1
|
Byeon CH, Kinney T, Saricayir H, Holst Hansen K, Scott FJ, Srinivasa S, Wells MK, Mentink-Vigier F, Kim W, Akbey Ü. Ultrasensitive Characterization of Native Bacterial Biofilms via Dynamic Nuclear Polarization-Enhanced Solid-State NMR. Angew Chem Int Ed Engl 2025; 64:e202418146. [PMID: 39777964 PMCID: PMC11919551 DOI: 10.1002/anie.202418146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Bacterial biofilms are major contributors to persistent infections and antimicrobial resistance, posing significant challenges to treatment. However, obtaining high-resolution structural information on native bacterial biofilms has remained elusive due to the methodological limitations associated with analyzing complex biological samples. Solid-state NMR (ssNMR) has shown promise in this regard, but its conventional application is hindered by sensitivity constraints for unlabeled samples. In this study, we utilized high-sensitivity Dynamic Nuclear Polarization (DNP) ssNMR to characterize native Pseudomonas fluorescens colony biofilms. The ~75-fold sensitivity enhancement provided by DNP enabled structural characterization without isotope labeling or chemical/physical modification. We successfully collected 1D 13C/15N, and 2D 1H-13C, 1H-15N and 13C-13C ssNMR spectra within seconds, minutes or hours, facilitating the identification and quantification of biofilm extracellular matrix (ECM) components. Additionally, DNP ssNMR allowed quantitative detection of both flexible and rigid biofilm components by favorable freezing conditions. This study represents the first application of ultrasensitive DNP ssNMR to characterize a native bacterial biofilm, significantly expanding the capabilities of ssNMR for analyzing the composition and structure of a wide array of in vitro and ex vivo biofilms. The versatility of this approach will accelerate structure-guided efforts to combat infections caused by biofilm-forming microbes.
Collapse
Affiliation(s)
- Chang-Hyeock Byeon
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ted Kinney
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Hakan Saricayir
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kasper Holst Hansen
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
| | - Faith J Scott
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Sadhana Srinivasa
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Meghan K Wells
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Wook Kim
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
2
|
Byeon CH, Hansen KH, DePas W, Akbey Ü. High-resolution 2D solid-state NMR provides insights into nontuberculous mycobacteria. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 134:101970. [PMID: 39312837 DOI: 10.1016/j.ssnmr.2024.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
We present a high-resolution magic-angle spinning (MAS) solid-state NMR (ssNMR) study to characterize nontuberculous mycobacteria (NTM). We studied two different NTM strains, Mycobacterium smegmatis, a model, non-pathogenic strain, and Mycobacterium abscessus, an emerging and important human pathogen. Hydrated NTM samples were studied at natural abundance without isotope-labelling, as whole-cells versus cell envelope isolates, and native versus fixed sample preparations. We utilized 1D13C and 2D 1H-13C ssNMR spectra and peak deconvolution to identify NTM cell-wall chemical sites. More than ∼100 distinct 13C signals were identified in the ssNMR spectra. We provide tentative assignments for ∼30 polysaccharides by using well resolved 1H/13C chemical shifts from the 2D INEPT-based 1H-13C ssNMR spectrum. The signals originating from both the flexible and rigid fractions of the whole-cell bacteria samples were selectively analyzed by utilizing either CP or INEPT based 13C ssNMR spectra. CP buildup curves provide insights into the dynamical similarity of the cell-wall components for NTM strains. Signals from peptidoglycan, arabinogalactan and mycolic acid were identified. The majority of the 13C signals were not affected by fixation of the whole cell samples. The isolated cell envelope NMR spectrum overlap with the whole-cell spectrum to a large extent, where the latter has more signals. As an orthogonal way of characterizing these bacteria, electron microscopy (EM) was used to provide spatial information. ssNMR and EM data suggest that the M. abscessus cell-wall is composed of a smaller peptidoglycan layer which is more flexible compared to M. smegmatis, which may be related to its higher pathogenicity. Here in this work, we used high-resolution 2D ssNMR first time to characterize NTM strains and identify chemical sites. These results will aid the development of structure-based approaches to combat NTM infections.
