1
|
Zhang B, Reek JNH. Supramolecular Strategies for the Recycling of Homogeneous Catalysts. Chem Asian J 2021; 16:3851-3863. [PMID: 34606169 PMCID: PMC9297887 DOI: 10.1002/asia.202100968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Indexed: 11/11/2022]
Abstract
Supramolecular approaches are increasingly used in the development of homogeneous catalysts and they also provide interesting new tools for the recycling of metal-based catalysts. Various non-covalent interactions have been utilized for the immobilization homogeneous catalysts on soluble and insoluble support. By non-covalent anchoring the supported catalysts obtained can be recovered via (nano-) filtration or such catalytic materials can be used in continuous flow reactors. Specific benefits from the reversibility of catalyst immobilization by non-covalent interactions include the possibility to re-functionalize the support material and the use as "boomerang" type catalyst systems in which the catalyst is captured after a homogeneous reaction. In addition, new reactor design with implemented recycling strategies becomes possible, such as a reverse-flow adsorption reactor (RFA) that combines a homogeneous reactor with selective catalyst adsorption/desorpion. Next to these non-covalent immobilization strategies, supramolecular chemistry can also be used to generate the support, for example by generation of self-assembled gels with catalytic function. Although the stability is a challenging issue, some self-assembled gel materials have been successfully utilized as reusable heterogeneous catalysts. In addition, catalytically active coordination cages, which are frequently used to achieve specific activity or selectivity, can be bound to support by ionic interactions or can be prepared in structured solid materials. These new heterogenized cage materials also have been used successfully as recyclable catalysts.
Collapse
Affiliation(s)
- Bo Zhang
- Homogeneous, Supramolecular and Bio-Inspired CatalysisVan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired CatalysisVan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
2
|
Geer AM, Liu C, Musgrave CB, Webber C, Johnson G, Zhou H, Sun CJ, Dickie DA, Goddard WA, Zhang S, Gunnoe TB. Noncovalent Immobilization of Pentamethylcyclopentadienyl Iridium Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ana M. Geer
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - Chang Liu
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - Charles B. Musgrave
- Materials and Process Simulation Center Department of Chemistry California Institute of Technology Pasadena CA 91125 USA
| | - Christopher Webber
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - Grayson Johnson
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - Hua Zhou
- Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA
| | - Cheng-Jun Sun
- Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA
| | - Diane A. Dickie
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - William A. Goddard
- Materials and Process Simulation Center Department of Chemistry California Institute of Technology Pasadena CA 91125 USA
| | - Sen Zhang
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - T. Brent Gunnoe
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| |
Collapse
|
3
|
Rajabi S, Ebrahimi F, Lole G, Odrobina J, Dechert S, Jooss C, Meyer F. Water Oxidizing Diruthenium Electrocatalysts Immobilized on Carbon Nanotubes: Effects of the Number and Positioning of Pyrene Anchors. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sheida Rajabi
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Fatemeh Ebrahimi
- Institute for Materials Physics, University of Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Gaurav Lole
- Institute for Materials Physics, University of Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Jann Odrobina
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Christian Jooss
- Institute for Materials Physics, University of Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, D-37077 Göttingen, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
4
|
Volpe A, Tubaro C, Natali M, Sartorel A, Brudvig GW, Bonchio M. Light-Driven Water Oxidation with the Ir-blue Catalyst and the Ru(bpy) 32+/S 2O 82- Cycle: Photogeneration of Active Dimers, Electron-Transfer Kinetics, and Light Synchronization for Oxygen Evolution with High Quantum Efficiency. Inorg Chem 2019; 58:16537-16545. [PMID: 31774669 DOI: 10.1021/acs.inorgchem.9b02531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Light-driven water oxidation is achieved with the Ru(bpy)32+/S2O82- cycle employing the highly active Ir-blue water oxidation catalyst, namely, an IrIV,IV2(pyalc)2 μ-oxo-dimer [pyalc = 2-(2'-pyridyl)-2-propanoate]. Ir-blue is readily formed by stepwise oxidation of the monomeric Ir(III) precursor 1 by the photogenerated Ru(bpy)33+, with a quantum yield ϕ of up to 0.10. Transient absorption spectroscopy and kinetic evidence point to a stepwise mechanism, where the primary event occurs via a fast photoinduced electron transfer from 1 to Ru(bpy)33+, leading to the Ir(IV) monomer I1 (k1 ∼ 108 M-1 s-1). The competent Ir-blue catalyst is then obtained from I1 upon photooxidative loss of the Cp* ligand and dimerization. The Ir-blue catalyst is active in the Ru(bpy)32+/S2O82- light-driven water oxidation cycle, where it undergoes two fast photoinduced electron transfers to Ru(bpy)33+ [with kIr-blue = (3.00 ± 0.02) × 108 M-1 s-1 for the primary event, outperforming iridium oxide nanoparticles by ca. 2 orders of magnitude], leading to a IrV,V2 steady-state intermediate involved in O-O bond formation. The quantum yield for oxygen evolution depends on the photon flux, showing a saturation regime and reaching an impressive value of ϕ(O2) = 0.32 ± 0.01 (corresponding to a quantum efficiency of 64 ± 2%) at low irradiation intensity. This result highlights the key requirement of orchestrating the rate of the photochemical events with dark catalytic turnover.
