, Ross-Kaschitza D, Peinelt C, Hediger MA, Lochner M. Development of chemical tools based on GSK-7975A to study store-operated calcium entry in cells. Cell Calcium 2024; 117:102834. [PMID: 38006628 DOI: 10.1016/j.ceca.2023.102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Many physiological functions, such as cell differentiation, proliferation, muscle contraction, neurotransmission and fertilisation, are regulated by changes of Ca2+ levels. The major Ca2+ store in cells is the endoplasmic reticulum (ER). Certain cellular processes induce ER store depletion, e.g. by activating IP3 receptors, that in turn induces a store refilling process known as store-operated calcium entry (SOCE). This refilling process entails protein-protein interactions between Ca2+ sensing stromal interaction molecules (STIM) in the ER membrane and Orai proteins in the plasma membrane. Fully assembled STIM/Orai complexes then form highly selective Ca2+ channels called Ca2+ release-activated Ca2+ Channels (CRAC) through which Ca2+ ions flow into the cytosol and subsequently are pumped into the ER by the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). Abnormal SOCE has been associated with numerous human diseases and cancers, and therefore key players STIM and Orai have attracted significant therapeutic interest. Several potent experimental and clinical candidate compounds have been developed and have helped to study SOCE in various cell types. We have synthesized multiple novel small-molecule probes based on the known SOCE inhibitor GSK-7975A. Here we present GSK-7975A derivatives, which feature photo-caging, photo-crosslinking, biotin and clickable moieties, and also contain deuterium labels. Evaluation of these GSK-7975A probes using a fluorometric imaging plate reader (FLIPR)-Tetra-based Ca2+ imaging assay showed that most synthetic modifications did not have a detrimental impact on the SOCE inhibitory activity. The photo-caged GSK-7975A was also used in patch-clamp electrophysiology experiments. In summary, we have developed a number of active, GSK-7975A-based molecular probes that have interesting properties and therefore are useful experimental tools to study SOCE in various cells and settings.
Collapse
Affiliation(s)
- Dominic Tscherrig
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Rajesh Bhardwaj
- Department of BioMedical Research, University of Bern and Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, Freiburgstrasse 15, 3010 Bern, Switzerland.
| | - Daniel Biner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jan Dernič
- Department of BioMedical Research, University of Bern and Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Daniela Ross-Kaschitza
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Matthias A Hediger
- Department of BioMedical Research, University of Bern and Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, Freiburgstrasse 15, 3010 Bern, Switzerland.
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
9
|
George LF, Follmer ML, Fontenoy E, Moran HR, Brown JR, Ozekin YH, Bates EA. Endoplasmic Reticulum Calcium Mediates Drosophila Wing Development. Bioelectricity 2023; 5:290-306. [PMID: 38143873 PMCID: PMC10733776 DOI: 10.1089/bioe.2022.0036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Abstract
Background The temporal dynamics of morphogen presentation impacts transcriptional responses and tissue patterning. However, the mechanisms controlling morphogen release are far from clear. We found that inwardly rectifying potassium (Irk) channels regulate endogenous transient increases in intracellular calcium and bone morphogenetic protein (BMP/Dpp) release for Drosophila wing development. Inhibition of Irk channels reduces BMP/Dpp signaling, and ultimately disrupts wing morphology. Ion channels impact development of several tissues and organisms in which BMP signaling is essential. In neurons and pancreatic beta cells, Irk channels modulate membrane potential to affect intracellular Ca++ to control secretion of neurotransmitters and insulin. Based on Irk activity in neurons, we hypothesized that electrical activity controls endoplasmic reticulum (ER) Ca++ release into the cytoplasm to regulate the release of BMP. Materials and Methods To test this hypothesis, we reduced expression of four proteins that control ER calcium, Stromal interaction molecule 1 (Stim), Calcium release-activated calcium channel protein 1 (Orai), SarcoEndoplasmic Reticulum Calcium ATPase (SERCA), small conductance calcium-activated potassium channel (SK), and Bestrophin 2 (Best2) using RNAi and documented wing phenotypes. We use live imaging to study calcium and Dpp release within pupal wings and larval wing discs. Additionally, we employed immunohistochemistry to characterize Small Mothers Against Decapentaplegic (SMAD) phosphorylation downstream of the BMP/Dpp pathway following RNAi knockdown. Results We found that reduced Stim and SERCA function decreases amplitude and frequency of endogenous calcium transients in the wing disc and reduced BMP/Dpp release. Conclusion Our results suggest control of ER calcium homeostasis is required for BMP/Dpp release, and Drosophila wing development.
Collapse
Affiliation(s)
- Laura Faith George
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mikaela Lynn Follmer
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Fontenoy
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hannah Rose Moran
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeremy Ryan Brown
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yunus H. Ozekin
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Anne Bates
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
10
|
Schmidt G, Rienas G, Müller S, Richter K, Sander M, Koch C, Henrich M. A fixed 20:1 combination of cafedrine/theodrenaline increases cytosolic Ca 2+ concentration in human tracheal epithelial cells via ryanodine receptor-mediated Ca 2+ release. Sci Rep 2023; 13:16216. [PMID: 37758747 PMCID: PMC10533847 DOI: 10.1038/s41598-023-43342-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
Mucociliary clearance is a pivotal physiological mechanism that protects the lung by cleaning the airways from pollution and colonization, thereby preventing infection. Ciliary function is influenced by various signal transduction cascades, and Ca2+ represents a key second messenger. A fixed 20:1 combination of cafedrine and theodrenaline has been widely used to treat perioperative hypotension and emergency hypotensive states since the 1960s; however, its effect on the intracellular Ca2+ concentration ([Ca2+]i) of respiratory epithelium remains unknown. Therefore, human tracheal epithelial cells were exposed to the clinically applied 20:1 mixture of cafedrine/theodrenaline and the individual substances separately. [Ca2+]i was assessed by FURA-2 340/380 fluorescence ratio. Pharmacological inhibitors were applied to elucidate relevant signal transduction cascades, and reverse transcription polymerase chain reaction (RT-PCR) was performed on murine tracheal epithelium to analyze ryanodine receptor (RyR) subtype expression. All three pharmacological preparations instantaneously induced a steep increase in [Ca2+]i that quickly returned to its baseline value despite the persistence of each substance. Peak [Ca2+]i following the administration of 20:1 cafedrine/theodrenaline, cafedrine alone, and theodrenaline alone increased in a dose-dependent manner, with median effective concentrations of 0.35 mM (7.32 mM cafedrine and 0.35 mM theodrenaline), 3.14 mM, and 3.45 mM, respectively. When extracellular Ca2+ influx was inhibited using a Ca2+-free buffer solution, the peak [Ca2+]i following the administration of cafedrine alone and theodrenaline alone were reduced but not abolished. No alteration in [Ca2+]i compared with baseline [Ca2+]i was observed during β-adrenergic receptor inhibition. Depletion of caffeine-sensitive stores and inhibition of RyR, but not IP3 receptors, completely abolished any increase in [Ca2+]i. However, [Ca2+]i still increased following the depletion of mitochondrial Ca2+ stores using 2,4-dinitrophenol. RT-PCR revealed RyR-2 and RyR-3 expression on murine tracheal epithelium. Although our experiments showed that cafedrine/theodrenaline, cafedrine alone, or theodrenaline alone release Ca2+ from intracellular stores through mechanisms that are exclusively triggered by β-adrenergic receptor stimulation, which most probably lead to RyR activation, clinical plasma concentrations are considerably lower than those used in our experiments to elicit an increase in [Ca2+]i; therefore, further studies are needed to evaluate the ability of cafedrine/theodrenaline to alter mucociliary clearance in clinical practice.