Collapse
Affiliation(s)
- Chang-Hyeock Byeon
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, 15261, United States
| | - Kasper Holst Hansen
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, 15261, United States
| | - William DePas
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, 15261, United States
| | - Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, 15261, United States.
| |
Collapse
|
3
|
Li H, Tuttle MD, Zilm KW, Batista VS. Rapid Quantification of Protein Secondary Structure Composition from a Single Unassigned 1D 13C Nuclear Magnetic Resonance Spectrum. J Am Chem Soc 2024; 146:27542-27554. [PMID: 39322561 DOI: 10.1021/jacs.4c08300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The function of a protein is predicated upon its three-dimensional fold. Representing its complex structure as a series of repeating secondary structural elements is one of the most useful ways by which we study, characterize, and visualize a protein. Consequently, experimental methods that quantify the secondary structure content allow us to connect a protein's structure to its function. Here, we introduce an automated gradient descent-based method we refer to as secondary-structure distribution by NMR that allows for rapid quantification of the protein secondary structure composition of a protein from a single, 1D 13C NMR spectrum without chemical shift assignments. The analysis of nearly 900 proteins with known structure and chemical shifts demonstrates the capabilities of our approach. We show that these results rival alternative techniques such as FT-IR and circular dichroism that are commonly used to estimate secondary structure compositions. The resulting method requires only the primary sequence of the protein and its referenced 13C NMR spectrum. Each residue is modeled in an ensemble of secondary structures with percentage contributions from random coil, α-helix, and β-sheet secondary structures obtained by minimizing the difference between a simulated and experimental 1D 13C NMR spectrum. The capabilities of the method are demonstrated as applied to samples at natural abundance or enriched in 13C, acquired by either solution or solid-state NMR, and even on low magnetic field benchtop NMR spectrometers. This approach allows for rapid characterization of protein secondary structure across traditionally challenging to characterize states including liquid-liquid phase-separated, membrane-bound, or aggregated states.
Collapse
Affiliation(s)
- Haote Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Marcus D Tuttle
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kurt W Zilm
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
4
|
Byeon CH, Kinney T, Saricayir H, Hansen KH, Scott F, Srinivasa S, Wells MK, Mentink-Vigier F, Kim W, Akbey Ü. High-Sensitivity Analysis of Native Bacterial Biofilms Using Dynamic Nuclear Polarization-Enhanced Solid-State NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614951. [PMID: 39386544 PMCID: PMC11463664 DOI: 10.1101/2024.09.25.614951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Bacterial biofilms cause persistent infections that are difficult to treat and contribute greatly to antimicrobial resistance. However, high-resolution structural information on native bacterial biofilms remain very limited. This limitation is primarily due to methodological constraints associated with analyzing complex native samples. Although solid-state NMR (ssNMR) is a promising method in this regard, its conventional applications typically suffer from sensitivity limitations, particularly for unlabeled native samples. Through the use of Dynamic Nuclear Polarization (DNP), we applied sensitivity enhanced ssNMR to characterize native Pseudomonas fluorescens colony biofilms. The increased ssNMR sensitivity by DNP enabled ultrafast structural characterization of the biofilm samples without isotope-labelling, and chemical or physical modification. We collected 1D 13 C and 15 N, and 2D 1 H- 13 C, 1 H- 15 N and 13 C- 13 C ssNMR spectra within seconds/minutes or hours, respectively which enabled us to identify biofilm components as polysaccharides, proteins, and eDNA effectively. This study represents the first application of ultrasensitive DNP ssNMR to characterize a native bacterial biofilm and expands the technical scope of ssNMR towards obtaining insights into the composition and structure of a wide array of in vitro and ex vivo biofilm applications. Such versatility should greatly boost efforts to develop structure-guided approaches for combating infections caused by biofilm-forming microbes.
Collapse
|
5
|
Byeon CH, Kinney T, Saricayir H, Srinivasa S, Wells MK, Kim W, Akbey Ü. Tapping into the native Pseudomonas bacterial biofilm structure by high-resolution multidimensional solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 357:107587. [PMID: 37984030 PMCID: PMC10913148 DOI: 10.1016/j.jmr.2023.107587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
We present a multidimensional magic-angle spinning (MAS) solid-state NMR (ssNMR) study to characterize native Pseudomonas fluorescens colony biofilms at natural abundance without isotope-labelling. By using a high-resolution INEPT-based 2D 1H-13C ssNMR spectrum and thorough peak deconvolution at the 1D ssNMR spectra, approximately 80/134 (in 1D/2D) distinct biofilm chemical sites were identified. We compared CP and INEPT 13C ssNMR spectra to differentiate signals originating from the mobile and rigid fractions of the biofilm, and qualitatively determined dynamical changes by comparing CP buildup behaviors. Protein and polysaccharide signals were differentiated and identified by utilizing FapC protein signals as a template, a biofilm forming functional amyloid from Pseudomonas. We identified several biofilm polysaccharide species such as glucose, mannan, galactose, heptose, rhamnan, fucose and N-acylated mannuronic acid by using 1H and 13C chemical shifts obtained from the 2D spectrum. To our knowledge, this study marks the first high-resolution multidimensional ssNMR characterization of a native bacterial biofilm. Our experimental pipeline can be readily applied to other in vitro biofilm model systems and natural biofilms and holds the promise of making a substantial impact on biofilm research, fostering new ideas and breakthroughs to aid in the development of strategic approaches to combat infections caused by biofilm-forming bacteria.
