1
|
Dupont J, Hartwig B, Le Barbu-Debus K, Lepere V, Guillot R, Suhm MA, Zehnacker A. Homochiral vs. heterochiral preference in chiral self-recognition of cyclic diols. Phys Chem Chem Phys 2024; 26:10610-10621. [PMID: 38506638 DOI: 10.1039/d4cp00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The structure and clustering propensity of a chiral derivative of cis-1,2-cyclohexanediol, namely, 1-phenyl-cis-1,2-cyclohexanediol (cis-PCD), has been studied under supersonic expansion conditions by combining laser spectroscopy with quantum chemistry calculations. The presence of the phenyl substituent induces conformational locking relative to cis-1,2-cyclohexanediol (cis-CD), and only one conformer of the bare molecule is observed by both Raman and IR-UV double resonance spectroscopy. The homochiral preference inferred for the dimer formation at low enough temperature is in line with the formation of a conglomerate in the solid state. The change in clustering propensity in cis-PCD relative to trans-1,2-cyclohexanediol (trans-CD), which shows heterochiral preference, is explained by the presence of the phenyl substituent rather than the effect of cis-trans isomerism. Indeed the transiently chiral cis-CD also forms preferentially heterodimers, whose structure is very close to that of the corresponding trans-CD dimer.
Collapse
Affiliation(s)
- Jennifer Dupont
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, rue André Rivière, Université Paris-Saclay, F-91405 Orsay, France.
| | - Beppo Hartwig
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Katia Le Barbu-Debus
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, rue André Rivière, Université Paris-Saclay, F-91405 Orsay, France.
| | - Valeria Lepere
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, rue André Rivière, Université Paris-Saclay, F-91405 Orsay, France.
| | - Regis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), 17 Av. des Sciences Université Paris-Saclay, F-91405 Orsay, France
| | - Martin A Suhm
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, rue André Rivière, Université Paris-Saclay, F-91405 Orsay, France.
| |
Collapse
|
2
|
Zhao J, Yang CY, Hu L, Xu L, Dou WT. Cage-based sensors for circular dichroism analysis. Dalton Trans 2023; 52:15303-15312. [PMID: 37547938 DOI: 10.1039/d3dt02054a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Quantitative chiral sensing relying on circular dichroism (CD) is very important for determining the enantiomeric excess or concentration of small molecules without strong chromophores, because they form chiral complexes with sensors, yielding strong CD signals. Three-dimensional cages are promising platforms for chiral CD due to their stereochemical flexibility and their variety of cavity and external binding sites that can be used as chiral CD sensors. In this minireview, we discuss recent advances, future challenges, and opportunities in the quantitative sensing of small molecules in host-guest and peripheral complexes with cage sensors by chiral CD. We aim to provide inspiration for the rational design of cage sensors for quantitative chiral sensing of small molecules based on CD.
Collapse
Affiliation(s)
- Jianjian Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
| | - Chang-Yin Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
| | - Wei-Tao Dou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
| |
Collapse
|
3
|
Niu X, Zhao R, Yan S, Pang Z, Li H, Yang X, Wang K. Chiral Materials: Progress, Applications, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303059. [PMID: 37217989 DOI: 10.1002/smll.202303059] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Chirality is a universal phenomenon in molecular and biological systems, denoting an asymmetric configurational property where an object cannot be superimposed onto its mirror image by any kind of translation or rotation, which is ubiquitous on the scale from neutrinos to spiral galaxies. Chirality plays a very important role in the life system. Many biological molecules in the life body show chirality, such as the "codebook" of the earth's biological diversity-DNA, nucleic acid, etc. Intriguingly, living organisms hierarchically consist of homochiral building blocks, for example, l-amino acids and d-sugars with unknown reason. When molecules with chirality interact with these chiral factors, only one conformation favors the positive development of life, that is, the chiral host environment can only selectively interact with chiral molecules of one of the conformations. The differences in chiral interactions are often manifested by chiral recognition, mutual matching, and interactions with chiral molecules, which means that the stereoselectivity of chiral molecules can produce changes in pharmacodynamics and pathology. Here, the latest investigations are summarized including the construction and applications of chiral materials based on natural small molecules as chiral source, natural biomacromolecules as chiral sources, and the material synthesized by design as a chiral source.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Simeng Yan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Zengwei Pang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xing Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
4
|
