1
|
Wu J, Xu X, Zhang S, Li M, Qiu Y, Lu G, Zheng Z, Huang H. Plastic Events of the Vestibular Nucleus: the Initiation of Central Vestibular Compensation. Mol Neurobiol 2024; 61:9680-9693. [PMID: 38689145 DOI: 10.1007/s12035-024-04208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Vestibular compensation is a physiological response of the vestibular organs within the inner ear. This adaptation manifests during consistent exposure to acceleration or deceleration, with the vestibular organs incrementally adjusting to such changes. The molecular underpinnings of vestibular compensation remain to be fully elucidated, yet emerging studies implicate associations with neuroplasticity and signal transduction pathways. Throughout the compensation process, the vestibular sensory neurons maintain signal transmission to the central equilibrium system, facilitating adaptability through alterations in synaptic transmission and neuronal excitability. Notable molecular candidates implicated in this process include variations in ion channels and neurotransmitter profiles, as well as neuronal and synaptic plasticity, metabolic processes, and electrophysiological modifications. This study consolidates the current understanding of the molecular events in vestibular compensation, augments the existing research landscape, and evaluates contemporary therapeutic strategies. Furthermore, this review posits potential avenues for future research that could enhance our comprehension of vestibular compensation mechanisms.
Collapse
Affiliation(s)
- Junyu Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xue Xu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Shifeng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Minping Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yuemin Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Gengxin Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhihui Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Haiwei Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Yang Y, Gao L, Xi J, Liu X, Yang H, Luo Q, Xie F, Niu J, Meng P, Tian X, Wu X, Long Q. Mesenchymal stem cell-derived extracellular vesicles mitigate neuronal damage from intracerebral hemorrhage by modulating ferroptosis. Stem Cell Res Ther 2024; 15:255. [PMID: 39135135 PMCID: PMC11320807 DOI: 10.1186/s13287-024-03879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Hemorrhagic stroke is a devastating cerebrovascular event with a high rate of early mortality and long-term disability. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) for neurological conditions, such as intracerebral hemorrhage (ICH), has garnered considerable interest, has garnered considerable interest, though their mechanisms of action remain poorly understood. METHODS EVs were isolated from human umbilical cord MSCs, and SPECT/CT was used to track the 99mTc-labeled EVs in a mouse model of ICH. A series of comprehensive evaluations, including magnetic resonance imaging (MRI), histological study, RNA sequencing (RNA-Seq), or miRNA microarray, were performed to investigate the therapeutic action and mechanisms of MSC-EVs in both cellular and animal models of ICH. RESULTS Our findings show that intravenous injection of MSC-EVs exhibits a marked affinity for the ICH-affected brain regions and cortical neurons. EV infusion alleviates the pathological changes observed in MRI due to ICH and reduces damage to ipsilateral cortical neurons. RNA-Seq analysis reveals that EV treatment modulates key pathways involved in the neuronal system and metal ion transport in mice subjected to ICH. These data were supported by the attenuation of neuronal ferroptosis in neurons treated with Hemin and in ICH mice following EV therapy. Additionally, miRNA microarray analysis depicted the EV-miRNAs targeting genes associated with ferroptosis, and miR-214-3p was identified as a regulator of neuronal ferroptosis in the ICH cellular model. CONCLUSIONS MSC-EVs offer neuroprotective effects against ICH-induced neuronal damage by modulating ferroptosis highlighting their therapeutic potential for combating neuronal ferroptosis in brain disorders.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, P.R. China
| | - Lingfeng Gao
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, P.R. China
| | - Junxiu Xi
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, P.R. China
- College of Medicine, Yan'an University, Yongxiang Road, Baota District, Yan'an, 716000, China
| | - Xiaoyan Liu
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, P.R. China
- College of Medicine, Yan'an University, Yongxiang Road, Baota District, Yan'an, 716000, China
| | - Hao Yang
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, P.R. China
- College of Medicine, Yan'an University, Yongxiang Road, Baota District, Yan'an, 716000, China
| | - Qiang Luo
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, P.R. China
| | - Fei Xie
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, P.R. China
| | - Jinyun Niu
- Department of Nuclear Medicine, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, P.R. China
| | - Panpan Meng
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, P.R. China
| | - Xiao Tian
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, P.R. China
| | - Xiaoping Wu
- Department of Radiology, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, P.R. China
| | - Qianfa Long
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, P.R. China.