Collapse
Affiliation(s)
- Chang-Hyeock Byeon
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States
| | - Ted Kinney
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States
| | - Hakan Saricayir
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States
| | - Sadhana Srinivasa
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Meghan K Wells
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Wook Kim
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States.
| |
Collapse
|
6
|
Bai Y, Zhang S, Dong H, Liu Y, Liu C, Zhang X. Advanced Techniques for Detecting Protein Misfolding and Aggregation in Cellular Environments. Chem Rev 2023; 123:12254-12311. [PMID: 37874548 DOI: 10.1021/acs.chemrev.3c00494] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein misfolding and aggregation, a key contributor to the progression of numerous neurodegenerative diseases, results in functional deficiencies and the creation of harmful intermediates. Detailed visualization of this misfolding process is of paramount importance for improving our understanding of disease mechanisms and for the development of potential therapeutic strategies. While in vitro studies using purified proteins have been instrumental in delivering significant insights into protein misfolding, the behavior of these proteins in the complex milieu of living cells often diverges significantly from such simplified environments. Biomedical imaging performed in cell provides cellular-level information with high physiological and pathological relevance, often surpassing the depth of information attainable through in vitro methods. This review highlights a variety of methodologies used to scrutinize protein misfolding within biological systems. This includes optical-based methods, strategies leaning on mass spectrometry, in-cell nuclear magnetic resonance, and cryo-electron microscopy. Recent advancements in these techniques have notably deepened our understanding of protein misfolding processes and the features of the resulting misfolded species within living cells. The progression in these fields promises to catalyze further breakthroughs in our comprehension of neurodegenerative disease mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yulong Bai
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
7
|
Byeon CH, Kinney T, Saricayir H, Srinivasa S, Wells MK, Kim W, Akbey Ü. Tapping into the native Pseudomonas Bacterial Biofilm Structure by High-Resolution 1D and 2D MAS solid-state NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560490. [PMID: 37873242 PMCID: PMC10592892 DOI: 10.1101/2023.10.02.560490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
We present a high-resolution 1D and 2D magic-angle spinning (MAS) solid-state NMR (ssNMR) study to characterize native Pseudomonas fluorescens colony biofilms at natural abundance without isotope-labelling. By using a high-resolution INEPT-based 2D 1 H- 13 C ssNMR spectrum and thorough peak deconvolution approach at the 1D ssNMR spectra, approximately 80/134 (in 1D/2D) distinct biofilm chemical sites were identified. We compared CP and INEPT 13 C ssNMR spectra to different signals originating from the mobile and rigid fractions of the biofilm, and qualitative determined dynamical changes by comparing CP buildup behaviors. Protein and polysaccharide signals were differentiated and identified by utilizing FapC signals as a template, a biofilm forming functional amyloid from Pseudomonas . We also attempted to identify biofilm polysaccharide species by using 1 H/ 13 C chemical shifts obtained from the 2D spectrum. This study marks the first demonstration of high-resolution 2D ssNMR spectroscopy for characterizing native bacterial biofilms and expands the scope of ssNMR in studying biofilms. Our experimental pipeline can be readily applied to other in vitro biofilm model systems and natural biofilms and holds the promise of making a substantial impact on biofilm research, fostering new ideas and breakthroughs to aid in the development of strategic approaches to combat infections caused by biofilm-forming bacteria.
Collapse
|
8
|
Stevens JA, Grünewald F, van Tilburg PAM, König M, Gilbert BR, Brier TA, Thornburg ZR, Luthey-Schulten Z, Marrink SJ. Molecular dynamics simulation of an entire cell. Front Chem 2023; 11:1106495. [PMID: 36742032 PMCID: PMC9889929 DOI: 10.3389/fchem.2023.1106495] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
The ultimate microscope, directed at a cell, would reveal the dynamics of all the cell's components with atomic resolution. In contrast to their real-world counterparts, computational microscopes are currently on the brink of meeting this challenge. In this perspective, we show how an integrative approach can be employed to model an entire cell, the minimal cell, JCVI-syn3A, at full complexity. This step opens the way to interrogate the cell's spatio-temporal evolution with molecular dynamics simulations, an approach that can be extended to other cell types in the near future.
