1
|
Yuan VG. Rhythms in Remodeling: Posttranslational Regulation of Bone by the Circadian Clock. Biomedicines 2025; 13:705. [PMID: 40149680 PMCID: PMC11940027 DOI: 10.3390/biomedicines13030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
The circadian clock is a fundamental timekeeping system that regulates rhythmic biological processes in response to environmental light-dark cycles. In mammals, core clock genes (CLOCK, BMAL1, PER, and CRY) orchestrate these rhythms through transcriptional-translational feedback loops, influencing various physiological functions, including bone remodeling. Bone homeostasis relies on the coordinated activities of osteoblasts, osteoclasts, and osteocytes, with increasing evidence highlighting the role of circadian regulation in maintaining skeletal integrity. Disruptions in circadian rhythms are linked to bone disorders such as osteoporosis. Posttranslational modifications (PTMs), including phosphorylation, acetylation, and ubiquitination, serve as crucial regulators of both circadian mechanisms and bone metabolism. However, the specific role of PTMs in integrating circadian timing with bone remodeling remains underexplored. This review examines the intersection of circadian regulation and PTMs in bone biology, elucidating their impact on bone cell function and homeostasis. Understanding these interactions may uncover novel therapeutic targets for skeletal diseases associated with circadian disruptions.
Collapse
Affiliation(s)
- Vincent G Yuan
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Nie T, Nepovimova E, Wu Q. Circadian rhythm, hypoxia, and cellular senescence: From molecular mechanisms to targeted strategies. Eur J Pharmacol 2025; 990:177290. [PMID: 39863143 DOI: 10.1016/j.ejphar.2025.177290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Cellular senescence precipitates a decline in physiological activities and metabolic functions, often accompanied by heightened inflammatory responses, diminished immune function, and impaired tissue and organ performance. Despite extensive research, the mechanisms underpinning cellular senescence remain incompletely elucidated. Emerging evidence implicates circadian rhythm and hypoxia as pivotal factors in cellular senescence. Circadian proteins are central to the molecular mechanism governing circadian rhythm, which regulates homeostasis throughout the body. These proteins mediate responses to hypoxic stress and influence the progression of cellular senescence, with protein Brain and muscle arnt-like 1 (BMAL1 or Arntl) playing a prominent role. Hypoxia-inducible factor-1α (HIF-1α), a key regulator of oxygen homeostasis within the cellular microenvironment, orchestrates the transcription of genes involved in various physiological processes. HIF-1α not only impacts normal circadian rhythm functions but also can induce or inhibit cellular senescence. Notably, HIF-1α may aberrantly interact with BMAL1, forming the HIF-1α-BMAL1 heterodimer, which can instigate multiple physiological dysfunctions. This heterodimer is hypothesized to modulate cellular senescence by affecting the molecular mechanism of circadian rhythm and hypoxia signaling pathways. In this review, we elucidate the intricate relationships among circadian rhythm, hypoxia, and cellular senescence. We synthesize diverse evidence to discuss their underlying mechanisms and identify novel therapeutic targets to address cellular senescence. Additionally, we discuss current challenges and suggest potential directions for future research. This work aims to deepen our understanding of the interplay between circadian rhythm, hypoxia, and cellular senescence, ultimately facilitating the development of therapeutic strategies for aging and related diseases.
Collapse
Affiliation(s)
- Tong Nie
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
3
|
Ren H, Yuan Y, Zhang D, Xing Y, Chen Z. The impact of circadian rhythms on retinal immunity. Chronobiol Int 2025; 42:198-212. [PMID: 39917826 DOI: 10.1080/07420528.2025.2460675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025]
Abstract
The eye is an immune-protected organ, which is driven by factors such as cytokines, chemicals, light, and mechanical stimuli. The circadian clock is an intrinsic timing mechanism that influences the immune activities, such as immune cell count and activity, as well as inflammatory responses. Recent studies have demonstrated that the eye also possesses an intrinsic circadian rhythm, and this rhythmic regulation participates in ocular immune modulation. In this review, we discuss the immunoregulatory mechanisms of the circadian clock within the eye, and reveal new perspectives for the prevention and treatment of ocular diseases.