- College of Medicine, Yan'an University, Yongxiang Road, Baota District, Yan'an, 716000, China.
| |
Collapse
|
3
|
Zare Z, Shafia S, Mohammadi M. Thyroid hormone deficiency affects anxiety-related behaviors and expression of hippocampal glutamate transporters in male congenital hypothyroid rat offspring. Horm Behav 2024; 162:105548. [PMID: 38636205 DOI: 10.1016/j.yhbeh.2024.105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Thyroid hormones are crucial for brain development and their deficiency during fetal and postnatal periods can lead to mood and cognitive disorders. We aimed to examine the consequences of thyroid hormone deficiency on anxiety-related behaviors and protein expression of hippocampal glutamate transporters in congenital hypothyroid male offspring rats. Possible beneficial effects of treadmill exercise have also been examined. Congenital hypothyroidism was induced by adding propylthiouracil (PTU) to drinking water of pregnant Wistar rats from gestational day 6 until the end of the weaning period (postnatal day 28). Next, following 4 weeks of treadmill exercise (5 days per week), anxiety-related behaviors were examined using elevated plus maze (EPM) and light/dark box tests. Thereafter, protein expression of astrocytic (GLAST and GLT-1) and neuronal (EAAC1) glutamate transporters were measured in the hippocampus by immunoblotting. Hypothyroid rats showed decreased anxiety-like behavior, as measured by longer time spent in the open arms of the EPM and in the light area of the light/dark box, compared to control rats. Hypothyroid rats had significantly higher GLAST and GLT-1 and lower EAAC1 protein levels in the hippocampus than did the euthyroid rats. Following exercise, anxiety levels decreased in the euthyroid group while protein expression of EAAC1 increased and returned to normal levels in the hypothyroid group. Our findings indicate that thyroid hormone deficiency was associated with alterations in protein expression of glutamate transporters in the hippocampus. Up-regulation of hippocampal GLAST and GLT-1 could be at least one of the mechanisms associated with the anxiolytic effects of congenital hypothyroidism.
Collapse
Affiliation(s)
- Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sakineh Shafia
- Department of Physiology, Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
4
|
Alkadhi KA. Synaptic Plasticity and Cognitive Ability in Experimental Adult-Onset Hypothyroidism. J Pharmacol Exp Ther 2024; 389:150-162. [PMID: 38508752 DOI: 10.1124/jpet.123.001887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Adult-onset hypothyroidism impairs normal brain function. Research on animal models of hypothyroidism has revealed critical information on how deficiency of thyroid hormones impacts the electrophysiological and molecular functions of the brain, which leads to the well known cognitive impairment in untreated hypothyroid patients. Currently, such information can only be obtained from experiments on animal models of hypothyroidism. This review summarizes important research findings that pertain to understanding the clinical cognitive consequences of hypothyroidism, which will provide a better guiding path for therapy of hypothyroidism. SIGNIFICANCE STATEMENT: Cognitive impairment occurs during adult-onset hypothyroidism in both humans and animal models. Findings from animal studies validate clinical findings showing impaired long-term potentiation, decreased CaMKII, and increased calcineurin. Such findings can only be gleaned from animal experiments to show how hypothyroidism produces clinical symptoms.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
5
|
Minakhina S, Kim SY, Wondisford FE. Regulation of hypothalamic reactive oxygen species and feeding behavior by phosphorylation of the beta 2 thyroid hormone receptor isoform. Sci Rep 2024; 14:7200. [PMID: 38531895 PMCID: PMC10965981 DOI: 10.1038/s41598-024-57364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Unlike other thyroid hormone receptors (THRs), the beta 2 isoform (THRB2) has a restricted expression pattern and is uniquely and abundantly phosphorylated at a conserved serine residue S101 (S102 in humans). Using tagged and or phosphorylation-defective (S101A) THRB2 mutant mice, we show that THRB2 is present in a large subset of POMC neurons and mitigates ROS accumulation during ROS-triggering events, such as fasting/refeeding or high fat diet (HFD). Excessive ROS accumulation in mutant POMC neurons was accompanied by a skewed production of orexigenic/anorexigenic hormones, resulting in elevated food intake. The prolonged exposure to pathogenic hypothalamic ROS levels during HFD feeding lead to a significant loss of POMC neurons in mutant versus wild-type (WT) mice. In cultured cells, the presence of WT THRB2 isoform, but not other THRs, or THRB2S101A, reduced ROS accumulation upon exogenous induction of oxidative stress by tert-butyl hydroperoxide. The protective function of phospho-THRB2 (pTHRB2) did not require thyroid hormone (TH), suggesting a TH-independent role of the THRB2 isoform, and phospho-S101 in particular, in regulating oxidative stress. We propose that pTHRB2 has a fundamental role in neuronal protection against ROS cellular damage, and mitigates hypothalamic pathological changes found in diet-induced obesity.