Collapse
Affiliation(s)
- Götz Schmidt
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University of Giessen, Rudolf-Buchheim-Strasse 7, 35392, Giessen, Germany.
| | - Gerrit Rienas
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University of Giessen, Rudolf-Buchheim-Strasse 7, 35392, Giessen, Germany
| | - Sabrina Müller
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University of Giessen, Rudolf-Buchheim-Strasse 7, 35392, Giessen, Germany
| | - Katrin Richter
- Department of General and Thoracic Surgery, Justus Liebig University of Giessen, Rudolf-Buchheim-Strasse 7, 35392, Giessen, Germany
| | - Michael Sander
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University of Giessen, Rudolf-Buchheim-Strasse 7, 35392, Giessen, Germany
| | - Christian Koch
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University of Giessen, Rudolf-Buchheim-Strasse 7, 35392, Giessen, Germany
| | - Michael Henrich
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine, Vidia St. Vincentius-Clinic Karlsruhe gAG, Karlsruhe, Germany
| |
Collapse
|
11
|
Schmidt G, Rienas G, Müller S, Edinger F, Sander M, Koch C, Henrich M. A 20:1 synergetic mixture of cafedrine/theodrenaline accelerates particle transport velocity in murine tracheal epithelium via IP 3 receptor-associated calcium release. Front Pharmacol 2023; 14:1155930. [PMID: 37654612 PMCID: PMC10466409 DOI: 10.3389/fphar.2023.1155930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023] Open
Abstract
Background: Mucociliary clearance is a pivotal physiological mechanism that protects the lung by ridding the lower airways of pollution and colonization by pathogens, thereby preventing infections. The fixed 20:1 combination of cafedrine and theodrenaline has been used to treat perioperative hypotension or hypotensive states due to emergency situations since the 1960s. Because mucociliary clearance is impaired during mechanical ventilation and critical illness, the present study aimed to evaluate the influence of cafedrine/theodrenaline on mucociliary clearance. Material and Methods: The particle transport velocity (PTV) of murine trachea preparations was measured as a surrogate for mucociliary clearance under the influence of cafedrine/theodrenaline, cafedrine alone, and theodrenaline alone. Inhibitory substances were applied to elucidate relevant signal transduction cascades. Results: All three applications of the combination of cafedrine/theodrenaline, cafedrine alone, or theodrenaline alone induced a sharp increase in PTV in a concentration-dependent manner with median effective concentrations of 0.46 µM (consisting of 9.6 µM cafedrine and 0.46 µM theodrenaline), 408 and 4 μM, respectively. The signal transduction cascades were similar for the effects of both cafedrine and theodrenaline at the murine respiratory epithelium. While PTV remained at its baseline value after non-selective inhibition of β-adrenergic receptors and selective inhibition of β1 receptors, cafedrine/theodrenaline, cafedrine alone, or theodrenaline alone increased PTV despite the inhibition of the protein kinase A. However, IP3 receptor activation was found to be the pivotal mechanism leading to the increase in murine PTV, which was abolished when IP3 receptors were inhibited. Depleting intracellular calcium stores with caffeine confirmed calcium as another crucial messenger altering the PTV after the application of cafedrine/theodrenaline. Discussion: Cafedrine/theodrenaline, cafedrine alone, and theodrenaline alone exert their effects via IP3 receptor-associated calcium release that is ultimately triggered by β1-adrenergic receptor stimulation. Synergistic effects at the β1-adrenergic receptor are highly relevant to alter the PTV of the respiratory epithelium at clinically relevant concentrations. Further investigations are needed to assess the value of cafedrine/theodrenaline-mediated alterations in mucociliary function in clinical practice.
Collapse
Affiliation(s)
- Götz Schmidt
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Giessen, Germany
| | - Gerrit Rienas
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Giessen, Germany
| | - Sabrina Müller
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Giessen, Germany
| | - Fabian Edinger
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Sander
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Koch
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Henrich
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine, Vidia St. Vincentius-Clinic Karlsruhe gAG, Karlsruhe, Germany
| |
Collapse
|
12
|
Ali S, Ma G, Zhou Y. Shedding light on ORAI1 channel with genetic code expansion. Cell Calcium 2023; 113:102755. [PMID: 37196487 PMCID: PMC10484295 DOI: 10.1016/j.ceca.2023.102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Genetic code expansion technology has been widely applied to control protein activity and biological systems by taking advantage of an amber stop codon suppressor tRNA and orthogonal aminoacyl-tRNA synthetase pair. With this chemical biology approach, Maltan et al. incorporated photocrosslinking unnatural amino acids (UAAs) into the transmembrane domains of ORAI1 to enable UV light-inducible calcium influx across the plasma membrane, mechanistic interrogation of the calcium release-activated calcium (CRAC) channel at the single amino acid level, and remote control of downstream calcium-modulated signaling in mammalian cells.
Collapse
Affiliation(s)
- Sher Ali
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, United States of America
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, United States of America; Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, 77030, United States of America.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, United States of America; Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, 77030, United States of America.
| |
Collapse
|
13
|
Luo Y, Ye J, Deng Y, Huang Y, Liu X, He Q, Chen Y, Li Q, Lin Y, Liang R, Li Y, Wei J, Zhang J. The miRNA-185-5p/STIM1 Axis Regulates the Invasiveness of Nasopharyngeal Carcinoma Cell Lines by Modulating EGFR Activation-Stimulated Switch from E- to N-Cadherin. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020818. [PMID: 36677874 PMCID: PMC9864293 DOI: 10.3390/molecules28020818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Distant metastasis remains the primary cause of treatment failure and suggests a poor prognosis in nasopharyngeal carcinoma (NPC). Epithelial-mesenchymal transition (EMT) is a critical cellular process for initiating a tumor invasion and remote metastasis. Our previous study showed that the blockage of the stromal interaction molecule 1 (STIM1)-mediated Ca2+ signaling blunts the Epstein-Barr virus (EBV)-promoted cell migration and inhibits the dissemination and lymphatic metastasis of NPC cells. However, the upstream signaling pathway that regulates the STIM1 expression remains unknown. In this follow-up study, we demonstrated that the miRNA-185-5p/STIM1 axis is implicated in the regulation of the metastatic potential of 5-8F cells, a highly invasive NPC cell line. We demonstrate that the knockdown of STIM1 attenuates the migration ability of 5-8F cells by inhibiting the epidermal growth factor receptor (EGFR) phosphorylation-induced switch from E- to N-cadherin in vitro. In addition, the STIM1 knockdown inhibited the locoregional lymphatic invasion of the 5-8F cells in mice. Furthermore, we identified miRNA-185-5p as an upstream regulator that negatively regulates the expression of STIM1. Our findings suggest that the miRNA-185-5p/STIM1 axis regulates the invasiveness of NPC cell lines by affecting the EGFR activation-modulated cell adhesiveness. The miRNA-185-5p/STIM1 axis may serve as a potentially effective therapeutic target for the treatment of NPC.