Collapse
Affiliation(s)
- Jan A. Stevens
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Fabian Grünewald
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - P. A. Marco van Tilburg
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Melanie König
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Benjamin R. Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Champaign, IL, United States
| | - Troy A. Brier
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Champaign, IL, United States
| | - Zane R. Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Champaign, IL, United States
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Champaign, IL, United States
| | - Siewert J. Marrink
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
10
|
In-cell NMR: From target structure and dynamics to drug screening. Curr Opin Struct Biol 2022; 74:102374. [DOI: 10.1016/j.sbi.2022.102374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022]
|
11
|
Chow WY, De Paëpe G, Hediger S. Biomolecular and Biological Applications of Solid-State NMR with Dynamic Nuclear Polarization Enhancement. Chem Rev 2022; 122:9795-9847. [PMID: 35446555 DOI: 10.1021/acs.chemrev.1c01043] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid-state NMR spectroscopy (ssNMR) with magic-angle spinning (MAS) enables the investigation of biological systems within their native context, such as lipid membranes, viral capsid assemblies, and cells. However, such ambitious investigations often suffer from low sensitivity due to the presence of significant amounts of other molecular species, which reduces the effective concentration of the biomolecule or interaction of interest. Certain investigations requiring the detection of very low concentration species remain unfeasible even with increasing experimental time for signal averaging. By applying dynamic nuclear polarization (DNP) to overcome the sensitivity challenge, the experimental time required can be reduced by orders of magnitude, broadening the feasible scope of applications for biological solid-state NMR. In this review, we outline strategies commonly adopted for biological applications of DNP, indicate ongoing challenges, and present a comprehensive overview of biological investigations where MAS-DNP has led to unique insights.
Collapse
Affiliation(s)
- Wing Ying Chow
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, Inst. Biol. Struct. IBS, 38044 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| |
Collapse
|
12
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
13
|
Kumari S, Booth V. Antimicrobial Peptide Mechanisms Studied by Whole-Cell Deuterium NMR. Int J Mol Sci 2022; 23:ijms23052740. [PMID: 35269882 PMCID: PMC8910884 DOI: 10.3390/ijms23052740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/29/2022] Open
Abstract
Much of the work probing antimicrobial peptide (AMP) mechanisms has focussed on how these molecules permeabilize lipid bilayers. However, AMPs must also traverse a variety of non-lipid cell envelope components before they reach the lipid bilayer. Additionally, there is a growing list of AMPs with non-lipid targets inside the cell. It is thus useful to extend the biophysical methods that have been traditionally applied to study AMP mechanisms in liposomes to the full bacteria, where the lipids are present along with the full complexity of the rest of the bacterium. This review focusses on what can be learned about AMP mechanisms from solid-state NMR of AMP-treated intact bacteria. It also touches on flow cytometry as a complementary method for measuring permeabilization of bacterial lipid membranes in whole bacteria.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| | - Valerie Booth
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Correspondence: ; Tel.: +1-709-864-4523
| |
Collapse
|
14
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
15
|
Booth V. Deuterium Solid State NMR Studies of Intact Bacteria Treated With Antimicrobial Peptides. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 2:621572. [PMID: 35047897 PMCID: PMC8757836 DOI: 10.3389/fmedt.2020.621572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Solid state NMR has been tremendously useful in characterizing the structure and dynamics of model membranes composed of simple lipid mixtures. Model lipid studies employing solid state NMR have included important work revealing how membrane bilayer structure and dynamics are affected by molecules such as antimicrobial peptides (AMPs). However, solid state NMR need not be applied only to model membranes, but can also be used with living, intact cells. NMR of whole cells holds promise for helping resolve some unsolved mysteries about how bacteria interact with AMPs. This mini-review will focus on recent studies using 2H NMR to study how treatment with AMPs affect membranes in intact bacteria.