Collapse
Affiliation(s)
- Andrea Volpe
- Department of Chemical Sciences , University of Padova , via Marzolo 1 , 35131 Padova , Italy
| | - Cristina Tubaro
- Department of Chemical Sciences , University of Padova , via Marzolo 1 , 35131 Padova , Italy
| | - Mirco Natali
- Department of Chemical and Pharmaceutical Sciences , University of Ferrara and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SolarChem) , sez. di Ferrara, via L. Borsari 46 , 44121 Ferrara , Italy
| | - Andrea Sartorel
- Department of Chemical Sciences , University of Padova , via Marzolo 1 , 35131 Padova , Italy
| | - Gary W Brudvig
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520-8107 , United States
| | - Marcella Bonchio
- Department of Chemical Sciences , University of Padova , via Marzolo 1 , 35131 Padova , Italy
| |
Collapse
|
5
|
Macchioni A. The Middle-Earth between Homogeneous and Heterogeneous Catalysis in Water Oxidation with Iridium. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800798] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alceo Macchioni
- Department of Chemistry; Biology and Biotechnology; University of Perugia; Via Elce di Sotto 8 06123 - Perugia Italy
| |
Collapse
|
6
|
|
7
|
Wang W, Cui L, Sun P, Shi L, Yue C, Li F. Reusable N-Heterocyclic Carbene Complex Catalysts and Beyond: A Perspective on Recycling Strategies. Chem Rev 2018; 118:9843-9929. [DOI: 10.1021/acs.chemrev.8b00057] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenlong Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Lifeng Cui
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Peng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lijun Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chengtao Yue
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
8
|
Das A, Stahl SS. Noncovalent Immobilization of Molecular Electrocatalysts for Chemical Synthesis: Efficient Electrochemical Alcohol Oxidation with a Pyrene-TEMPO Conjugate. Angew Chem Int Ed Engl 2017; 56:8892-8897. [PMID: 28586133 PMCID: PMC5831151 DOI: 10.1002/anie.201704921] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 11/08/2022]
Abstract
Electrocatalytic methods for organic synthesis could offer sustainable alternatives to traditional redox reactions, but strategies are needed to enhance the performance of molecular catalysts designed for this purpose. The synthesis of a pyrene-tethered TEMPO derivative (TEMPO=2,2,6,6-tetramethylpiperidinyl-N-oxyl) is described, which undergoes facile in situ noncovalent immobilization onto a carbon cloth electrode. Cyclic voltammetry and controlled potential electrolysis studies demonstrate that the immobilized catalyst exhibits much higher activity relative to 4-acetamido-TEMPO, an electronically similar homogeneous catalyst. In preparative electrolysis experiments with a series of alcohol substrates and the immobilized catalyst, turnover numbers and frequencies approach 2 000 and 4 000 h-1 , respectively. The synthetic utility of the method is further demonstrated in the oxidation of a sterically hindered hydroxymethylpyrimidine precursor to the blockbuster drug, rosuvastatin.
Collapse
Affiliation(s)
- Amit Das
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
9
|
Das A, Stahl SS. Noncovalent Immobilization of Molecular Electrocatalysts for Chemical Synthesis: Efficient Electrochemical Alcohol Oxidation with a Pyrene–TEMPO Conjugate. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704921] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amit Das
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| | - Shannon S. Stahl
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| |
Collapse
|
10
|
Li J, Güttinger R, Moré R, Song F, Wan W, Patzke GR. Frontiers of water oxidation: the quest for true catalysts. Chem Soc Rev 2017; 46:6124-6147. [DOI: 10.1039/c7cs00306d] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development of advanced analytical techniques is essential for the identification of water oxidation catalysts together with mechanistic studies.
Collapse
Affiliation(s)
- J. Li
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - R. Güttinger
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - R. Moré
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - F. Song
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - W. Wan
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - G. R. Patzke
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
11
|
Li TT, Qian J, Zhou Q, Lin JL, Zheng YQ. A pyrene-modified cobalt salophen complex immobilized on multiwalled carbon nanotubes acting as a precursor for efficient electrocatalytic water oxidation. Dalton Trans 2017; 46:13020-13026. [DOI: 10.1039/c7dt03033a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Highly efficient electrocatalytic water oxidation with an immobilized pyrene-modified cobalt salophen complex: molecular catalysis or heterogeneous catalysis?
Collapse
Affiliation(s)
- Ting-Ting Li
- Research Center of Applied Solid State Chemistry
- Chemistry Institute for Synthesis and Green Application
- Ningbo University
- Ningbo
- PR China
| | - Jinjie Qian
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Qianqian Zhou
- Research Center of Applied Solid State Chemistry
- Chemistry Institute for Synthesis and Green Application
- Ningbo University
- Ningbo
- PR China
| | - Jian-Li Lin
- Research Center of Applied Solid State Chemistry
- Chemistry Institute for Synthesis and Green Application
- Ningbo University
- Ningbo
- PR China
| | - Yue-Qing Zheng
- Research Center of Applied Solid State Chemistry
- Chemistry Institute for Synthesis and Green Application
- Ningbo University
- Ningbo
- PR China
| |
Collapse
|