Collapse
Affiliation(s)
- Yue Luo
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Jiaxiang Ye
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yayan Deng
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yujuan Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Xue Liu
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Qian He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yong Chen
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Qiuyun Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Rong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning 530021, China
- Correspondence: (J.W.); (J.Z.)
| | - Jinyan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
- Correspondence: (J.W.); (J.Z.)
| |
Collapse
|
14
|
Wang YS, Yeh TK, Chang WC, Liou JP, Liu YM, Huang WC. 2,6-Difluorobenzamide derivatives as store-operated calcium channel (SOC) inhibitors. Eur J Med Chem 2022; 243:114773. [PMID: 36179401 DOI: 10.1016/j.ejmech.2022.114773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/17/2022] [Accepted: 09/10/2022] [Indexed: 11/28/2022]
Abstract
The Ca2+ entry from store-operated Ca2+ channel (SOC) is involved in regulating colorectal cancer progression, such as cell migration. SOC activation is due to STIM1 translocation and interaction with Orai1 upon Ca2+ depletion in the ER. Numerous SOC inhibitors, like 2-APB, have been developed and demonstrated their inhibition effects in the preclinical stage. However, most currently used SOC inhibitors have higher cytotoxicity or opposite effects at different doses, and the drugs to target SOC in the clinic are lacking. In this study, a total of 13 difluorobenzamide compounds had been synthesized and examined the inhibitory effects on SOC with Ca2+ imaging and wound-healing migration assay. Among them, 2,6-Difluoro-N-(5-(4-fluorophenyl)pyridine-2-yl)benzamide (MPT0M004, 8a) demonstrated a prominent inhibitory ability on SOC. Furthermore, the cell proliferation assay results showed that MPT0M004 (8a) had lower cytotoxicity than 2-APB, the reference compound. In the pharmacokinetic study, MPT0M004 (8a) has a long half-life (T1/2 = 24 h) and lower daily dose administered intravenously with an oral bioavailability (F = 34%). Therefore, MPT0M004 (8a) has the potential to be a lead compound as a SOC inhibitor and further develop into a potential drug to treat colorectal cancer.
Collapse
Affiliation(s)
- Yu-Shiuan Wang
- Ph.D. Program in Clinical Drug Development of Chinese Herbal Medicine, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan; Single-Molecule Biology Core Lab, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County, 350401, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan; Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan; Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan
| | - Jing-Ping Liou
- TMU Research Center for Drug Discovery, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yi-Min Liu
- TMU Research Center for Drug Discovery, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
| | - Wan-Chen Huang
- Single-Molecule Biology Core Lab, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
15
|
Saltarella I, Altamura C, Lamanuzzi A, Apollonio B, Vacca A, Frassanito MA, Desaphy JF. Ion Channels in Multiple Myeloma: Pathogenic Role and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23137302. [PMID: 35806308 PMCID: PMC9266328 DOI: 10.3390/ijms23137302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Ion channels are pore-forming proteins that allow ions to flow across plasma membranes and intracellular organelles in both excitable and non-excitable cells. They are involved in the regulation of several biological processes (i.e., proliferation, cell volume and shape, differentiation, migration, and apoptosis). Recently, the aberrant expression of ion channels has emerged as an important step of malignant transformation, tumor progression, and drug resistance, leading to the idea of “onco-channelopathy”. Here, we review the contribution of ion channels and transporters in multiple myeloma (MM), a hematological neoplasia characterized by the expansion of tumor plasma cells (MM cells) in the bone marrow (BM). Deregulation of ion channels sustains MM progression by modulating intracellular pathways that promote MM cells’ survival, proliferation, and drug resistance. Finally, we focus on the promising role of ion channels as therapeutic targets for the treatment of MM patients in a combination strategy with currently used anti-MM drugs to improve their cytotoxic activity and reduce adverse effects.
Collapse
Affiliation(s)
- Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, University of Bari Aldo Moro Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, University of Bari Aldo Moro Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Benedetta Apollonio
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, University of Bari Aldo Moro Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy
| |
Collapse
|
16
|
Guo Y, Fan J, Liu S, Hao D. Orai1 downregulation causes proliferation reduction and cell cycle arrest via inactivation of the Ras-NF-κB signaling pathway in osteoblasts. BMC Musculoskelet Disord 2022; 23:347. [PMID: 35410330 PMCID: PMC8996479 DOI: 10.1186/s12891-022-05311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of this study was to determine the role of Orai1 in the regulation of the proliferation and cell cycle of osteoblasts. Methods The expression of Orai1 was inhibited by Orai1 small interfering RNA (siRNA) in MC3T3-E1 cells. Following Orai1 downregulation, cell proliferation and cell cycle were examined. Furthermore, the expression of cyclin D1, cyclin E, CDK4, and CDK6 was analyzed. The activity of the Ras-NF-κB signaling pathway was investigated to identify the role of Orai1 in the regulation of osteoblast proliferation. Results Orai1 was successfully downregulated in MC3T3-E1 cells by the Orai1 siRNA transfection (p < 0.05). We found that MC3T3-E1 cell proliferation was decreased, and the cell cycle was arrested by Orai1 downregulation (p < 0.05). Additionally, the expression of cyclin D1 was decreased by Orai1 downregulation (p < 0.05), as was the activity of the Ras-NF-κB signaling pathway (p < 0.05). Orai1 siRNA did not further reduce cell proliferation, the proportion of cells in the S phase, and cyclin D1 expression after chemical blockage of the Ras signaling pathway in MC3T3-E1 cells (p > 0.05). Conclusions The results reveal that Orai1 downregulation may reduce cyclin D1 expression by inactivating the Ras-NF-κB signaling pathway thus blocking osteoblast proliferation and cell cycle. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05311-y.
Collapse
Affiliation(s)
- Yunshan Guo
- Department of spinal surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, 710054, People's Republic of China.
| | - Jinzhu Fan
- Department of bone microsurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, People's Republic of China
| | - Shuguang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, People's Republic of China.
| | - Dingjun Hao
- Department of spinal surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, 710054, People's Republic of China.
| |
Collapse
|
17
|
Xie J, Ma G, Zhou L, He L, Zhang Z, Tan P, Huang Z, Fang S, Wang T, Lee Y, Wen S, Siwko S, Wang L, Liu J, Du Y, Zhang N, Liu X, Han L, Huang Y, Wang R, Wang Y, Zhou Y, Han W. Identification of a STIM1 Splicing Variant that Promotes Glioblastoma Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103940. [PMID: 35076181 PMCID: PMC9008427 DOI: 10.1002/advs.202103940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Deregulated store-operated calcium entry (SOCE) mediated by aberrant STIM1-ORAI1 signaling is closely implicated in cancer initiation and progression. Here the authors report the identification of an alternatively spliced variant of STIM1, designated STIM1β, that harbors an extra exon to encode 31 additional amino acids in the cytoplasmic domain. STIM1β, highly conserved in mammals, is aberrantly upregulated in glioma tissues to perturb Ca2+ signaling. At the molecular level, the 31-residue insertion destabilizes STIM1β by perturbing its cytosolic inhibitory domain and accelerating its activation kinetics to efficiently engage and gate ORAI calcium channels. Functionally, STIM1β depletion affects SOCE in glioblastoma cells, suppresses tumor cell proliferation and growth both in vitro and in vivo. Collectively, their study establishes a splicing variant-specific tumor-promoting role of STIM1β that can be potentially targeted for glioblastoma intervention.