Collapse
Affiliation(s)
- He Ren
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yilin Yuan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danlei Zhang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Ali R, Zhen Y, Zanna X, Lin J, Zhang C, Ma J, Zhong Y, Husien HM, Saleh AA, Wang M. Impact of Circadian Clock PER2 Gene Overexpression on Rumen Epithelial Cell Dynamics and VFA Transport Protein Expression. Int J Mol Sci 2024; 25:12428. [PMID: 39596493 PMCID: PMC11594904 DOI: 10.3390/ijms252212428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The circadian gene PER2 is recognized for its regulatory effects on cell proliferation and lipid metabolism across various non-ruminant cells. This study investigates the influence of PER2 gene overexpression on goat rumen epithelial cells using a constructed pcDNA3.1-PER2 plasmid, assessing its impact on circadian gene expression, cell proliferation, and mRNA levels of short-chain fatty acid (SCFA) transporters, alongside genes related to lipid metabolism, cell proliferation, and apoptosis. Rumen epithelial cells were obtained every four hours from healthy dairy goats (n = 3; aged 1.5 years; average weight 45.34 ± 4.28 kg), cultured for 48 h in vitro, and segregated into control (pcDNA3.1) and overexpressed (pcDNA3.1-PER2) groups, each with four biological replicates. The study examined the potential connection between circadian rhythms and nutrient assimilation in ruminant, including cell proliferation, apoptosis, cell cycle dynamics, and antioxidant activity and the expression of circadian-related genes, VFA transporter genes and regulatory factors. The introduction of the pcDNA3.1-PER2 plasmid drastically elevated PER2 expression levels by 3471.48-fold compared to controls (p < 0.01), confirming effective overexpression. PER2 overexpression resulted in a significant increase in apoptosis rates (p < 0.05) and a notable reduction in cell proliferation at 24 and 48 h post-transfection (p < 0.05), illustrating an inhibitory effect on rumen epithelial cell growth. PER2 elevation significantly boosted the expression of CCND1, WEE1, p21, and p16 (p < 0.05) while diminishing CDK4 expression (p < 0.05). While the general expression of intracellular inflammation genes remained stable, TNF-α expression notably increased. Antioxidant marker levels (SOD, MDA, GSH-Px, CAT, and T-AOC) exhibited no significant change, suggesting no oxidative damage due to PER2 overexpression. Furthermore, PER2 overexpression significantly downregulated AE2, NHE1, MCT1, and MCT4 mRNA expressions while upregulating PAT1 and VH+ ATPase. These results suggest that PER2 overexpression impairs cell proliferation, enhances apoptosis, and modulates VFA transporter-related factors in the rumen epithelium. This study implies that the PER2 gene may regulate VFA absorption through modulation of VFA transporters in rumen epithelial cells, necessitating further research into its specific regulatory mechanisms.