Sallembien Q, Bouteiller L, Crassous J, Raynal M. Possible chemical and physical scenarios towards biological homochirality. Chem Soc Rev 2022; 51:3436-3476. [PMID: 35377372 DOI: 10.1039/d1cs01179k] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The single chirality of biological molecules in terrestrial biology raises more questions than certitudes about its origin. The emergence of biological homochirality (BH) and its connection with the appearance of life have elicited a large number of theories related to the generation, amplification and preservation of a chiral bias in molecules of life under prebiotically relevant conditions. However, a global scenario is still lacking. Here, the possibility of inducing a significant chiral bias "from scratch", i.e. in the absence of pre-existing enantiomerically-enriched chemical species, will be considered first. It includes phenomena that are inherent to the nature of matter itself, such as the infinitesimal energy difference between enantiomers as a result of violation of parity in certain fundamental interactions, and physicochemical processes related to interactions between chiral organic molecules and physical fields, polarized particles, polarized spins and chiral surfaces. The spontaneous emergence of chirality in the absence of detectable chiral physical and chemical sources has recently undergone significant advances thanks to the deracemization of conglomerates through Viedma ripening and asymmetric auto-catalysis with the Soai reaction. All these phenomena are commonly discussed as plausible sources of asymmetry under prebiotic conditions and are potentially accountable for the primeval chiral bias in molecules of life. Then, several scenarios will be discussed that are aimed to reflect the different debates about the emergence of BH: extra-terrestrial or terrestrial origin (where?), nature of the mechanisms leading to the propagation and enhancement of the primeval chiral bias (how?) and temporal sequence between chemical homochirality, BH and life emergence (when?). Intense and ongoing theories regarding the emergence of optically pure molecules at different moments of the evolution process towards life, i.e. at the levels of building blocks of Life, of the instructed or functional polymers, or even later at the stage of more elaborated chemical systems, will be critically discussed. The underlying principles and the experimental evidence will be commented for each scenario with particular attention on those leading to the induction and enhancement of enantiomeric excesses in proteinogenic amino acids, natural sugars, and their intermediates or derivatives. The aim of this review is to propose an updated and timely synopsis in order to stimulate new efforts in this interdisciplinary field.
Collapse
Affiliation(s)
- Quentin Sallembien
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| | - Jeanne Crassous
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Matthieu Raynal
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
5
|
Chirality in Organic and Mineral Systems: A Review of Reactivity and Alteration Processes Relevant to Prebiotic Chemistry and Life Detection Missions. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chirality is a central feature in the evolution of biological systems, but the reason for biology’s strong preference for specific chiralities of amino acids, sugars, and other molecules remains a controversial and unanswered question in origins of life research. Biological polymers tend toward homochiral systems, which favor the incorporation of a single enantiomer (molecules with a specific chiral configuration) over the other. There have been numerous investigations into the processes that preferentially enrich one enantiomer to understand the evolution of an early, racemic, prebiotic organic world. Chirality can also be a property of minerals; their interaction with chiral organics is important for assessing how post-depositional alteration processes could affect the stereochemical configuration of simple and complex organic molecules. In this paper, we review the properties of organic compounds and minerals as well as the physical, chemical, and geological processes that affect organic and mineral chirality during the preservation and detection of organic compounds. We provide perspectives and discussions on the reactions and analytical techniques that can be performed in the laboratory, and comment on the state of knowledge of flight-capable technologies in current and future planetary missions, with a focus on organics analysis and life detection.
Collapse
|
6
|
Wang H, Liu Y, Yu J, Luo Y, Wang L, Yang T, Raktani B, Lee H. Selectively Regulating the Chiral Morphology of Amino Acid-Assisted Chiral Gold Nanoparticles with Circularly Polarized Light. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3559-3567. [PMID: 34982532 DOI: 10.1021/acsami.1c22191] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chiral nanomaterials have attracted increasing attention due to their versatile optical properties. Although circularly polarized (CP) light can serve as an inducer, it has negligible effects because of the short lifetime of the plasmonic states. Here, we propose that the site-selective chirality regulation on the morphology of cysteine (cys) amino acid-assisted chiral gold nanoparticles (cys-chiral AuNPs) can be realized through CP light irradiation. This can result in the increased or decreased circular dichroism (CD) signal intensity. The site-selective growth mechanism of the cys-chiral AuNPs is elucidated with light-matter interactions through the opposite rotation of right(R)/left(L) CP light. The site-selective chirality growth of the cys-chiral AuNPs is ascribed to the morphology evolution induced by the synergy of cys and R/L-CP light, which is clearly analyzed and elucidated with high CD intensities. This work provides a promising alternative strategy to produce high-chirality nanomaterials that can be applied in biomedicine and enantiomer photocatalytic reaction.