Collapse
Affiliation(s)
- Svetlana Minakhina
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
- Mount Sinai School of Medicine, New York, NY, USA.
| | - Sun Young Kim
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Fredric E Wondisford
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
- University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
6
|
Sabatino L, Lapi D, Del Seppia C. Factors and Mechanisms of Thyroid Hormone Activity in the Brain: Possible Role in Recovery and Protection. Biomolecules 2024; 14:198. [PMID: 38397435 PMCID: PMC10886502 DOI: 10.3390/biom14020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Thyroid hormones (THs) are essential in normal brain development, and cognitive and emotional functions. THs act through a cascade of events including uptake by the target cells by specific cell membrane transporters, activation or inactivation by deiodinase enzymes, and interaction with nuclear thyroid hormone receptors. Several thyroid responsive genes have been described in the developing and in the adult brain and many studies have demonstrated a systemic or local reduction in TH availability in neurologic disease and after brain injury. In this review, the main factors and mechanisms associated with the THs in the normal and damaged brain will be evaluated in different regions and cellular contexts. Furthermore, the most common animal models used to study the role of THs in brain damage and cognitive impairment will be described and the use of THs as a potential recovery strategy from neuropathological conditions will be evaluated. Finally, particular attention will be given to the link observed between TH alterations and increased risk of Alzheimer's Disease (AD), the most prevalent neurodegenerative and dementing condition worldwide.
Collapse
Affiliation(s)
- Laura Sabatino
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Dominga Lapi
- Department of Biology, University of Pisa, 56127 Pisa, Italy;
| | - Cristina Del Seppia
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
7
|
Liang J, He Y, Huang C, Ji F, Zhou X, Yin Y. The Regulation of Selenoproteins in Diabetes: A New Way to Treat Diabetes. Curr Pharm Des 2024; 30:1541-1547. [PMID: 38706350 DOI: 10.2174/0113816128302667240422110226] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/31/2024] [Indexed: 05/07/2024]
Abstract
Selenium is an essential micronutrient required for the synthesis and function of selenoproteins, most of which are enzymes involved in maintaining oxidative balance in the body. Diabetes is a group of metabolic disorders characterized by high blood glucose levels over a prolonged period of time. There are three main types of diabetes: type 1, type 2, and gestational diabetes. This review summarizes recent advances in the field of diabetes research with an emphasis on the roles of selenoproteins on metabolic disturbance in diabetes. We also discuss the interaction between selenoproteins and glucose and lipid metabolism to provide new insights into the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Jing Liang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Chunxia Huang
- School of Stomatology, Changsha Medical University, Changsha 410219, China
| | - Fengjie Ji
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Mao X, Tang L, Li H, Zhang W, Liu L, Wang H, Headar A. Functional enrichment analysis of mutated genes in children with hyperthyroidism. Front Endocrinol (Lausanne) 2023; 14:1213465. [PMID: 37876543 PMCID: PMC10591315 DOI: 10.3389/fendo.2023.1213465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/27/2023] [Indexed: 10/26/2023] Open
Abstract
Objective Hyperthyroidism in Chinese children is relatively high and has been increasing in recent years, which has a significant impact on their healthy development. Hyperthyroidism is a polygenic disorder that presents greater challenges in terms of prediction and treatment than monogenic diseases. This study aims to elucidate the associated functions and gene sets of mutated genes in children with hyperthyroidism in terms of the gene ontology through GO enrichment analysis and in terms of biological signaling pathways through KEGG enrichment analysis, thereby enhancing our understanding of the expected effects of multiple mutated genes on hyperthyroidism in children. Methods Whole-exome sequencing was performed on the DNA samples of children with hyperthyroidism. Screening for pathogenic genes related to hyperthyroidism in affected children was performed using the publicly available disease databases Malacards, MutationView, and Clinvar, and the functions and influences of the identified pathogenic genes were analyzed using statistical analysis and the gene enrichment approach. Results Through GO enrichment analysis, it was found that the most significant gene ontology enrichment was the function "hormone activity" in terms of gene ontology molecular function. The corresponding mutated genes set that has common effects on hyperthyroidism in children included TG, CALCA, POMC, CGA, PTH, GHRL, FBN1, TRH, PRL, LEP, ADIPOQ, INS, GH1. The second most significant gene ontology enrichment was the function "response to peptide hormone" in terms of biological process. The corresponding mutated genes set that has common effects on hyperthyroidism in children included LRP6, TSC2, KANK1, COL1A1, CDKN1B, POMC, STAT1, MEN1, APC, GHRL, TSHR, GJB2, FBN1, GPT, LEP, ADIPOQ, INS, GH1. Through KEGG enrichment analysis, it was found that the most significant biological signaling pathway enrichment was the pathway "Thyroid hormone signaling pathway" function. The corresponding mutated genes set that has common effects on hyperthyroidism in children included NOTCH3, MYH7, TSC2, STAT1, MED13L, MAP2K2, SLCO1C1, SLC16A2, and THRB. The second most significant biological signaling pathway enrichment was the pathway "Hypertrophic cardiomyopathy" in terms of biological process. The corresponding mutated genes set that has common effects on hyperthyroidism in children included IGF1, CACNA1S, MYH7, IL6, TTN, CACNB2, LAMA2, and DMD. Conclusion The mutated genes in children with hyperthyroidism were closely linked to function involved in "hormone activity" and "response to peptide hormone" in terms of the biological signaling pathway, and to the functional pathways involved in "Thyroid hormone signaling pathway" and "Hypertrophic cardiomyopathy" in terms of the biological signaling pathway.