Collapse
Affiliation(s)
- Rahmat Ali
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Yongkang Zhen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Xi Zanna
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Jiaqi Lin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Chong Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Jianjun Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Yuhong Zhong
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Hosameldeen Mohamed Husien
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Ahmad A. Saleh
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China;
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| |
Collapse
|
5
|
Landvreugd A, Pool R, Nivard MG, Bartels M. Using Polygenic Scores for Circadian Rhythms to Predict Wellbeing, Depressive Symptoms, Chronotype, and Health. J Biol Rhythms 2024; 39:270-281. [PMID: 38425306 PMCID: PMC11141090 DOI: 10.1177/07487304241230577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The association between circadian rhythms and diseases has been well established, while the association with mental health is less explored. Given the heritable nature of circadian rhythms, this study aimed to investigate the relationship between genes underlying circadian rhythms and mental health outcomes, as well as a possible gene-environment correlation for circadian rhythms. Polygenic scores (PGSs) represent the genetic predisposition to develop a certain trait or disease. In a sample from the Netherlands Twin Register (N = 14,021), PGSs were calculated for two circadian rhythm measures: morningness and relative amplitude (RA). The PGSs were used to predict mental health outcomes such as subjective happiness, quality of life, and depressive symptoms. In addition, we performed the same prediction analysis in a within-family design in a subset of dizygotic twins. The PGS for morningness significantly predicted morningness (R2 = 1.55%) and depressive symptoms (R2 = 0.22%). The PGS for RA significantly predicted general health (R2 = 0.12%) and depressive symptoms (R2 = 0.20%). Item analysis of the depressive symptoms showed that 4 out of 14 items were significantly associated with the PGSs. Overall, the results showed that people with a genetic predisposition of being a morning person or with a high RA are likely to have fewer depressive symptoms. The four associated depressive symptoms described symptoms related to decision-making, energy, and feeling worthless or inferior, rather than sleep. Based on our findings future research should include a substantial role for circadian rhythms in depression research and should further explore the gene-environment correlation in circadian rhythms.
Collapse
Affiliation(s)
- Anne Landvreugd
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands and
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands and
| | - Michel G. Nivard
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands and
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands and
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Yuan X, Ou C, Li X, Zhuang Z, Chen Y. The skin circadian clock gene F3 as a potential marker for psoriasis severity and its bidirectional relationship with IL-17 signaling in keratinocytes. Int Immunopharmacol 2024; 132:111993. [PMID: 38565044 DOI: 10.1016/j.intimp.2024.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Psoriasis is an immune-mediated skin disease where the IL-17 signaling pathway plays a crucial role in its development. Chronic circadian rhythm disorder in psoriasis pathogenesis is gaining more attention. The relationship between IL and 17 signaling pathway and skin clock genes remains poorly understood. METHODS GSE121212 with psoriatic lesion and healthy controls was used as the exploration cohort for searching analysis. Datasets GSE54456, GSE13355, GSE14905, GSE117239, GSE51440, and GSE137218 were applied to validation analysis. Single-cell RNA sequencing (scRNA-seq) dataset GSE173706 was used to explore the F3 expression and related pathway activities in single-cell levels. Through intersecting with high-expression DEGs, F3 was selected as the signature skin circadian gene in psoriasis for further investigation. Functional analyses, including correlation analyses, prediction of transcription factors, protein-protein interaction, and single gene GSEA to explore the potential roles of F3. ssGSEA algorithm was performed to uncover the immune-related characteristics of psoriasis. We further explored F3 expression in the specific cell population in scRNA-seq dataset, besides this, AUCell analysis was performed to explore the pathway activities and the results were further compared between the specific cell cluster. Immunohistochemistry experiment, RT-qPCR was used to validate the location and expression of F3, small interfering RNA (siRNA) transfection experiment in HaCaT, and transcriptome sequencing analysis were applied to explore the potential function of F3. RESULTS F3 was significantly down-regulated in psoriasis and interacted with IL-17 signaling pathway. Low expression of F3 could upregulate the receptor of JAK-STAT signaling, thereby promoting keratinocyte inflammation. CONCLUSION Our research revealed a bidirectional link between the skin circadian gene F3 and the IL-17 signaling pathway in psoriasis, suggesting that F3 may interact with the IL-17 pathway by activating JAK-STAT within keratinocytes and inducing abnormal intracellular inflammation.