Collapse
Affiliation(s)
- Jiansheng Xie
- Department of Medical OncologyLaboratory of Cancer BiologyInstitute of Clinical ScienceSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Guolin Ma
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Lijuan Zhou
- Beijing Key Laboratory of Gene Resource and Molecular DevelopmentCollege of Life SciencesBeijing Normal UniversityBeijing100875P. R. China
| | - Lian He
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Zhao Zhang
- MOE Key Laboratory of Metabolism and Molecular MedicineDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Biochemistry and Molecular BiologyUniversity of Texas Health Science Center at Houston McGovern Medical SchoolHoustonTX77030USA
| | - Peng Tan
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Zixian Huang
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Shaohai Fang
- Center for Epigenetics and Disease PreventionInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Tianlu Wang
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Yi‐Tsang Lee
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Shufan Wen
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Stefan Siwko
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Liuqing Wang
- Beijing Key Laboratory of Gene Resource and Molecular DevelopmentCollege of Life SciencesBeijing Normal UniversityBeijing100875P. R. China
| | - Jindou Liu
- Beijing Key Laboratory of Gene Resource and Molecular DevelopmentCollege of Life SciencesBeijing Normal UniversityBeijing100875P. R. China
| | - Yangchun Du
- Beijing Key Laboratory of Gene Resource and Molecular DevelopmentCollege of Life SciencesBeijing Normal UniversityBeijing100875P. R. China
| | - Ningxia Zhang
- Department of Medical OncologyLaboratory of Cancer BiologyInstitute of Clinical ScienceSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Xiaoxuan Liu
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Leng Han
- Department of Biochemistry and Molecular BiologyUniversity of Texas Health Science Center at Houston McGovern Medical SchoolHoustonTX77030USA
- Center for Epigenetics and Disease PreventionInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Yun Huang
- Center for Epigenetics and Disease PreventionInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Rui Wang
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular DevelopmentCollege of Life SciencesBeijing Normal UniversityBeijing100875P. R. China
| | - Yubin Zhou
- Center for Translational Cancer ResearchInstitute of Biosciences and TechnologyTexas A&M UniversityHoustonTX77030USA
- Department of Translational Medical SciencesCollege of MedicineTexas A&M UniversityHoustonTX77030USA
| | - Weidong Han
- Department of Medical OncologyLaboratory of Cancer BiologyInstitute of Clinical ScienceSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| |
Collapse
|
18
|
Liu C, Zhang Y, Ge L, Li L, Wu B, Wang J. Biochemical and NMR studies reveal specific interaction between STIMATE C-tail and PI(4,5)P 2 or PI(3,4,5)P 3-containing membrane. Biochem Biophys Res Commun 2022; 597:16-22. [PMID: 35121178 DOI: 10.1016/j.bbrc.2022.01.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
STIMATE is an endoplasmic reticulum (ER) resident membrane protein that plays key roles in regulating calcium signaling occurring at ER-plasma membrane (PM) junctions. It is also involved in the regulation of ER-PM junction maintenance. STIMATE contains multiple putative transmembrane domains with a polybasic C tail (STIMATE-CT) that directly interacts with stromal interaction molecule 1 (STIM1) to promote STIM1 conformational switch. Here using liposome pulldown assay, we show that STIMATE-CT can specifically interact with PI(4,5)P2 or PI(3,4,5)P3-containing membrane. NMR analysis indicates that STIMATE-CT is intrinsically disordered. Furthermore, NMR titration with bicelles and mutation analysis reveal that the regions of 242VRYR245 and 284KKKK287 in STIMATE-CT are both essential for its membrane binding.
Collapse
Affiliation(s)
- Chongxu Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China
| | - Youjia Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China
| | - Liang Ge
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Ling Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230036, PR China
| | - Bo Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
19
|
Chen R, Zhang N, Zhou Y, Jing J. Optical Sensors and Actuators for Probing Proximity-Dependent Biotinylation in Living Cells. Front Cell Neurosci 2022; 16:801644. [PMID: 35250484 PMCID: PMC8890125 DOI: 10.3389/fncel.2022.801644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/13/2022] [Indexed: 01/09/2023] Open
Abstract
Proximity-dependent biotinylation techniques have been gaining wide applications in the systematic analysis of protein-protein interactions (PPIs) on a proteome-wide scale in living cells. The engineered biotin ligase TurboID is among the most widely adopted given its enhanced biotinylation efficiency, but it faces the background biotinylation complication that might confound proteomic data interpretation. To address this issue, we report herein a set of split TurboID variants that can be reversibly assembled by using light (designated “OptoID”), which enable optogenetic control of biotinylation based proximity labeling in living cells. OptoID could be further coupled with an engineered monomeric streptavidin that permits real-time monitoring of biotinylation with high temporal precision. These optical actuators and sensors will likely find broad applications in precise proximity proteomics and rapid detection of biotinylation in living cells.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ningxia Zhang
- Laboratory of Cancer Biology, Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yubin Zhou
- Department of Translational Medical Sciences, Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, United States
- *Correspondence: Yubin Zhou,
| | - Ji Jing
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
- Ji Jing,
| |
Collapse
|
20
|
Zhang N, Pan H, Liang X, Xie J, Han W. The roles of transmembrane family proteins in the regulation of store-operated Ca 2+ entry. Cell Mol Life Sci 2022; 79:118. [PMID: 35119538 PMCID: PMC11071953 DOI: 10.1007/s00018-021-04034-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is a major pathway for calcium signaling, which regulates almost every biological process, involving cell proliferation, differentiation, movement and death. Stromal interaction molecule (STIM) and ORAI calcium release-activated calcium modulator (ORAI) are the two major proteins involved in SOCE. With the deepening of studies, more and more proteins are found to be able to regulate SOCE, among which the transmembrane (TMEM) family proteins are worth paying more attention. In addition, the ORAI proteins belong to the TMEM family themselves. As the name suggests, TMEM family is a type of proteins that spans biological membranes including plasma membrane and membrane of organelles. TMEM proteins are in a large family with more than 300 proteins that have been already identified, while the functional knowledge about the proteins is preliminary. In this review, we mainly summarized the TMEM proteins that are involved in SOCE, to better describe a picture of the interaction between STIM and ORAI proteins during SOCE and its downstream signaling pathways, as well as to provide an idea for the study of the TMEM family proteins.
Collapse
Affiliation(s)
- Ningxia Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaojing Liang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiansheng Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
21
|
Abstract
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically-encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology"), and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
22
|
Identification of pimavanserin tartrate as a potent Ca 2+-calcineurin-NFAT pathway inhibitor for glioblastoma therapy. Acta Pharmacol Sin 2021; 42:1860-1874. [PMID: 34363007 PMCID: PMC8563877 DOI: 10.1038/s41401-021-00724-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant type of primary brain tumor, and 95% of patients die within 2 years after diagnosis. In this study, aiming to overcome chemoresistance to the first-line drug temozolomide (TMZ), we carried out research to discover a novel alternative drug targeting the oncogenic NFAT signaling pathway for GBM therapy. To accelerate the drug's clinical application, we took advantage of a drug repurposing strategy to identify novel NFAT signaling pathway inhibitors. After screening a set of 93 FDA-approved drugs with simple structures, we identified pimavanserin tartrate (PIM), an effective 5-HT2A receptor inverse agonist used for the treatment of Parkinson's disease-associated psychiatric symptoms, as having the most potent inhibitory activity against the NFAT signaling pathway. Further study revealed that PIM suppressed STIM1 puncta formation to inhibit store-operated calcium entry (SOCE) and subsequent NFAT activity. In cellula, PIM significantly suppressed the proliferation, migration, division, and motility of U87 glioblastoma cells, induced G1/S phase arrest and promoted apoptosis. In vivo, the growth of subcutaneous and orthotopic glioblastoma xenografts was markedly suppressed by PIM. Unbiased omics studies revealed the novel molecular mechanism of PIM's antitumor activity, which included suppression of the ATR/CDK2/E2F axis, MYC, and AuroraA/B signaling. Interestingly, the genes upregulated by PIM were largely associated with cholesterol homeostasis, which may contribute to PIM's side effects and should be given more attention. Our study identified store-operated calcium channels as novel targets of PIM and was the first to systematically highlight the therapeutic potential of pimavanserin tartrate for glioblastoma.