Collapse
Affiliation(s)
- Hongdan Wang
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Korea
| | - Yang Liu
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Korea
| | - Jianmin Yu
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Korea
| | - Yongguang Luo
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Korea
| | - Lingling Wang
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Korea
| | - Taehun Yang
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Korea
| | - Bikshapathi Raktani
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Korea
| | - Hyoyoung Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Korea
- Department of Biophysics, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Korea
- Creative Research Institute, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Korea
| |
Collapse
|
7
|
Joseph V, Levine M. Ronald C.D. Breslow (1931-2017): A career in review. Bioorg Chem 2021; 115:104868. [PMID: 34523507 DOI: 10.1016/j.bioorg.2021.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Abstract
Reviewed herein are key research accomplishments of Professor Ronald Charles D. Breslow (1931-2017) throughout his more than 60 year research career. These accomplishments span a wide range of topics, most notably physical organic chemistry, medicinal chemistry, and bioorganic chemistry. These topics are reviewed, as are topics of molecular electronics and origin of chirality, which combine to make up the bulk of this review. Also reviewed briefly are Breslow's contributions to the broader chemistry profession, including his work for the American Chemical Society and his work promoting gender equity. Throughout the article, efforts are made to put Breslow's accomplishments in the context of other work being done at the time, as well as to include subsequent iterations and elaborations of the research.
Collapse
Affiliation(s)
- Vincent Joseph
- Department of Chemical Sciences, Ariel University, Israel
| | - Mindy Levine
- Department of Chemical Sciences, Ariel University, Israel.
| |
Collapse
|
8
|
Hadidi R, Božanić DK, Ganjitabar H, Garcia GA, Powis I, Nahon L. Conformer-dependent vacuum ultraviolet photodynamics and chiral asymmetries in pure enantiomers of gas phase proline. Commun Chem 2021; 4:72. [PMID: 36697576 PMCID: PMC9814706 DOI: 10.1038/s42004-021-00508-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Proline is a unique amino-acid, with a secondary amine fixed within a pyrrolidine ring providing specific structural properties to proline-rich biopolymers. Gas-phase proline possesses four main H-bond stabilized conformers differing by the ring puckering and carboxylic acid orientation. The latter defines two classes of conformation, whose large ionization energy difference allows a unique conformer-class tagging via electron spectroscopy. Photoelectron circular dichroism (PECD) is an intense chiroptical effect sensitive to molecular structures, hence theorized to be highly conformation-dependent. Here, we present experimental evidence of an intense and striking conformer-specific PECD, measured in the vacuum ultraviolet (VUV) photoionization of proline, as well as a conformer-dependent cation fragmentation behavior. This finding, combined with theoretical modeling, allows a refinement of the conformational landscape and energetic ordering, that proves inaccessible to current molecular electronic structure calculations. Additionally, astrochemical implications regarding a possible link of PECD to the origin of life's homochirality are considered in terms of plausible temperature constraints.
Collapse
Affiliation(s)
- Rim Hadidi
- Synchrotron SOLEIL, l'Orme des Merisiers, Gif sur Yvette Cedex, France
| | - Dušan K Božanić
- Synchrotron SOLEIL, l'Orme des Merisiers, Gif sur Yvette Cedex, France
- Department of Radiation Chemistry and Physics, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Hassan Ganjitabar
- School of Chemistry, The University of Nottingham, University Park, Nottingham, UK
| | - Gustavo A Garcia
- Synchrotron SOLEIL, l'Orme des Merisiers, Gif sur Yvette Cedex, France
| | - Ivan Powis
- School of Chemistry, The University of Nottingham, University Park, Nottingham, UK
| | - Laurent Nahon
- Synchrotron SOLEIL, l'Orme des Merisiers, Gif sur Yvette Cedex, France.