Collapse
Affiliation(s)
- Xiaojian Mao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Liangliang Tang
- Center of Big Data and Business Itelligent, South China University of Technology, Guangzhou, China
| | - Hongyi Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Heyong Wang
- Center of Big Data and Business Itelligent, South China University of Technology, Guangzhou, China
| | - Abdalbari Headar
- Center of Big Data and Business Itelligent, South China University of Technology, Guangzhou, China
| |
Collapse
|
9
|
Abstract
Background: Thyroid hormone (TH) has actions in every tissue of the body and is essential for normal development, as well as having important actions in the adult. The earliest markers of TH action that were identified and monitored clinically, even before TH could be measured in serum, included oxygen consumption, basal metabolic rate, serum cholesterol, and deep tendon reflex time. Cellular, rodent, amphibian, zebrafish, and human models have been used to study TH action. Summary: Early studies of the mechanism of TH action focused on saturable-specific triiodothyronine (T3) nuclear binding and direct actions of T3 that altered protein expression. Additional effects of TH were recognized on mitochondria, stimulation of ion transport, especially the sodium potassium ATPase, augmentation of adrenergic signaling, role as a neurotransmitter, and direct plasma membrane effects. The cloning of the thyroid hormone receptor (THR) genes in 1986 and report of the THR crystal structure in 1995 produced rapid progress in understanding the mechanism of TH nuclear action, as well as the development of modified THR ligands. These findings revealed nuances of TH signaling, including the role of nuclear receptor coactivators and corepressors, repression of positively stimulated genes by the unliganded receptor, THR isoform-specific actions of TRα (THRA) and TRβ (THRB), and THR binding DNA as a heterodimer with retinoid-x-receptor (RXR) for genes positively regulated by TH. The identification of genetic disorders of TH transport and signaling, especially Resistance to Thyroid Hormone (RTH) and monocarboxylate transporter 8 (Mct8) defects, has been highly informative with respect to the mechanism of TH action. Conclusions: The impact of THR isoform, post-translational modifications, receptor cofactors, DNA response element, and selective TH tissue uptake, on TH action, have clinical implications for diagnosing and treating thyroid disease. Additionally, these findings have led to the development of novel TH and TH analogue therapies for metabolic, neurological, and cardiovascular diseases.
Collapse
Affiliation(s)
- Gregory A Brent
- Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
10
|
Głodek M, Skibinska M, Suwalska A. Diet and physical activity and metabolic disorders in patients with schizophrenia and bipolar affective disorder in the Polish population. PeerJ 2023; 11:e15617. [PMID: 37456885 PMCID: PMC10348314 DOI: 10.7717/peerj.15617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction There are numerous reports of a higher prevalence of metabolic disorders in patients with schizophrenia and bipolar disorder (BD), yet its connections to diet and physical activity remain not fully explained. This article aimed to evaluate diet, physical activity and selected biochemical and anthropometric parameters associated with metabolism in patients with schizophrenia and BD and to analyse the relationships between these variables in the subjects. Materials and Methods A total of 126 adults participated in the study: 47 patients with schizophrenia, 54 patients with BD and 25 patients in mental illness remission (reference group). Data were collected on the underlying illness and concomitant illnesses, and the severity of symptoms of the current episode was assessed using the following scales: PANSS, MADRS and YMRS. An assessment of the subjects' diet (KomPAN questionnaire) and their physical activity (International Physical Activity Questionnaire) was carried out. Anthropometric and blood pressure measurements were taken and BMI and WHR were calculated. Serum concentrations of fasting glucose, TSH, total cholesterol, LDL and HDL fractions, triglycerides and leptin, ghrelin and resistin were determined. For statistical analysis, the significance level was set at 0.05. For multiple comparisons one way ANOVA or Kruskal Wallis were used with post hoc Tukey and Dunn tests, respectively. To determine correlation of variables, Pearson's linear correlation coefficient or Spearman's rank correlation coefficient were used. Results A total of 50.8% of the subjects had at least one metabolic disorder-most commonly excessive body weight (66.7%) and abdominal obesity (64.3%). Patients did not differ significantly in terms of physical activity, but they did differ in mean time spent sitting-with this being significantly longer for all groups than in the general population. The subjects differed in diet: patients with BD consumed less unhealthy foods than patients with schizophrenia. The highest correlations between physical activity, diet and variables defining metabolic disorders were found in patients with BD. Only in patients with schizophrenia were there significant correlations between the course of the disease and physical activity. Discussion The results suggest the existence of associations between diet, physical activity, and metabolic disorders in both BD and schizophrenia patients. They also suggest a tendency among those patients to spend long periods of time sitting.