Collapse
|
23
|
Cross-Talk between Mechanosensitive Ion Channels and Calcium Regulatory Proteins in Cardiovascular Health and Disease. Int J Mol Sci 2021; 22:ijms22168782. [PMID: 34445487 PMCID: PMC8395829 DOI: 10.3390/ijms22168782] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mechanosensitive ion channels are widely expressed in the cardiovascular system. They translate mechanical forces including shear stress and stretch into biological signals. The most prominent biological signal through which the cardiovascular physiological activity is initiated or maintained are intracellular calcium ions (Ca2+). Growing evidence show that the Ca2+ entry mediated by mechanosensitive ion channels is also precisely regulated by a variety of key proteins which are distributed in the cell membrane or endoplasmic reticulum. Recent studies have revealed that mechanosensitive ion channels can even physically interact with Ca2+ regulatory proteins and these interactions have wide implications for physiology and pathophysiology. Therefore, this paper reviews the cross-talk between mechanosensitive ion channels and some key Ca2+ regulatory proteins in the maintenance of calcium homeostasis and its relevance to cardiovascular health and disease.
Collapse
|
24
|
Schmitt T, Waschke J. Autoantibody-Specific Signalling in Pemphigus. Front Med (Lausanne) 2021; 8:701809. [PMID: 34434944 PMCID: PMC8381052 DOI: 10.3389/fmed.2021.701809] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Pemphigus is a severe autoimmune disease impairing barrier functions of epidermis and mucosa. Autoantibodies primarily target the desmosomal adhesion molecules desmoglein (Dsg) 1 and Dsg 3 and induce loss of desmosomal adhesion. Strikingly, autoantibody profiles in pemphigus correlate with clinical phenotypes. Mucosal-dominant pemphigus vulgaris (PV) is characterised by autoantibodies (PV-IgG) against Dsg3 whereas epidermal blistering in PV and pemphigus foliaceus (PF) is associated with autoantibodies against Dsg1. Therapy in pemphigus is evolving towards specific suppression of autoantibody formation and autoantibody depletion. Nevertheless, during the acute phase and relapses of the disease additional treatment options to stabilise desmosomes and thereby rescue keratinocyte adhesion would be beneficial. Therefore, the mechanisms by which autoantibodies interfere with adhesion of desmosomes need to be characterised in detail. Besides direct inhibition of Dsg adhesion, autoantibodies engage signalling pathways interfering with different steps of desmosome turn-over. With this respect, recent data indicate that autoantibodies induce separate signalling responses in keratinocytes via specific signalling complexes organised by Dsg1 and Dsg3 which transfer the signal of autoantibody binding into the cell. This hypothesis may also explain the different clinical pemphigus phenotypes.
Collapse
Affiliation(s)
- Thomas Schmitt
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| | - Jens Waschke
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| |
Collapse
|
25
|
Li L, He L, Wu B, Yu C, Zhao H, Zhou Y, Wang J, Zhu L. Structural Determinants for Light-Dependent Membrane Binding of a Photoswitchable Polybasic Domain. ACS Synth Biol 2021; 10:542-551. [PMID: 33689308 DOI: 10.1021/acssynbio.0c00571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OptoPB is an optogenetic tool engineered by fusion of the phosphoinositide (PI)-binding polybasic domain of Rit1 (Rit-PB) to a photoreactive light-oxygen-voltage (LOV) domain. OptoPB selectively and reversibly binds the plasma membrane (PM) under blue light excitation, and in the dark, it releases back to the cytoplasm. However, the molecular mechanism of optical regulation and lipid recognition is still unclear. Here using nuclear magnetic resonance (NMR) spectroscopy, liposome pulldown assay, and surface plasmon resonance (SPR), we find that OptoPB binds to membrane mimetics containing di- or triphosphorylated phosphatidylinositols, particularly phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), an acidic phospholipid predominantly located in the eukaryotic PM. In the dark, steric hindrance prevented this protein-membrane interaction, while 470 nm blue light illumination activated it. NMR titration and site-directed mutagenesis revealed that both cationic and hydrophobic Rit-PB residues are essential to the membrane interaction, indicating that OptoPB binds the membrane via a specific PI(4,5)P2-dependent mechanism.
Collapse
Affiliation(s)
- Ling Li
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Bo Wu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Chuandi Yu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Hongxin Zhao
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Junfeng Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230031, China
| | - Lei Zhu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
26
|
Lee YT, Chen R, Zhou Y, He L. Optogenetic control of calcium influx in mammalian cells. Methods Enzymol 2021; 654:255-270. [PMID: 34120716 DOI: 10.1016/bs.mie.2021.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Optogenetics combines optics and genetics to enable non-invasive interrogation of cell physiology at an unprecedented high spatiotemporal resolution. Here, we introduce Opto-CRAC as a set of genetically-encoded calcium actuators (GECAs) engineered from the calcium release-activated calcium (CRAC) channel, which has been tailored for optical control of calcium entry and calcium-dependent physiological responses in non-excitable cells and tissues. We describe a detailed protocol for applying Opto-CRAC as an optogenetic tool to achieve photo-tunable control over intracellular calcium signals and calcium-dependent gene expression in mammalian cells.
Collapse
Affiliation(s)
- Yi-Tsang Lee
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Rui Chen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.
| |
Collapse
|
27
|
He L, Wang L, Zeng H, Tan P, Ma G, Zheng S, Li Y, Sun L, Dou F, Siwko S, Huang Y, Wang Y, Zhou Y. Engineering of a bona fide light-operated calcium channel. Nat Commun 2021; 12:164. [PMID: 33431868 PMCID: PMC7801460 DOI: 10.1038/s41467-020-20425-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
The current optogenetic toolkit lacks a robust single-component Ca2+-selective ion channel tailored for remote control of Ca2+ signaling in mammals. Existing tools are either derived from engineered channelrhodopsin variants without strict Ca2+ selectivity or based on the stromal interaction molecule 1 (STIM1) that might crosstalk with other targets. Here, we describe the design of a light-operated Ca2+ channel (designated LOCa) by inserting a plant-derived photosensory module into the intracellular loop of an engineered ORAI1 channel. LOCa displays biophysical features reminiscent of the ORAI1 channel, which enables precise optical control over Ca2+ signals and hallmark Ca2+-dependent physiological responses. Furthermore, we demonstrate the use of LOCa to modulate aberrant hematopoietic stem cell self-renewal, transcriptional programming, cell suicide, as well as neurodegeneration in a Drosophila model of amyloidosis. Existing optogenetic methods to induce calcium mobilisation lack selectivity and specificity. Here, the authors design and engineer a single-component light-operated calcium channel to provide optical control over calcium signals and calcium-dependent physiological responses: LOCa.