| |
Collapse
|
9
|
Murashima H, Fujihara A. Wavelength dependence of chiral recognition using ions between photoexcited tryptophan and sugars. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Zhao J, Xing P. Helical Nanostructures with Circularly Polarized Luminescence from the Multicomponent Assembly of π-Conjugated N-terminal Amino Acids. Chempluschem 2020; 85:1511-1522. [PMID: 32644303 DOI: 10.1002/cplu.202000397] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/22/2020] [Indexed: 11/06/2022]
Abstract
Self-assembled structures with circularly polarized luminescence (CPL) have attracted great attention in recent years. π-conjugated N-terminal amino acids with chiral amino acid residues and luminophores are capable of forming self-assembled structures at hierarchical levels, whereby chirality can be transferred to the macroscopic scale with easily modulated CPL properties. Due to the presence of multiple noncovalent binding sites, including hydrogen bonding and aromatic interactions, π-conjugated N-terminal amino acids are emerging core candidates for incorporation into multicomponent self-assembled architectures, accomplishing rational control over supramolecular chirality as well as showing rich chiroptical properties. In this Minireview, we provide a brief summary of multiple-component coassembled systems comprising π-conjugated N-terminal amino acids, small organic species and metal ions. The synthesis of helical structures and manipulation of supramolecular chirality by controlling the self-assembled species is introduced, and the CPL properties of multiple-component π-conjugated N-terminal amino acids are also briefly summarized.
Collapse
Affiliation(s)
- Jianjian Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
11
|
Madsen MM, Jensen F, Thøgersen J. The primary photo-dissociation dynamics of amino acids in aqueous solution: breaking the Cα-bond. Phys Chem Chem Phys 2020; 22:2307-2318. [DOI: 10.1039/c9cp05836b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photo-excitation of aqueous amino acids at 200 nm breaks the Cα-bond.
Collapse
Affiliation(s)
| | - Frank Jensen
- Dept. of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Jan Thøgersen
- Dept. of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| |
Collapse
|
12
|
Glavin DP, Burton AS, Elsila JE, Aponte JC, Dworkin JP. The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System. Chem Rev 2019; 120:4660-4689. [DOI: 10.1021/acs.chemrev.9b00474] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel P. Glavin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Aaron S. Burton
- NASA Johnson Space Center, Houston, Texas 77058, United States
| | - Jamie E. Elsila
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - José C. Aponte
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
- Catholic University of America, Washington, D.C. 20064, United States
| | - Jason P. Dworkin
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| |
Collapse
|
13
|
Garcia AD, Meinert C, Sugahara H, Jones NC, Hoffmann SV, Meierhenrich UJ. The Astrophysical Formation of Asymmetric Molecules and the Emergence of a Chiral Bias. Life (Basel) 2019; 9:E29. [PMID: 30884807 PMCID: PMC6463258 DOI: 10.3390/life9010029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 11/17/2022] Open
Abstract
The biomolecular homochirality in living organisms has been investigated for decades, but its origin remains poorly understood. It has been shown that circular polarized light (CPL) and other energy sources are capable of inducing small enantiomeric excesses (ees) in some primary biomolecules, such as amino acids or sugars. Since the first findings of amino acids in carbonaceous meteorites, a scenario in which essential chiral biomolecules originate in space and are delivered by celestial bodies has arisen. Numerous studies have thus focused on their detection, identification, and enantiomeric excess calculations in extraterrestrial matrices. In this review we summarize the discoveries in amino acids, sugars, and organophosphorus compounds in meteorites, comets, and laboratory-simulated interstellar ices. Based on available analytical data, we also discuss their interactions with CPL in the ultraviolet (UV) and vacuum ultraviolet (VUV) regions, their abiotic chiral or achiral synthesis, and their enantiomeric distribution. Without doubt, further laboratory investigations and upcoming space missions are required to shed more light on our potential extraterrestrial molecular origins.
Collapse
Affiliation(s)
- Adrien D Garcia
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France.
| | - Cornelia Meinert
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France.
| | - Haruna Sugahara
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France.
- Japan Aerospace Exploration Agency⁻Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Chuo Sagamihara, Kanagawa 252-5210, Japan.