Collapse
Affiliation(s)
- Magdalena Głodek
- Department of Mental Health, Chair of Psychiatry, Poznan University of Medical Sciences, Poznań, Poland
- Department of Adult Psychiatry, Chair of Psychiatry, Poznan University of Medical Sciences, Poznań, Poland
| | - Maria Skibinska
- Department of Genetics in Psychiatry, Chair of Psychiatry, Poznan University of Medical Sciences, Poznań, Poland
| | - Aleksandra Suwalska
- Department of Mental Health, Chair of Psychiatry, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
11
|
Dai W, Liu J, Xie H, Teng Z, Luo W, Yuan H, Chen J, Liu M, Zhang X. Association between subclinical hypothyroidism and psychotic features in Chinese young adults with first-episode and untreated major depressive disorder. J Affect Disord 2023; 333:209-215. [PMID: 37086799 DOI: 10.1016/j.jad.2023.04.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/06/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND Thyroid dysfunction is often reported in patients with major depressive disorder (MDD) and may be associated with depression severity and psychotic symptoms. We included young adults with first-episode and untreated MDD to avoid the effect of age and disease duration on thyroid dysfunction and psychotic symptoms. METHODS 481 young patients with MDD (aged 18-24 years) were recruited. The Hamilton Depression Scale (HAMD), Hamilton Anxiety Scale (HAMA), Positive and Negative Syndrome Scale (PANSS) positive subscale and Global Impression of Severity Scale (CGIS) were used to assess depression, anxiety, psychotic symptoms and disease severity, respectively. RESULTS The prevalence rate of subclinical hypothyroidism (SCH) and thyroid antibody positivity was 56.76 % (273/481) and 26.61 % (128/481) in young MDD, respectively. A higher proportion of MDD patients with SCH displayed psychotic features (14.3 % vs. 5.3 %, OR = 2.985, p = 0.001). TSH was a risk factor for psychotic symptoms in MDD patient with SCH (B = 0.136, p = 0.017, OR = 1.384), with an AUC of 0.709, indicating acceptable discrimination. Multivariate regression analysis also showed that TSH was also independently associated with PANSS positive score (B = 0.339, t = 2.019, p = 0.045). LIMITATION This cross-sectional study design did not demonstrate a causal relationship. Relying solely on the PANSS positive subscale as psychotic symptoms may cause bias. CONCLUSIONS Our findings suggest that SCH is common in young patients with first-episode and untreated MDD. MDD patients with higher TSH levels may suffer from more psychotic symptoms. Regular screening of serum thyroid hormones is necessary in patients with MDD.
Collapse
Affiliation(s)
- Wenyu Dai
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jieyu Liu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Haiqing Xie
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wenbo Luo
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Yuan
- Department of Stomatology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Minghui Liu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Chen L, Yang X, Ren X, Lin Y. Reminiscence therapy care program as a potential nursing intervention to relieve anxiety, depression, and quality of life in older papillary thyroid carcinoma patients: A randomized, controlled study. Front Psychol 2022; 13:1064439. [PMID: 36507042 PMCID: PMC9729938 DOI: 10.3389/fpsyg.2022.1064439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Reminiscence therapy (RT) ameliorates psychological problems and quality of life in cancer patients. However, no study reports its effect on older papillary thyroid carcinoma (PTC) patients. This study intended to investigate the effect of the RT-care program (CP) on anxiety, depression, quality of life, and survival in older PTC patients. Methods Eighty-six postoperative older PTC patients were enrolled and randomly assigned to RT-CP group (N = 44) and usual (U)-CP group (N = 42) as a 1:1 ratio for a 6-month intervention. Hospital Anxiety and Depression Scale (HADS) and Quality of Life Questionnaire-Core 30 (QLQ-C30) scores were assessed at baseline, month (M)1, M2, M4, and M6. Results HADS and QLQ-C30 scores at baseline were not different between two groups. Additionally, HADS-anxiety score at M6 (p = 0.029), and HADS-depression score at M2 (p = 0.030), M4 (p = 0.029), M6 (p = 0.012) were reduced in RT-CP group versus U-CP group. Meanwhile, anxiety and depression rates from M1 to M6 were slightly decreased in RT-CP group versus U-CP group but did not reach statistical significance. Furthermore, depression severity at M6 was reduced in RT-CP group versus U-CP group (p = 0.049). Besides, QLQ-C30 global health status was increased at M2 (p = 0.023) and M6 (p = 0.033), QLQ-C30 function score was elevated at M2 (p = 0.040) and M4 (p = 0.035), while QLQ-C30 symptom score was decreased at M2 (p = 0.046) in RT-CP group versus U-CP group. Moreover, disease-free survival and overall survival were not different between two groups. Conclusion RT-CP may be a potential intervention for ameliorating anxiety, depression, and quality of life in older PTC patients.