Collapse
Affiliation(s)
- Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Liuqing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hongxiang Zeng
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Sisi Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yaxin Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Fei Dou
- Beijing Key Laboratory of Genetic Engineering Drugs and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Stefan Siwko
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA. .,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA. .,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
28
|
Milenina LS, Krutetskaya ZI, Antonov VG, Krutetskaya NI. The Sigma-1 Receptor Ligand Chlorpromazine Attenuates Store-Dependent Ca2+ Entry in Peritoneal Macrophages. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Sridhar KC, Hersch N, Dreissen G, Merkel R, Hoffmann B. Calcium mediated functional interplay between myocardial cells upon laser-induced single-cell injury: an in vitro study of cardiac cell death signaling mechanisms. Cell Commun Signal 2020; 18:191. [PMID: 33371897 PMCID: PMC7771078 DOI: 10.1186/s12964-020-00689-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023] Open
Abstract
Background The electromechanical function of myocardial tissue depends on the intercellular communication between cardiomyocytes (CMs) as well as their crosstalk with other cell types. Cell injury, and subsequent death trigger inflammation as in myocardial infarction (MI) resulting in myocardial remodeling. Although mechanisms underlying myocardial cell death have been studied so far, the signaling events following single cell death and spontaneous response of connected cells in the myocardial tissue is still barely understood. Methods Here, we investigated the effect of laser-induced single cell death on Calcium (Ca2+) concentrations and transport in myocardial cell clusters in vitro. Spatial and temporal changes in intracellular Ca2+ concentrations [Ca2+]i were studied using a fluorescent calcium indicator, Fluo-4AM. Spontaneous signaling events following cell death were studied in rat embryonic cardiomyocytes and non-myocytes using separate cell culture systems. Results Cell death triggered spontaneous increase in intracellular Ca2+ levels ([Ca2+]i) of surrounding cells. The spread of the observed propagating Ca2+ signal was slow and sustained in myocytes while it was rapid and transient in fibroblasts (Fbs). Further, sustained high Ca2+ levels temporarily impaired the contractility in CMs. The cell-type specific effect of ablation was confirmed using separate cultures of CMs and Fbs. Comparing Ca2+ propagation speed in myocytes and fibroblasts, we argue for a diffusion-driven Ca2+ propagation in myocytes, but not in fibroblasts. Radial and sequential Ca2+ diffusion across the CMs through cell–cell contacts and presence of Cx43-based intercellular junctions indicated a gap junction flow of Ca2+. Conclusions These findings illustrate the spontaneous Ca2+-mediated functional interplay in myocardial cell clusters upon mechanical injury and, further, the difference in Ca2+ signaling in cardiomyocytes and fibroblasts. Video Abstract
Collapse
Affiliation(s)
- Krishna Chander Sridhar
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Nils Hersch
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Georg Dreissen
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
30
|
Synthesis and Pharmacological Characterization of 2-Aminoethyl Diphenylborinate (2-APB) Derivatives for Inhibition of Store-Operated Calcium Entry (SOCE) in MDA-MB-231 Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21165604. [PMID: 32764353 PMCID: PMC7460636 DOI: 10.3390/ijms21165604] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Calcium ions regulate a wide array of physiological functions including cell differentiation, proliferation, muscle contraction, neurotransmission, and fertilization. The endoplasmic reticulum (ER) is the major intracellular Ca2+ store and cellular events that induce ER store depletion (e.g., activation of inositol 1,4,5-triphosphate (IP3) receptors) trigger a refilling process known as store-operated calcium entry (SOCE). It requires the intricate interaction between the Ca2+ sensing stromal interaction molecules (STIM) located in the ER membrane and the channel forming Orai proteins in the plasma membrane (PM). The resulting active STIM/Orai complexes form highly selective Ca2+ channels that facilitate a measurable Ca2+ influx into the cytosol followed by successive refilling of the ER by the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). STIM and Orai have attracted significant therapeutic interest, as enhanced SOCE has been associated with several cancers, and mutations in STIM and Orai have been linked to immunodeficiency, autoimmune, and muscular diseases. 2-Aminoethyl diphenylborinate (2-APB) is a known modulator and depending on its concentration can inhibit or enhance SOCE. We have synthesized several novel derivatives of 2-APB, introducing halogen and other small substituents systematically on each position of one of the phenyl rings. Using a fluorometric imaging plate reader (FLIPR) Tetra-based calcium imaging assay we have studied how these structural changes of 2-APB affect the SOCE modulation activity at different compound concentrations in MDA-MB-231 breast cancer cells. We have discovered 2-APB derivatives that block SOCE at low concentrations, at which 2-APB usually enhances SOCE.
Collapse
|
31
|
Gregório C, Soares-Lima SC, Alemar B, Recamonde-Mendoza M, Camuzi D, de Souza-Santos PT, Rivero R, Machado S, Osvaldt A, Ashton-Prolla P, Pinto LFR. Calcium Signaling Alterations Caused by Epigenetic Mechanisms in Pancreatic Cancer: From Early Markers to Prognostic Impact. Cancers (Basel) 2020; 12:cancers12071735. [PMID: 32629766 PMCID: PMC7407273 DOI: 10.3390/cancers12071735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with high mortality rates. PDAC initiation and progression are promoted by genetic and epigenetic dysregulation. Here, we aimed to characterize the PDAC DNA methylome in search of novel altered pathways associated with tumor development. We examined the genome-wide DNA methylation profile of PDAC in an exploratory cohort including the comparative analyses of tumoral and non-tumoral pancreatic tissues (PT). Pathway enrichment analysis was used to choose differentially methylated (DM) CpGs with potential biological relevance. Additional samples were used in a validation cohort. DNA methylation impact on gene expression and its association with overall survival (OS) was investigated from PDAC TCGA (The Cancer Genome Atlas) data. Pathway analysis revealed DM genes in the calcium signaling pathway that is linked to the key pathways in pancreatic carcinogenesis. DNA methylation was frequently correlated with expression, and a subgroup of calcium signaling genes was associated with OS, reinforcing its probable phenotypic effect. Cluster analysis of PT samples revealed that some of the methylation alterations observed in the Calcium signaling pathway seemed to occur early in the carcinogenesis process, a finding that may open new insights about PDAC tumor biology.
Collapse
Affiliation(s)
- Cleandra Gregório
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (C.G.); (B.A.); (P.A.-P.)
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Sheila Coelho Soares-Lima
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.)
| | - Bárbara Alemar
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (C.G.); (B.A.); (P.A.-P.)
| | - Mariana Recamonde-Mendoza
- Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil;
- Núcleo de Bioinformática, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
| | - Diego Camuzi
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.)
| | | | - Raquel Rivero
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (R.R.); (S.M.)
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Simone Machado
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (R.R.); (S.M.)
| | - Alessandro Osvaldt
- Grupo de Vias Biliares e Pâncreas, Cirurgia do Aparelho Digestivo, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil;
- Programa de Pós-graduação em Medicina: Ciências Cirúrgicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Brazil
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Brazil
| | - Patricia Ashton-Prolla
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (C.G.); (B.A.); (P.A.-P.)
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.)