Collapse
Affiliation(s)
- Xiuqing Yuan
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Caixin Ou
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Xinhui Li
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Zhe Zhuang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yongfeng Chen
- Dermatology Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Kumar V, Stewart JH. Immune Homeostasis: A Novel Example of Teamwork. Methods Mol Biol 2024; 2782:1-24. [PMID: 38622389 DOI: 10.1007/978-1-0716-3754-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
All living organisms must maintain homeostasis to survive, reproduce, and pass their traits on to the next generation. If homeostasis is not maintained, it can result in various diseases and ultimately lead to death. Physiologists have coined the term "homeostasis" to describe this process. With the emergence of immunology as a separate branch of medicine, the concept of immune homeostasis has been introduced. Maintaining immune homeostasis is crucial to support overall homeostasis through different immunological and non-immunological routes. Any changes in the immune system can lead to chronic inflammatory or autoimmune diseases, immunodeficiency diseases, frequent infections, and cancers. Ongoing scientific advances are exploring new avenues in immunology and immune homeostasis maintenance. This chapter introduces the concept of immune homeostasis and its maintenance through different mechanisms.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, GA, USA
| | - John H Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
8
|
Zhang Q, Chen Y, Li J, Xia H, Tong Y, Liu Y. Recent Advances in Hepatic Metabolic Regulation by the Nuclear Factor Rev-erbɑ. Curr Drug Metab 2024; 25:2-12. [PMID: 38409696 DOI: 10.2174/0113892002290055240212074758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Rev-erbɑ (NR1D1) is a nuclear receptor superfamily member that plays a vital role in mammalian molecular clocks and metabolism. Rev-erbɑ can regulate the metabolism of drugs and the body's glucose metabolism, lipid metabolism, and adipogenesis. It is even one of the important regulatory factors regulating the occurrence of metabolic diseases (e.g., diabetes, fatty liver). Metabolic enzymes mediate most drug metabolic reactions in the body. Rev-erbɑ has been recognized to regulate drug metabolic enzymes (such as Cyp2b10 and Ugt1a9). Therefore, this paper mainly reviewed that Rev-erbɑ regulates I and II metabolic enzymes in the liver to affect drug pharmacokinetics. The expression of these drug metabolic enzymes (up-regulated or down-regulated) is related to drug exposure and effects/ toxicity. In addition, our discussion extends to Rev-erbɑ regulating some transporters (such as P-gp, Mrp2, and Bcrp), as they also play an essential role in drug metabolism. Finally, we briefly describe the role and mechanism of nuclear receptor Rev-erbɑ in lipid and glucose homeostasis, obesity, and metabolic disorders syndrome. In conclusion, this paper aims to understand better the role and mechanism of Rev-erbɑ in regulating drug metabolism, lipid, glucose homeostasis, obesity, and metabolic disorders syndrome, which explores how to target Rev-erbɑ to guide the design and development of new drugs and provide scientific reference for the molecular mechanism of new drug development, rational drug use, and drug interaction.
Collapse
Affiliation(s)
- Qi Zhang
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yutong Chen
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jingqi Li
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Haishan Xia
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yongbin Tong
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yuyu Liu
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
9
|
Bohmke NJ, Dixon DL, Kirkman DL. Chrono-nutrition for hypertension. Diabetes Metab Res Rev 2024; 40:e3760. [PMID: 38287721 DOI: 10.1002/dmrr.3760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 01/31/2024]
Abstract
Despite the advancement in blood pressure (BP) lowering medications, uncontrolled hypertension persists, underscoring a stagnation of effective clinical strategies. Novel and effective lifestyle therapies are needed to prevent and manage hypertension to mitigate future progression to cardiovascular and chronic kidney diseases. Chrono-nutrition, aligning the timing of eating with environmental cues and internal biological clocks, has emerged as a potential strategy to improve BP in high-risk populations. The aim of this review is to provide an overview of the circadian physiology of BP with an emphasis on renal and vascular circadian biology. The potential of Chrono-nutrition as a lifestyle intervention for hypertension is discussed and current evidence for the efficacy of time-restricted eating is presented.