Collapse
Affiliation(s)
- Li Chen
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xianguang Yang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiukun Ren
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yufeng Lin
- Clean Operating Department, Harbin Medical University Cancer Hospital, Harbin, China,*Correspondence: Yufeng Lin,
| |
Collapse
|
13
|
Abe K, Li J, Liu YY, Brent GA. Thyroid Hormone-mediated Histone Modification Protects Cortical Neurons From the Toxic Effects of Hypoxic Injury. J Endocr Soc 2022; 6:bvac139. [PMID: 36817622 PMCID: PMC9562813 DOI: 10.1210/jendso/bvac139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Context Thyroid hormone has been shown to have a protective role in neuronal injury, although the mechanisms have not been established. The cellular response to stress that promotes adaptation and survival has been shown to involve epigenetic modifications. Objective We hypothesized that the neuroprotective role of thyroid hormone was associated with epigenetic modifications of histone proteins. We used hypoxic neurons as a model system for hypoxia-induced brain injury. Methods Mouse primary cortical neurons were exposed to 0.2% oxygen for 7 hours, with or without, treatment with triiodothyronine (T3). We analyzed the expression of histone-modifying enzymes by RNA-seq and the post-translationally modified histone 3 proteins by enzyme-linked immunosorbent assay (ELISA) and Western blot. Results We found that methylation of H3K27, associated with inactive promoters, was highly induced in hypoxic neurons, and this histone methylation was reduced by T3 treatment. H3K4 methylation is the hallmark of active promoters. The expression of 3 (Set1db, Kmta2c, and Kmt2e) out of 6 H3K4 methyltransferases was downregulated by hypoxia and expression was restored by T3 treatment. H3K4me3 protein, measured by ELISA, was increased 76% in T3-treated hypoxic neurons compared with the levels without T3 treatment. H3K56ac plays a critical role in transcription initiation and was markedly increased in T3-treated hypoxic neurons compared with those without T3 treatment, indicating stimulation of gene transcription. Additionally, T3 treatment restored hypoxia-induced downregulation of histone acetyltransferase, Kat6a, Kat6b, and Crebbp, which function as transcription factors. Conclusion These findings indicate that T3 treatment mitigates hypoxia-induced histone modifications and protects neurons from hypoxia-induced injury.
Collapse
Affiliation(s)
- Kiyomi Abe
- Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Jianrong Li
- Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Yan Yun Liu
- Correspondence: Yan-Yun Liu, PhD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA. ; or Gregory A. Brent, MD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - Gregory A Brent
- Correspondence: Yan-Yun Liu, PhD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA. ; or Gregory A. Brent, MD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| |
Collapse
|
14
|
Nicholson JL, Toh P, Alfulaij N, Berry MJ, Torres DJ. New insights on selenoproteins and neuronal function. Free Radic Biol Med 2022; 190:55-61. [PMID: 35948259 DOI: 10.1016/j.freeradbiomed.2022.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/17/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Fifty years have passed since the discovery of the first selenoprotein by Rotruck and colleagues. In that time, the essential nature of selenium has come to light including the dependence of the brain on selenium to function properly. Animal models have shown that a lack of certain selenoproteins in the brain is detrimental for neuronal health, sometimes leading to neurodegeneration. There is also potential for selenoprotein-mediated redox balance to impact neuronal activity, including neurotransmission. Important insights on these topics have been gained over the past several years. This review briefly summarizes the known roles of specific selenoproteins in the brain while highlighting recent advancements regarding selenoproteins in neuronal function. Hypothetical models of selenoprotein function and emerging topics in the field are also provided.
Collapse
Affiliation(s)
- Jessica L Nicholson
- Department of Cell & Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA; Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Pamela Toh
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Naghum Alfulaij
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Marla J Berry
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Daniel J Torres
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
15
|
Xu K, Feng Z, Afrim FK, Ma J, Yang S, Zhang X, Niu Z, An N, Du Y, Yu F, Zhou G, Ba Y. Interaction of fluoride exposure and CREB1 gene polymorphisms on thyroid function in school-age children. CHEMOSPHERE 2022; 303:135156. [PMID: 35640685 DOI: 10.1016/j.chemosphere.2022.135156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/13/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To evaluate the effects of CREB1 gene polymorphisms and long-term exposure to fluoride on thyroid function of children. STUDY DESIGN A total of 424 children (including 226 boys and 198 girls) aged 7-12 years old were enrolled in Kaifeng, China by cross-sectional study in 2017. The concentrations of urinary fluoride (UF) and creatinine (UCr) were measured using fluoride ion-selective electrode assay and creatinine assay kit (picric acid method), respectively. The concentration of UCr-adjusted UF (CUF) was calculated. Children were divided into high fluoride exposure group (HFG, CUF >1.41 mg/L) and low fluoride exposure group (LFG, CUF ≤1.41 mg/L) according to the median concentration of CUF (1.41 mg/L). The serum thyroid-stimulating hormone (TSH), total triiodothyronine (TT3) and total thyronine (TT4) levels were detected by the radiation immunoassay. The B-mode ultrasound was performed to test the thyroid volume (Tvol). Genotyping of CREB1 gene was conducted by a custom-by-design 48-plex SNPscan™ Kit. Associations between CUF concentration, CREB1 single nucleotide polymorphisms (SNPs) and thyroid function were assessed by multiple linear regression models. RESULTS Negative and positive associations between serum TT4 level (β = -0.721, 95%CI: -1.209, -0.234) and Tvol (β = 0.031, 95%CI: 0.011, 0.050) and CUF concentration were observed respectively. Children carrying CREB1 rs11904814 TG and rs2254137 AC genotypes had lower TT3 levels (P < 0.05). Children in HFG carrying rs11904814 TT, rs2253206 GG genotypes and rs6740584 C allele easily manifested lower serum TT4 levels (P < 0.05). Moreover, interactions between excessive fluoride exposure and CREB1 SNPs on Tvol were observed, and the interaction among different loci of CREB1 gene could modify serum TT3 level (P < 0.05, respectively). CONCLUSIONS Fluoride could alter children's serum TT4 levels and Tvol. Interactions between fluoride exposure and CREB1 polymorphisms may modify thyroid volume of children.