- Departamento de Bioquimica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-900, Brazil
- Correspondence: ; Tel.: +55-21-3207-6598
| |
Collapse
|
32
|
Yang X, Ma G, Zheng S, Qin X, Li X, Du L, Wang Y, Zhou Y, Li M. Optical Control of CRAC Channels Using Photoswitchable Azopyrazoles. J Am Chem Soc 2020; 142:9460-9470. [DOI: 10.1021/jacs.0c02949] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xingye Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Sisi Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaojun Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
33
|
Ma G, He L, Liu S, Xie J, Huang Z, Jing J, Lee YT, Wang R, Luo H, Han W, Huang Y, Zhou Y. Optogenetic engineering to probe the molecular choreography of STIM1-mediated cell signaling. Nat Commun 2020; 11:1039. [PMID: 32098964 PMCID: PMC7042325 DOI: 10.1038/s41467-020-14841-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Genetically encoded photoswitches have enabled spatial and temporal control of cellular events to achieve tailored functions in living cells, but their applications to probe the structure-function relations of signaling proteins are still underexplored. We illustrate herein the incorporation of various blue light-responsive photoreceptors into modular domains of the stromal interaction molecule 1 (STIM1) to manipulate protein activity and faithfully recapitulate STIM1-mediated signaling events. Capitalizing on these optogenetic tools, we identify the molecular determinants required to mediate protein oligomerization, intramolecular conformational switch, and protein-target interactions. In parallel, we have applied these synthetic devices to enable light-inducible gating of calcium channels, conformational switch, dynamic protein-microtubule interactions and assembly of membrane contact sites in a reversible manner. Our optogenetic engineering approach can be broadly applied to aid the mechanistic dissection of cell signaling, as well as non-invasive interrogation of physiological processes with high precision. Optogenetic tools have been used to control cellular behaviours but their use to probe structure-function relations of signalling proteins are underexplored. Here the authors engineer optogenetic modules into STIM1 to dissect molecular details of STIM1-mediated signalling and control various cellular events.
Collapse
Affiliation(s)
- Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Shuzhong Liu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.,Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiansheng Xie
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.,Department of Medical Oncology, Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zixian Huang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.,Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Yi-Tsang Lee
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Rui Wang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Hesheng Luo
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Weidong Han
- Department of Medical Oncology, Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA. .,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Guo Y, Zhu J, Wang X, Li R, Jiang K, Chen S, Fan J, Xue L, Hao D. Orai1 Promotes Osteosarcoma Metastasis by Activating the Ras-Rac1-WAVE2 Signaling Pathway. Med Sci Monit 2019; 25:9227-9236. [PMID: 31796725 PMCID: PMC6909920 DOI: 10.12659/msm.919594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background The purpose of this study was to investigate whether Orai1 plays a role in the metastasis of osteosarcoma. Material/Methods The expression of Orai1 was silenced by small interfering RNAs against Orai1 (Orai1 siRNA) in osteosarcoma MG-63 cells. Various experiments were carried out to detect the changes in migration, invasion, and adhesion ability of these osteosarcoma cells. Furthermore, the activity of Rac1, Wave2, and Ras was detected using Western blot analysis. Moreover, the Rac1 and Ras inhibitors were used to confirm whether the Ras-Rac1-WAVE2 signaling pathway was involved in osteosarcoma metastasis promoted by Orai1. Results We found that the migration, invasion, and adhesion ability of MG-63 cells were significantly reduced after silencing Orai1 expression (p<0.05). Moreover, the activity of the Rac1-WAVE2 signaling pathway was significantly inhibited after silencing of Orai1 expression (p<0.05). After the Rac1 inhibitor was added, Orai1 siRNA could not further inhibit migration, invasion, and adhesion of the osteosarcoma cells. Further experiments showed that Ras activity was significantly inhibited after silencing Orai1 expression (p<0.05). Moreover, Orai1 siRNA did not further inhibit the activity of the Rac1-WAVE2 signaling pathway nor did it further inhibit the migration, invasion, and adhesion ability of osteosarcoma cells following the addition of Ras inhibitors. Conclusions Orai1 activates the Ras-Rac1-WAVE2 signaling pathway to promote metastasis of osteosarcoma. Abnormal expression or function of Orai1 may be an important cause of osteosarcoma metastasis.
Collapse
Affiliation(s)
- Yunshan Guo
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Jinwen Zhu
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Xiaodong Wang
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Ruoyu Li
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Kuo Jiang
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Shi Chen
- Department of Emergency Medicine, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Jinzhu Fan
- Department of Orthopedics, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Liujie Xue
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Dingjun Hao
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
35
|
Qin X, Liu L, Lee SK, Alsina A, Liu T, Wu C, Park H, Yu C, Kim H, Chu J, Triller A, Tang BZ, Hyeon C, Park CY, Park H. Increased Confinement and Polydispersity of STIM1 and Orai1 after Ca 2+ Store Depletion. Biophys J 2019; 118:70-84. [PMID: 31818466 DOI: 10.1016/j.bpj.2019.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022] Open
Abstract
STIM1 (a Ca2+ sensor in the endoplasmic reticulum (ER) membrane) and Orai1 (a pore-forming subunit of the Ca2+-release-activated calcium channel in the plasma membrane) diffuse in the ER membrane and plasma membrane, respectively. Upon depletion of Ca2+ stores in the ER, STIM1 translocates to the ER-plasma membrane junction and binds Orai1 to trigger store-operated Ca2+ entry. However, the motion of STIM1 and Orai1 during this process and its roles to Ca2+ entry is poorly understood. Here, we report real-time tracking of single STIM1 and Orai1 particles in the ER membrane and plasma membrane in living cells before and after Ca2+ store depletion. We found that the motion of single STIM1 and Orai1 particles exhibits anomalous diffusion both before and after store depletion, and their mobility-measured by the radius of gyration of the trajectories, mean-square displacement, and generalized diffusion coefficient-decreases drastically after store depletion. We also found that the measured displacement distribution is non-Gaussian, and the non-Gaussian parameter drastically increases after store depletion. Detailed analyses and simulations revealed that single STIM1 and Orai1 particles are confined in the compartmentalized membrane both before and after store depletion, and the changes in the motion after store depletion are explained by increased confinement and polydispersity of STIM1-Orai1 complexes formed at the ER-plasma membrane junctions. Further simulations showed that this increase in the confinement and polydispersity after store depletion localizes a rapid increase of Ca2+ influx, which can facilitate the rapid activation of local Ca2+ signaling pathways and the efficient replenishing of Ca2+ store in the ER in store-operated Ca2+ entry.
Collapse
Affiliation(s)
- Xianan Qin
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Lei Liu
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| | - Sang Kwon Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Adolfo Alsina
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Teng Liu
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Hojeong Park
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Hajin Kim
- Department of Biomedical Engineering and Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Jun Chu
- Research Lab for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Antoine Triller
- Biologie Cellulaire de la Synapse N&P, IBENS, Institut de Biologie de L'ENS, Ecole Normale Supérieure, Paris, France
| | - Ben Zhong Tang
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Department of Chemistry, Kowloon, Hong Kong, China, Kowloon, Hong Kong, China
| | - Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea.
| | - Chan Young Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.
| | - Hyokeun Park
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Division of Life Science; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
36
|
Jing J, Liu G, Huang Y, Zhou Y. A molecular toolbox for interrogation of membrane contact sites. J Physiol 2019; 598:1725-1739. [PMID: 31119749 PMCID: PMC7098838 DOI: 10.1113/jp277761] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/17/2019] [Indexed: 01/04/2023] Open
Abstract
Membrane contact sites (MCSs) are specialized subcellular compartments formed by closely apposed membranes from two organelles. The intermembrane gap is separated by a distance ranging from 10 to 35 nm. MCSs are typically maintained through dynamic protein–protein and protein–lipid interactions. These intermembrane contact sites constitute important intracellular signalling hotspots to mediate a plethora of cellular processes, including calcium homeostasis, lipid metabolism, membrane biogenesis and organelle remodelling. In recent years, a series of genetically encoded probes and chemogenetic or optogenetic actuators have been invented to aid the visualization and interrogation of MCSs in both fixed and living cells. These molecular tools have greatly accelerated the pace of mechanistic dissection of membrane contact sites at the molecular level. In this review, we present an overview on the latest progress in this endeavour, and provide a general guide to the selection of methods and molecular tools for probing interorganellar membrane contact sites.