Collapse
Affiliation(s)
- Natalie J Bohmke
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dave L Dixon
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Danielle L Kirkman
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
10
|
Lei S, Liu Z, Li H. Sleep duration and age-related macular degeneration: a cross-sectional and Mendelian randomization study. Front Aging Neurosci 2023; 15:1247413. [PMID: 37674785 PMCID: PMC10477604 DOI: 10.3389/fnagi.2023.1247413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
Purpose To investigate the association between sleep duration and age-related macular degeneration (AMD). Design Cross-sectional study, bidirectional two-sample Mendelian randomization (MR). For cross-sectional analysis, we used survey data of 5,481 participants aged ≥40 years from the 2005 to 2008 National Health and Nutrition Examination Survey (NHANES). For MR analysis, we used sleep- and AMD-associated genome-wide association studies (GWAS) data involving large populations. Methods The association between sleep duration and AMD was assessed using logistic regression models. For MR analysis, the primary approach for MR analysis was the inverse-variance weighted (IVW) method. Results In cross-sectional analysis, after adjusting for multiple covariates, short sleep duration (SSD) was found to be associated with increased risk of early AMD [odds ratio (OR) = 1.364, P = 0.036). MR analysis supported the results of cross-sectional analysis: SSD increases the risk of early AMD (β = 0.102, IVW-P = 0.003). Conclusion Our findings provide the evidence supporting the association between sleep deficiency and higher risk of AMD. Further studies are required to confirm our findings and elucidate the mechanisms underlying this association.
Collapse
Affiliation(s)
- Shizhen Lei
- Department of Ophthalmology, The First Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhouyang Liu
- Department of Neurology, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Haihui Li
- Department of Ophthalmology, Yan’an People’s Hospital, Yan’an, Shaanxi, China
| |
Collapse
|
11
|
Bingham MA, Neijman K, Yang CR, Aponte A, Mak A, Kikuchi H, Jung HJ, Poll BG, Raghuram V, Park E, Chou CL, Chen L, Leipziger J, Knepper MA, Dona M. Circadian gene expression in mouse renal proximal tubule. Am J Physiol Renal Physiol 2023; 324:F301-F314. [PMID: 36727945 PMCID: PMC9988533 DOI: 10.1152/ajprenal.00231.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Circadian variability in kidney function is well recognized but is often ignored as a potential confounding variable in physiological experiments. Here, we have created a data resource consisting of expression levels for mRNA transcripts in microdissected proximal tubule segments from mice as a function of the time of day. Small-sample RNA sequencing was applied to microdissected S1 proximal convoluted tubules and S2 proximal straight tubules. After stringent filtering, the data were analyzed using JTK-Cycle to detect periodicity. The data set is provided as a user-friendly webpage at https://esbl.nhlbi.nih.gov/Databases/Circadian-Prox2/. In proximal convoluted tubules, 234 transcripts varied in a circadian manner (4.0% of the total). In proximal straight tubules, 334 transcripts varied in a circadian manner (5.3%). Transcripts previously known to be associated with corticosteroid action and with increased flow were found to be overrepresented among circadian transcripts peaking during the "dark" portion of the day [zeitgeber time (ZT)14-22], corresponding to peak levels of corticosterone and glomerular filtration rate in mice. To ask whether there is a time-of-day dependence of protein abundances in the kidney, we carried out LC-MS/MS-based proteomics in whole mouse kidneys at ZT12 and ZT0. The full data set (n = 6,546 proteins) is available at https://esbl.nhlbi.nih.gov/Databases/Circadian-Proteome/. Overall, 293 proteins were differentially expressed between ZT12 and ZT0 (197 proteins greater at ZT12 and 96 proteins greater at ZT0). Among the regulated proteins, only nine proteins were found to be periodic in the RNA-sequencing analysis, suggesting a high level of posttranscriptional regulation of protein abundances.NEW & NOTEWORTHY Circadian variation in gene expression can be an important determinant in the regulation of kidney function. The authors used RNA-sequencing transcriptomics and LC-MS/MS-based proteomics to identify gene products expressed in a periodic manner. The data were used to construct user-friendly web resources.
Collapse
Affiliation(s)
- Molly A Bingham
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kim Neijman
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chin-Rang Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Angel Aponte
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Angela Mak
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hiroaki Kikuchi
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Brian G Poll
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Viswanathan Raghuram
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Euijung Park
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chung-Lin Chou
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Lihe Chen
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Mark A Knepper
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Margo Dona
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|