Collapse
Affiliation(s)
- Kaihong Xu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zichen Feng
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Francis Kojo Afrim
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jun Ma
- Department of Endemic Disease, Kaifeng Center for Disease Control and Prevention, Kaifeng, Henan, 475000, China
| | - Shuo Yang
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xuanyin Zhang
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zeyuan Niu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ning An
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yuhui Du
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Fangfang Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Guoyu Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
16
|
Zhu W, Wu F, Li J, Meng L, Zhang W, Zhang H, Cha S, Zhang J, Guo G. Impaired learning and memory generated by hyperthyroidism is rescued by restoration of AMPA and NMDA receptors function. Neurobiol Dis 2022; 171:105807. [PMID: 35777536 DOI: 10.1016/j.nbd.2022.105807] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperthyroidism has been identified as a risk factor for cognitive disorders. The hippocampus is a key brain region associated with cognitive function, among which excitatory synapse transmission plays an important role in the process of learning and memory. However, the mechanism by which hyperthyroidism leads to cognitive dysfunction through a synaptic mechanism remains unknown. We investigated the synaptic mechanisms in the effects of hyperthyroidism in an animal model that involved repeated injection of triiodothyronine (T3). These mice displayed impaired learning and memory in the Novel object recognition test, Y-maze test, and Morris Water Maze test, as well as elevated anxiety in the elevated plus maze. Mature dendritic spines in the hippocampal CA1 region of hyperthyroid mice were significantly decreased, accompanied by decreased level of AMPA- and NMDA-type glutamate receptors in the hippocampus. In primary cultured hippocampal neurons, levels of AMPA- and NMDA-type glutamate receptors also decreased and whole-cell patch-clamp recording revealed that excitatory synaptic function was obviously attenuated after T3 treatment. Notably, pharmacological activation of AMPAR or NMDAR by intraperitoneal injection of CX546, an AMPAR agonist, or NMDA, an NMDAR agonist can restore excitatory synaptic function and corrected impaired learning and memory deficit in hyperthyroid mice. Together, our findings uncovered a previously unrecognized AMPAR and NMDAR-dependent mechanism involved in regulating hippocampal excitatory synaptic transmission and learning and memory disorders in hyperthyroidism.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China
| | - Fengming Wu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China
| | - Jiong Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China
| | - Lianghui Meng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China
| | - Wenjun Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China
| | - Huijie Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China
| | - Shuhan Cha
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China.
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
17
|
Antidepressant-Like Effect of Traditional Medicinal Plant Carthamus Tinctorius in Mice Model through Neuro-Behavioral Tests and Transcriptomic Approach. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Major depression disorder (MDD) has become a common life-threatening disorder. Despite the number of studies and the introduced antidepressants, MDD remains a major global health issue. Carthamus tinctorius (safflower) is traditionally used for food and medical purposes. This study investigated the chemical profile and the antidepressant-like effect of the Carthamus tincto-rius hot water extract in male mice and its mechanism using a transcriptomic analysis. The antidepressant effect of hot water extract (50 mg/kg and 150 mg/kg) was investigated in mice versus the untreated group (saline) and positive control group (fluoxetine 10 mg/kg). Hippocampus transcriptome changes were investigated to understand the Carthamus tinctorius mechanism of action. The GC-MS analysis of Carthamus tinctorius showed that hot water extract yielded the highest amount of oleamide as the most active ingredient. Neuro-behavioral tests demonstrated that the safflower treatment significantly reduced immobility time in TST and FST and improved performance in the YMSAT compared to the control group. RNA-seq analysis revealed a significant differential gene expression pattern in several genes such as Ube2j2, Ncor1, Tuba1c, Grik1, Msmo1, and Casp9 related to MDD regulation in 50 mg/kg safflower treatment as compared to untreated and fluoxetine-treated groups. Our findings demonstrated the antidepressant-like effect of safflower hot water extract and its bioactive ingredient oleamide on mice, validated by a significantly shortened immobility time in TST and FST and an increase in the percentage of spontaneous alternation.