![]()
Collapse
Affiliation(s)
- Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Gan Liu
- Cockrell School of Engineering, University of Texas, Austin, TX, 78712, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| |
Collapse
|
37
|
Liu Z, Li H, He L, Xiang Y, Tian C, Li C, Tan P, Jing J, Tian Y, Du L, Huang Y, Han L, Li M, Zhou Y. Discovery of Small-Molecule Inhibitors of the HSP90-Calcineurin-NFAT Pathway against Glioblastoma. Cell Chem Biol 2019; 26:352-365.e7. [PMID: 30639261 PMCID: PMC6430684 DOI: 10.1016/j.chembiol.2018.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/13/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) is among the most common and malignant types of primary brain tumors in adults, with a dismal prognosis. Although alkylating agents such as temozolomide are widely applied as the first-line treatment for GBM, they often cause chemoresistance and remain ineffective with recurrent GBM. Alternative therapeutics against GBM are urgently needed in the clinic. We report herein the discovery of a class of inhibitors (YZ129 and its derivatives) of the calcineurin-NFAT pathway that exhibited potent anti-tumor activity against GBM. YZ129-induced GBM cell-cycle arrest at the G2/M phase promoted apoptosis and inhibited tumor cell proliferation and migration. At the molecular level, YZ129 directly engaged HSP90 to antagonize its chaperoning effect on calcineurin to abrogate NFAT nuclear translocation, and also suppressed other proto-oncogenic pathways including hypoxia, glycolysis, and the PI3K/AKT/mTOR signaling axis. Our data highlight the potential for targeting the cancer-promoting HSP90 chaperone network to treat GBM.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China; Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Hongli Li
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Lian He
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, TX 77030, USA
| | - Chengsen Tian
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China; School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Can Li
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Peng Tan
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Ji Jing
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Yanpin Tian
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yun Huang
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China; State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China.
| | - Yubin Zhou
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; Department of Medical Physiology, College of Medicine, Texas A&M University, Temple, TX 76504, USA.
| |
Collapse
|
38
|
Yen M, Lewis RS. Numbers count: How STIM and Orai stoichiometry affect store-operated calcium entry. Cell Calcium 2019; 79:35-43. [PMID: 30807904 DOI: 10.1016/j.ceca.2019.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023]
Abstract
Substantial progress has been made in the past several years in establishing the stoichiometries of STIM and Orai proteins and understanding their influence on store-operated calcium entry. Depletion of ER Ca2+ triggers STIM1 to accumulate at ER-plasma membrane junctions where it binds and opens Ca2+ release-activated Ca2+ (CRAC) channels. STIM1 is a dimer, and release of Ca2+ from its two luminal domains is reported to promote their association as well as drive formation of higher-order STIM1 oligomers. The CRAC channel, originally thought to be tetrameric, is now considered to be a hexamer of Orai1 subunits based on crystallographic and electrophysiological studies. STIM1 binding activates CRAC channels in a highly nonlinear way, such that all six Orai1 binding sites must be occupied to account for the activation and signature properties of native channels. The structural basis of STIM1 engagement with the channel is currently unclear, with evidence suggesting that STIM1 dimers bind to individual or pairs of Orai1 subunits. This review examines evidence that has led to points of consensus and debate about STIM1 and Orai1 stoichiometries, and explains the importance of STIM-Orai complex stoichiometry for the regulation of store-operated calcium entry.
Collapse
Affiliation(s)
- Michelle Yen
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Richard S Lewis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, United States.
| |
Collapse
|
39
|
Qiu R, Lewis RS. Structural features of STIM and Orai underlying store-operated calcium entry. Curr Opin Cell Biol 2019; 57:90-98. [PMID: 30716649 DOI: 10.1016/j.ceb.2018.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022]
Abstract
Store-operated calcium entry (SOCE) through Orai channels is triggered by receptor-stimulated depletion of Ca2+ from the ER. Orai1 is unique in terms of its activation mechanism, biophysical properties, and structure, and its precise regulation is essential for human health. Recent studies have begun to reveal the structural basis of the major steps in the SOCE pathway and how the system is reliably suppressed in resting cells but able to respond robustly to ER Ca2+ depletion. In this review, we discuss current models describing the activation of ER Ca2+ sensor STIM1, its binding to Orai1, propagation of the binding signal from the channel periphery to the central pore, and the resulting conformational changes underlying opening of the highly Ca2+ selective Orai1 channel.
Collapse
Affiliation(s)
- Ruoyi Qiu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Richard S Lewis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
40
|
Nguyen NT, Ma G, Lin E, D'Souza B, Jing J, He L, Huang Y, Zhou Y. CRAC channel-based optogenetics. Cell Calcium 2018; 75:79-88. [PMID: 30199756 DOI: 10.1016/j.ceca.2018.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/31/2018] [Indexed: 01/28/2023]
Abstract
Store-operated Ca²+ entry (SOCE) constitutes a major Ca2+ influx pathway in mammals to regulate a myriad of physiological processes, including muscle contraction, synaptic transmission, gene expression, and metabolism. In non-excitable cells, the Ca²+ release-activated Ca²+ (CRAC) channel, composed of ORAI and stromal interaction molecules (STIM), constitutes a prototypical example of SOCE to mediate Ca2+ entry at specialized membrane contact sites (MCSs) between the endoplasmic reticulum (ER) and the plasma membrane (PM). The key steps of SOCE activation include the oligomerization of the luminal domain of the ER-resident Ca2+ sensor STIM1 upon Ca²+ store depletion, subsequent signal propagation toward the cytoplasmic domain to trigger a conformational switch and overcome the intramolecular autoinhibition, and ultimate exposure of the minimal ORAI-activating domain to directly engage and gate ORAI channels in the plasma membrane. This exquisitely coordinated cellular event is also facilitated by the C-terminal polybasic domain of STIM1, which physically associates with negatively charged phosphoinositides embedded in the inner leaflet of the PM to enable efficient translocation of STIM1 into ER-PM MCSs. Here, we present recent progress in recapitulating STIM1-mediated SOCE activation by engineering CRAC channels with optogenetic approaches. These STIM1-based optogenetic tools make it possible to not only mechanistically recapture the key molecular steps of SOCE activation, but also remotely and reversibly control Ca²+-dependent cellular processes, inter-organellar tethering at MCSs, and transcriptional reprogramming when combined with CRISPR/Cas9-based genome-editing tools.
Collapse
Affiliation(s)
- Nhung Thi Nguyen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Eena Lin
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Brendan D'Souza
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; Department of Medical Physiology, College of Medicine, Texas A&M University, Temple, TX 76504, USA.
| |
Collapse
|