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| | - Søren V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| | - Uwe J Meierhenrich
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France.
| |
Collapse
|
14
|
Korenić A, Perović S, Ćirković MM, Miquel PA. Symmetry breaking and functional incompleteness in biological systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:1-12. [PMID: 30776381 DOI: 10.1016/j.pbiomolbio.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/31/2018] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
Symmetry-based explanations using symmetry breaking (SB) as the key explanatory tool have complemented and replaced traditional causal explanations in various domains of physics. The process of spontaneous SB is now a mainstay of contemporary explanatory accounts of large chunks of condensed-matter physics, quantum field theory, nonlinear dynamics, cosmology, and other disciplines. A wide range of empirical research into various phenomena related to symmetries and SB across biological scales has accumulated as well. Led by these results, we identify and explain some common features of the emergence, propagation, and cascading of SB-induced layers across the biosphere. These features are predicated on the thermodynamic openness and intrinsic functional incompleteness of the systems at stake and have not been systematically analyzed from a general philosophical and methodological perspective. We also consider possible continuity of SB across the physical and biological world and discuss the connection between Darwinism and SB-based analysis of the biosphere and its history.
Collapse
Affiliation(s)
- Andrej Korenić
- The Centre for Laser Microscopy, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Serbia
| | | | | | | |
Collapse
|
15
|
Aponte JC, Woodward HK, Abreu NM, Elsila JE, Dworkin JP. Molecular Distribution, 13C-Isotope, and Enantiomeric Compositions of Carbonaceous Chondrite Monocarboxylic Acids. METEORITICS & PLANETARY SCIENCE 2019; 54:415-430. [PMID: 32499671 PMCID: PMC7271972 DOI: 10.1111/maps.13216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/17/2018] [Indexed: 05/25/2023]
Abstract
The water-soluble organic compounds in carbonaceous chondrite meteorites constitute a record of the synthetic reactions occurring at the birth of the solar system and those taking place during parent body alteration and may have been important for the later origins and development of life on Earth. In this present work, we have developed a novel methodology for the simultaneous analysis of the molecular distribution, compound-specific δ13C and enantiomeric compositions of aliphatic monocarboxylic acids (MCA) extracted from the hot-water extracts of sixteen carbonaceous chondrites from CM, CR, CO, CV and CK groups. We observed high concentrations of meteoritic MCAs, with total carbon weight percentages which in some cases approached those of carbonates and insoluble organic matter. Moreover, we found that the concentration of MCAs in CR chondrites is higher than in the other meteorite groups, with acetic acid exhibiting the highest concentration in all samples. The abundance of MCAs decreased with increasing molecular weight and with increasing aqueous and/or thermal alteration experienced by the meteorite sample. The δ13C isotopic values of MCAs ranged from -52 to +27‰, and aside from an inverse relationship between δ13C value and carbon straight-chain length for C3-C6 MCAs in Murchison, the 13C-isotopic values did not correlate with the number of carbon atoms per molecule. We also observed racemic compositions of 2-methylbutanoic acid in CM and CR chondrites. We used this novel analytical protocol and collective data to shed new light on the prebiotic origins of chondritic MCAs.
Collapse
Affiliation(s)
- José C. Aponte
- Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
- Department of Chemistry, Catholic University of America, Washington, DC 20064, USA
| | - Hannah K. Woodward
- Department of Chemistry, Catholic University of America, Washington, DC 20064, USA
- Department of Chemistry, University of Reading, Reading RG6 6UA, UK
| | - Neyda M. Abreu
- Earth Science Program, Pennsylvania State University – Du Bois Campus, Du Bois, Pennsylvania 15801, USA
| | - Jamie E. Elsila
- Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - Jason P. Dworkin
- Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| |
Collapse
|
16
|
Kravets N, Aleksanyan A, Brasselet E. Chiral Optical Stern-Gerlach Newtonian Experiment. PHYSICAL REVIEW LETTERS 2019; 122:024301. [PMID: 30720309 DOI: 10.1103/physrevlett.122.024301] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/06/2018] [Indexed: 05/14/2023]
Abstract
We report on a chiral optical Stern-Gerlach experiment where chiral liquid crystal microspheres are selectively displaced by means of optical forces arising from optical helicity gradients. The present Newtonian experimental demonstration of an effect predicted at molecular scale [New J. Phys. 16, 013020 (2014)NJOPFM1367-263010.1088/1367-2630/16/1/013020] is a first instrumental step in an area restricted so far to theoretical discussions. Extending the Stern-Gerlach experiment legacy to chiral light-matter interactions should foster further studies, for instance towards the elaboration of chirality-enabled quantum technologies or spin-based optoelectronics.