Collapse
|
18
|
Effect of Levothyroxine Sodium Tablets on Pregnancy Outcome and Offspring Development Quotient of SCH during Pregnancy. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9001881. [PMID: 35388329 PMCID: PMC8979691 DOI: 10.1155/2022/9001881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 11/17/2022]
Abstract
Objective. To investigate the effect of levothyroxine sodium tablets (L-T4) on pregnancy outcome and offspring development quotient in patients with subclinical hypothyroidism (SCH) during pregnancy. Material and Methods. Pregnant women with gestational age less than 12 weeks who underwent the first prenatal examination in our hospital from January 2019 to December 2019 were prospectively selected as subjects. According to the level of thyroid hormone in pregnant women, they were divided into the treatment group (n = 63) and received L-T4 treatment, untreated group (n = 64), and control group (n = 54). Three groups of pregnancy outcomes, children’s physical development, and the development of offspring were compared at when one full year of life. Results. After treatment, the contrast difference of the three groups about abortion and gestational diabetes mellitus (GDM) was statistically significant (
). The abortion rate and gestational diabetes mellitus (GDM) in the untreated group were higher than those in the control group (
). The contrast difference of the treatment group and control group about abortion and gestational diabetes mellitus (GDM) is not statistically significant (
); The contrast difference of the three groups about a filial generation at birth and one-year-old body length is not statistically significant (
). The contrast difference between the three groups of individual children who are one-year old having the individual action energy, material ability, speech ability, and human ability is statistically significant (
). One-year-old developmental quotient (DQ) of the treatment group and control group was higher than that of the untreated group (
); the Pearson correlation analysis showed that the treatment group TSH levels have no correlation between the offspring developmental quotient (DQ) level of one-year-old children (
). Conclusion. Levothyroxine sodium tablets (L-T4) can not only improve the pregnancy outcome of patients with SCH during pregnancy but also play a positive role in improving the neurointellectual development of their offspring.
Collapse
|
19
|
L-Thyroxine Improves Vestibular Compensation in a Rat Model of Acute Peripheral Vestibulopathy: Cellular and Behavioral Aspects. Cells 2022; 11:cells11040684. [PMID: 35203333 PMCID: PMC8869897 DOI: 10.3390/cells11040684] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Unilateral vestibular lesions induce a vestibular syndrome, which recovers over time due to vestibular compensation. The therapeutic effect of L-Thyroxine (L-T4) on vestibular compensation was investigated by behavioral testing and immunohistochemical analysis in a rat model of unilateral vestibular neurectomy (UVN). We demonstrated that a short-term L-T4 treatment reduced the vestibular syndrome and significantly promoted vestibular compensation. Thyroid hormone receptors (TRα and TRβ) and type II iodothyronine deiodinase (DIO2) were present in the vestibular nuclei (VN), supporting a local action of L-T4. We confirmed the T4-induced metabolic effects by demonstrating an increase in the number of cytochrome oxidase-labeled neurons in the VN three days after the lesion. L-T4 treatment modulated glial reaction by decreasing both microglia and oligodendrocytes in the deafferented VN three days after UVN and increased cell proliferation. Survival of newly generated cells in the deafferented vestibular nuclei was not affected, but microglial rather than neuronal differentiation was favored by L-T4 treatment.
Collapse
|
20
|
Parra-Montes de Oca MA, Sotelo-Rivera I, Gutiérrez-Mata A, Charli JL, Joseph-Bravo P. Sex Dimorphic Responses of the Hypothalamus-Pituitary-Thyroid Axis to Energy Demands and Stress. Front Endocrinol (Lausanne) 2021; 12:746924. [PMID: 34745011 PMCID: PMC8565401 DOI: 10.3389/fendo.2021.746924] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
The hypothalamus-pituitary-thyroid-axis (HPT) is one of the main neuroendocrine axes that control energy expenditure. The activity of hypophysiotropic thyrotropin releasing hormone (TRH) neurons is modulated by nutritional status, energy demands and stress, all of which are sex dependent. Sex dimorphism has been associated with sex steroids whose concentration vary along the life-span, but also to sex chromosomes that define not only sexual characteristics but the expression of relevant genes. In this review we describe sex differences in basal HPT axis activity and in its response to stress and to metabolic challenges in experimental animals at different stages of development, as well as some of the limited information available on humans. Literature review was accomplished by searching in Pubmed under the following words: "sex dimorphic" or "sex differences" or "female" or "women" and "thyrotropin" or "thyroid hormones" or "deiodinases" and "energy homeostasis" or "stress". The most representative articles were discussed, and to reduce the number of references, selected reviews were cited.
Collapse
Affiliation(s)
| | | | | | | | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| |
Collapse
|