Collapse
Affiliation(s)
- Valerie Booth
- Department of Biochemistry and Department of Physics and Physical Oceanograpy, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
16
|
Lends A, Berbon M, Habenstein B, Nishiyama Y, Loquet A. Protein resonance assignment by solid-state NMR based on 1H-detected 13C double-quantum spectroscopy at fast MAS. JOURNAL OF BIOMOLECULAR NMR 2021; 75:417-427. [PMID: 34813018 DOI: 10.1007/s10858-021-00386-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Solid-state NMR spectroscopy is a powerful technique to study insoluble and non-crystalline proteins and protein complexes at atomic resolution. The development of proton (1H) detection at fast magic-angle spinning (MAS) has considerably increased the analytical capabilities of the technique, enabling the acquisition of 1H-detected fingerprint experiments in few hours. Here an approach based on double-quantum (DQ) 13C spectroscopy, detected on 1H, is proposed for fast MAS regime (> 60 kHz) to perform the sequential assignment of insoluble proteins of small size, without any specific deuteration requirement. By combining two three-dimensional 1H detected experiments correlating a 13C DQ dimension respectively to its intra-residue and sequential 15 N-1H pairs, a sequential walk through DQ (Ca + CO) resonance is obtained. The approach takes advantage of fast MAS to achieve an efficient sensitivity and the addition of a DQ dimension provides spectral features useful for the resonance assignment process.
Collapse
Affiliation(s)
- Alons Lends
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France.
| | - Mélanie Berbon
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Birgit Habenstein
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan.
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo, 196-8558, Japan.
| | - Antoine Loquet
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France.
| |
Collapse
|
17
|
Höfurthner T, Mateos B, Konrat R. On-Cell NMR Contributions to Membrane Receptor Binding Characterization. Chempluschem 2021; 86:938-945. [PMID: 34160899 DOI: 10.1002/cplu.202100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/28/2021] [Indexed: 12/21/2022]
Abstract
NMR spectroscopy has matured into a powerful tool to characterize interactions between biological molecules at atomic resolution, most importantly even under near to native (physiological) conditions. The field of in-cell NMR aims to study proteins and nucleic acids inside living cells. However, cells interrogate their environment and are continuously modulated by external stimuli. Cell signaling processes are often initialized by membrane receptors on the cell surface; therefore, characterizing their interactions at atomic resolution by NMR, hereafter referred as on-cell NMR, can provide valuable mechanistic information. This review aims to summarize recent on-cell NMR tools that give information about the binding site and the affinity of membrane receptors to their ligands together with potential applications to in vivo drug screening systems.
Collapse
Affiliation(s)
- Theresa Höfurthner
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Borja Mateos
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| |
Collapse
|
18
|
Narasimhan S, Pinto C, Lucini Paioni A, van der Zwan J, Folkers GE, Baldus M. Characterizing proteins in a native bacterial environment using solid-state NMR spectroscopy. Nat Protoc 2021; 16:893-918. [PMID: 33442051 DOI: 10.1038/s41596-020-00439-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 01/29/2023]
Abstract
For a long time, solid-state nuclear magnetic resonance (ssNMR) has been employed to study complex biomolecular systems at the detailed chemical, structural, or dynamic level. Recent progress in high-resolution and high-sensitivity ssNMR, in combination with innovative sample preparation and labeling schemes, offers novel opportunities to study proteins in their native setting irrespective of the molecular tumbling rate. This protocol describes biochemical preparation schemes to obtain cellular samples of both soluble as well as insoluble or membrane-associated proteins in bacteria. To this end, the protocol is suitable for studying a protein of interest in both whole cells and in cell envelope or isolated membrane preparations. In the first stage of the procedure, an appropriate strain of Escherichia coli (DE3) is transformed with a plasmid of interest harboring the protein of interest under the control of an inducible T7 promoter. Next, the cells are adapted to grow in minimal (M9) medium. Before the growth enters stationary phase, protein expression is induced, and shortly thereafter, the native E. coli RNA polymerase is inhibited using rifampicin for targeted labeling of the protein of interest. The cells are harvested after expression and prepared for ssNMR rotor filling. In addition to conventional 13C/15N-detected ssNMR, we also outline how these preparations can be readily subjected to multidimensional ssNMR experiments using dynamic nuclear polarization (DNP) or proton (1H) detection schemes. We estimate that the entire preparative procedure until NMR experiments can be started takes 3-5 days.