Collapse
Affiliation(s)
- Nina Kravets
- Université de Bordeaux, CNRS, Laboratoire Ondes et Matière d'Aquitaine, F-33400 Talence, France
| | - Artur Aleksanyan
- Université de Bordeaux, CNRS, Laboratoire Ondes et Matière d'Aquitaine, F-33400 Talence, France
| | - Etienne Brasselet
- Université de Bordeaux, CNRS, Laboratoire Ondes et Matière d'Aquitaine, F-33400 Talence, France
| |
Collapse
|
17
|
Nguyen DT, Fujihara A. Chiral Recognition in Cold Gas-Phase Cluster Ions of Carbohydrates and Tryptophan Probed by Photodissociation. ORIGINS LIFE EVOL B 2018; 48:395-406. [PMID: 30953250 DOI: 10.1007/s11084-019-09574-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022]
Abstract
Chiral recognition between tryptophan (Trp) and carbohydrates such as D-glucose (D-Glc), methyl-α-D-glucoside (D-glucoside), D-maltose, and D-cellobiose in cold gas-phase cluster ions was investigated as a model for chemical evolution in interstellar molecular clouds using a tandem mass spectrometer containing a cold ion trap. The photodissociation mass spectra of cold gas-phase clusters that contained Na+, Trp enantiomers, and D-maltose showed that Na+(D-Glc) was formed via the glycosidic bond cleavage of D-maltose from photoexcited homochiral Na+(D-Trp)(D-maltose), while the dissociation did not occur in heterochiral Na+(L-Trp)(D-maltose). The enantiomer-selective dissociation was also observed in the case of D-cellobiose. The enantiomer-selective glycosidic bond cleavage of disaccharides suggested that photoexcited D-Trp could prevent chemical evolution of sugar chains from D-enantiomer of carbohydrates in molecular clouds. The spectra of gas-phase clusters that contained Na+, Trp enantiomers, and D-Glc indicated that enantiomer-selective protonation of L-Trp from D-Glc could induce enantiomeric excess via collision-activated dissociation of the protonated L-Trp. In the case of protonated clusters, photoexcited H+(L-Trp) dissociated via Cα-Cβ bond cleavage in the presence of D-Glc or D-glucoside, where the excited states of H+(L-Trp) contributed to the enantiomer-selective reaction in the clusters. These enantiomer selectivities in cold gas-phase clusters indicated that chirality of a molecule induced enantiomeric excess of other molecules via enantiomer-selective reactions in molecular clouds.
Collapse
Affiliation(s)
- Doan Thuc Nguyen
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Akimasa Fujihara
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8531, Japan.
| |
Collapse
|
18
|
Pantaleone S, Ugliengo P, Sodupe M, Rimola A. When the Surface Matters: Prebiotic Peptide-Bond Formation on the TiO 2 (101) Anatase Surface through Periodic DFT-D2 Simulations. Chemistry 2018; 24:16292-16301. [PMID: 30212609 DOI: 10.1002/chem.201803263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 12/13/2022]
Abstract
The mechanism of the peptide-bond formation between two glycine (Gly) molecules has been investigated by means of PBE-D2* and PBE0-D2* periodic simulations on the TiO2 (101) anatase surface. This is a process of great relevance both in fundamental prebiotic chemistry, as the reaction univocally belongs to one of the different organizational events that ultimately led to the emergence of life on Earth, as well as from an industrial perspective, since formation of amides is a key reaction for pharmaceutical companies. The efficiency of the surface catalytic sites is demonstrated by comparing the reactions in the gas phase and on the surface. At variance with the uncatalyzed gas-phase reaction, which involves a concerted nucleophilic attack and dehydration step, on the surface these two steps occur along a stepwise mechanism. The presence of surface Lewis and Brönsted sites exerts some catalytic effect by lowering the free energy barrier for the peptide-bond formation by about 6 kcal mol-1 compared to the gas-phase reaction. Moreover, the co-presence of molecules acting as proton-transfer assistants (i.e., H2 O and Gly) provide a more significant kinetic energy barrier decrease. The reaction on the surface is also favorable from a thermodynamic standpoint, involving very large and negative reaction energies. This is due to the fact that the anatase surface also acts as a dehydration agent during the condensation reaction, since the outermost coordinatively unsaturated Ti atoms strongly anchor the released water molecules. Our theoretical results provide a comprehensive atomistic interpretation of the experimental results of Martra et al. (Angew. Chem. Int. Ed. 2014, 53, 4671), in which polyglycine formation was obtained by successive feedings of Gly vapor on TiO2 surfaces in dry conditions and are, therefore, relevant in a prebiotic context envisaging dry and wet cycles occurring, at mineral surfaces, in a small pool.
