1
|
Dede M, van Dam A. Conjugation of visual enhancers in lateral flow immunoassay for rapid forensic analysis: A critical review. Anal Bioanal Chem 2025; 417:15-31. [PMID: 39384571 PMCID: PMC11695493 DOI: 10.1007/s00216-024-05565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
During crime scene investigations, numerous traces are secured and may be used as evidence for the evaluation of source and/or activity level propositions. The rapid chemical analysis of a biological trace enables the identification of body fluids and can provide significant donor profiling information, including age, sex, drug abuse, and lifestyle. Such information can be used to provide new leads, exclude from, or restrict the list of possible suspects during the investigative phase. This paper reviews the state-of-the-art labelling techniques to identify the most suitable visual enhancer to be implemented in a lateral flow immunoassay setup for the purpose of trace identification and/or donor profiling. Upon comparison, and with reference to the strengths and limitations of each label, the simplistic one-step analysis of noncompetitive lateral flow immunoassay (LFA) together with the implementation of carbon nanoparticles (CNPs) as visual enhancers is proposed for a sensitive, accurate, and reproducible in situ trace analysis. This approach is versatile and stable over different environmental conditions and external stimuli. The findings of the present comparative analysis may have important implications for future forensic practice. The selection of an appropriate enhancer is crucial for a well-designed LFA that can be implemented at the crime scene for a time- and cost-efficient investigation.
Collapse
Affiliation(s)
- Maria Dede
- Department Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands.
- Methodology Research Program, Amsterdam Public Health Research Institute, Amsterdam UMC, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands.
| | - Annemieke van Dam
- Department Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands
- Department Forensic Science, Amsterdam University of Applied Sciences, Tafelbergweg 51, Amsterdam, 1105 BD, Netherlands
- Methodology Research Program, Amsterdam Public Health Research Institute, Amsterdam UMC, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands
| |
Collapse
|
2
|
Grab AL, Kim PS, John L, Bisht K, Wang H, Baumann A, Van de Velde H, Sarkar I, Shome D, Reichert P, Manta C, Gryzik S, Reijmers RM, Weinhold N, Raab MS. Pre-Clinical Assessment of SAR442257, a CD38/CD3xCD28 Trispecific T Cell Engager in Treatment of Relapsed/Refractory Multiple Myeloma. Cells 2024; 13:879. [PMID: 38786100 PMCID: PMC11120574 DOI: 10.3390/cells13100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Current treatment strategies for multiple myeloma (MM) are highly effective, but most patients develop relapsed/refractory disease (RRMM). The anti-CD38/CD3xCD28 trispecific antibody SAR442257 targets CD38 and CD28 on MM cells and co-stimulates CD3 and CD28 on T cells (TCs). We evaluated different key aspects such as MM cells and T cells avidity interaction, tumor killing, and biomarkers for drug potency in three distinct cohorts of RRMM patients. We found that a significantly higher proportion of RRMM patients (86%) exhibited aberrant co-expression of CD28 compared to newly diagnosed MM (NDMM) patients (19%). Furthermore, SAR442257 mediated significantly higher TC activation, resulting in enhanced MM killing compared to bispecific functional knockout controls for all relapse cohorts (Pearson's r = 0.7). Finally, patients refractory to anti-CD38 therapy had higher levels of TGF-β (up to 20-fold) compared to other cohorts. This can limit the activity of SAR442257. Vactoserib, a TGF-β inhibitor, was able to mitigate this effect and restore sensitivity to SAR442257 in these experiments. In conclusion, SAR442257 has high potential for enhancing TC cytotoxicity by co-targeting CD38 and CD28 on MM and CD3/CD28 on T cells.
Collapse
Affiliation(s)
- Anna Luise Grab
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter S. Kim
- Sanofi Research and Development, Sanofi North America, Cambridge, MA 02141, USA (K.B.); (H.W.); (H.V.d.V.)
| | - Lukas John
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kamlesh Bisht
- Sanofi Research and Development, Sanofi North America, Cambridge, MA 02141, USA (K.B.); (H.W.); (H.V.d.V.)
| | - Hongfang Wang
- Sanofi Research and Development, Sanofi North America, Cambridge, MA 02141, USA (K.B.); (H.W.); (H.V.d.V.)
| | - Anja Baumann
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Helgi Van de Velde
- Sanofi Research and Development, Sanofi North America, Cambridge, MA 02141, USA (K.B.); (H.W.); (H.V.d.V.)
| | - Irene Sarkar
- LUMICKS, 1059 CM Amsterdam, The Netherlands; (I.S.); (D.S.); (R.M.R.)
| | - Debarati Shome
- LUMICKS, 1059 CM Amsterdam, The Netherlands; (I.S.); (D.S.); (R.M.R.)
| | - Philipp Reichert
- GMMG Central Study Lab, Biobank, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Calin Manta
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
| | - Stefanie Gryzik
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
| | | | - Niels Weinhold
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marc S. Raab
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Sánchez-Salguero E, Corona-Cervantes K, Guzmán-Aquino HA, de la Borbolla-Cruz MF, Contreras-Vargas V, Piña-Escobedo A, García-Mena J, Santos-Argumedo L. Maternal IgA2 Recognizes Similar Fractions of Colostrum and Fecal Neonatal Microbiota. Front Immunol 2021; 12:712130. [PMID: 34804008 PMCID: PMC8601722 DOI: 10.3389/fimmu.2021.712130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Microbiota acquired during labor and through the first days of life contributes to the newborn's immune maturation and development. Mother provides probiotics and prebiotics factors through colostrum and maternal milk to shape the first neonatal microbiota. Previous works have reported that immunoglobulin A (IgA) secreted in colostrum is coating a fraction of maternal microbiota. Thus, to better characterize this IgA-microbiota association, we used flow cytometry coupled with 16S rRNA gene sequencing (IgA-Seq) in human colostrum and neonatal feces. We identified IgA bound bacteria (IgA+) and characterized their diversity and composition shared in colostrum fractions and neonatal fecal bacteria. We found that IgA2 is mainly associated with Bifidobacterium, Pseudomonas, Lactobacillus, and Paracoccus, among other genera shared in colostrum and neonatal fecal samples. We found that metabolic pathways related to epithelial adhesion and carbohydrate consumption are enriched within the IgA2+ fecal microbiota. The association of IgA2 with specific bacteria could be explained because these antibodies recognize common antigens expressed on the surface of these bacterial genera. Our data suggest a preferential targeting of commensal bacteria by IgA2, revealing a possible function of maternal IgA2 in the shaping of the fecal microbial composition in the neonate during the first days of life.
Collapse
Affiliation(s)
- Erick Sánchez-Salguero
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Karina Corona-Cervantes
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Hector Armando Guzmán-Aquino
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - María Fernanda de la Borbolla-Cruz
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Víctor Contreras-Vargas
- Department of Gynecology Regional Hospital “October 1”, Institute for Security and Social Services of State Workers (ISSSTE), México City, Mexico
| | - Alberto Piña-Escobedo
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Jaime García-Mena
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Leopoldo Santos-Argumedo
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|