Collapse
Affiliation(s)
- Stefano Pantaleone
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS), Inter-Departmental centre, Università degli Studi di Torino, Via P. Giuria 7, 10125, Torino, Italy
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| |
Collapse
|
19
|
Rani N, Vikas. Mechanism and Kinetics of the Gas-Phase Stereoinversion in Proteinogenic l-Threonine and Its Astrophysical Relevance. J Phys Chem A 2018; 122:7572-7586. [DOI: 10.1021/acs.jpca.8b06659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Namrata Rani
- Quantum Chemistry Group, Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Vikas
- Quantum Chemistry Group, Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
20
|
Gerbig D, Desch S, Schreiner PR. Making Glycine Methyl Ester Chiral. Chemistry 2018; 24:11904-11907. [DOI: 10.1002/chem.201802119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Dennis Gerbig
- Institute of Organic ChemistryJustus-Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Sarina Desch
- Institute of Organic ChemistryJustus-Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Peter R. Schreiner
- Institute of Organic ChemistryJustus-Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| |
Collapse
|
21
|
Fujihara A, Okawa Y. Chiral and molecular recognition of monosaccharides by photoexcited tryptophan in cold gas-phase noncovalent complexes as a model for chemical evolution in interstellar molecular clouds. Anal Bioanal Chem 2018; 410:6279-6287. [DOI: 10.1007/s00216-018-1238-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
|
22
|
An asymmetric tertiary carbon center with a tetrafluoroethylene (–CF 2 CF 2 –) fragment: Novel construction method and application in a chiral liquid crystalline molecule. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2017.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Uomini NT, Ruck L. Manual laterality and cognition through evolution: An archeological perspective. PROGRESS IN BRAIN RESEARCH 2018; 238:295-323. [DOI: 10.1016/bs.pbr.2018.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Wang L, Yin L, Zhang W, Zhu X, Fujiki M. Circularly Polarized Light with Sense and Wavelengths To Regulate Azobenzene Supramolecular Chirality in Optofluidic Medium. J Am Chem Soc 2017; 139:13218-13226. [PMID: 28846842 DOI: 10.1021/jacs.7b07626] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Circularly polarized light (CPL) as a massless physical force causes absolute asymmetric photosynthesis, photodestruction, and photoresolution. CPL handedness has long been believed to be the determining factor in the resulting product's chirality. However, product chirality as a function of the CPL handedness, irradiation wavelength, and irradiation time has not yet been studied systematically. Herein, we investigate this topic using achiral polymethacrylate carrying achiral azobenzene as micrometer-size aggregates in an optofluidic medium with a tuned refractive index. Azobenzene chirality with a high degree of dissymmetry ratio (±1.3 × 10-2 at 313 nm) was generated, inverted, and switched in multiple cycles by irradiation with monochromatic incoherent CPL (313, 365, 405, and 436 nm) for 20 s using a weak incoherent light source (≈ 30 μW·cm-2). Moreover, the optical activity was retained for over 1 week in the dark. Photoinduced chirality was swapped by the irradiating wavelength, regardless of whether the CPL sense was the same. This scenario is similar to the so-called Cotton effect, which was first described in 1895. The tandem choice of both CPL sense and its wavelength was crucial for azobenzene chirality. Our experimental proof and theoretical simulation should provide new insight into the chirality of CPL-controlled molecules, supramolecules, and polymers.
Collapse
Affiliation(s)
- Laibing Wang
- Graduate School of Materials Science, Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, China
| | - Lu Yin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, China
| | - Xiulin Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, China
| | - Michiya Fujiki
- Graduate School of Materials Science, Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|