Collapse
Affiliation(s)
- Siddarth Narasimhan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.,Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Cecilia Pinto
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Alessandra Lucini Paioni
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Johan van der Zwan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
19
|
Broft P, Dzatko S, Krafcikova M, Wacker A, Hänsel‐Hertsch R, Dötsch V, Trantirek L, Schwalbe H. In-Cell NMR Spectroscopy of Functional Riboswitch Aptamers in Eukaryotic Cells. Angew Chem Int Ed Engl 2021; 60:865-872. [PMID: 32975353 PMCID: PMC7839747 DOI: 10.1002/anie.202007184] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/22/2020] [Indexed: 12/14/2022]
Abstract
We report here the in-cell NMR-spectroscopic observation of the binding of the cognate ligand 2'-deoxyguanosine to the aptamer domain of the bacterial 2'-deoxyguanosine-sensing riboswitch in eukaryotic cells, namely Xenopus laevis oocytes and in human HeLa cells. The riboswitch is sufficiently stable in both cell types to allow for detection of binding of the ligand to the riboswitch. Most importantly, we show that the binding mode established by in vitro characterization of this prokaryotic riboswitch is maintained in eukaryotic cellular environment. Our data also bring important methodological insights: Thus far, in-cell NMR studies on RNA in mammalian cells have been limited to investigations of short (<15 nt) RNA fragments that were extensively modified by protecting groups to limit their degradation in the intracellular space. Here, we show that the in-cell NMR setup can be adjusted for characterization of much larger (≈70 nt) functional and chemically non-modified RNA.
Collapse
Affiliation(s)
- P. Broft
- Center for Biomolecular Magnetic Resonance (BMRZ)Institute for Organic Chemistry and Chemical BiologyGoethe UniversityMax-von-Laue-Str. 760438Frankfurt/M.Germany
| | - S. Dzatko
- National Centre for Biomolecular ResearchMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- Central European Institute of Technology (CEITEC)Masaryk UniversityKamenice 753/5625 00BrnoCzech Republic
| | - M. Krafcikova
- National Centre for Biomolecular ResearchMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- Institute of BiophysicsCzech Academy of SciencesKralovopolska 135612 65BrnoCzech Republic
| | - A. Wacker
- Center for Biomolecular Magnetic Resonance (BMRZ)Institute for Organic Chemistry and Chemical BiologyGoethe UniversityMax-von-Laue-Str. 760438Frankfurt/M.Germany
| | - Robert Hänsel‐Hertsch
- Present address: Center for Molecular Medicine CologneRobert-Koch-Str. 2150931CologneGermany
| | - Volker Dötsch
- Center for Biomolecular Magnetic Resonance (BMRZ)Institute of Biophysical ChemistryGoethe UniversityMax-von-Laue-Str. 960438Frankfurt/M.Germany
| | - L. Trantirek
- Central European Institute of Technology (CEITEC)Masaryk UniversityKamenice 753/5625 00BrnoCzech Republic
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ)Institute for Organic Chemistry and Chemical BiologyGoethe UniversityMax-von-Laue-Str. 760438Frankfurt/M.Germany
| |
Collapse
|
20
|
Broft P, Dzatko S, Krafcikova M, Wacker A, Hänsel‐Hertsch R, Dötsch V, Trantirek L, Schwalbe H. In‐Cell NMR Spectroscopy of Functional Riboswitch Aptamers in Eukaryotic Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- P. Broft
- Center for Biomolecular Magnetic Resonance (BMRZ) Institute for Organic Chemistry and Chemical Biology Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M. Germany
| | - S. Dzatko
- National Centre for Biomolecular Research Masaryk University Kamenice 5 625 00 Brno Czech Republic
- Central European Institute of Technology (CEITEC) Masaryk University Kamenice 753/5 625 00 Brno Czech Republic
| | - M. Krafcikova
- National Centre for Biomolecular Research Masaryk University Kamenice 5 625 00 Brno Czech Republic
- Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 612 65 Brno Czech Republic
| | - A. Wacker
- Center for Biomolecular Magnetic Resonance (BMRZ) Institute for Organic Chemistry and Chemical Biology Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M. Germany
| | - Robert Hänsel‐Hertsch
- Present address: Center for Molecular Medicine Cologne Robert-Koch-Str. 21 50931 Cologne Germany
| | - Volker Dötsch
- Center for Biomolecular Magnetic Resonance (BMRZ) Institute of Biophysical Chemistry Goethe University Max-von-Laue-Str. 9 60438 Frankfurt/M. Germany
| | - L. Trantirek
- Central European Institute of Technology (CEITEC) Masaryk University Kamenice 753/5 625 00 Brno Czech Republic
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ) Institute for Organic Chemistry and Chemical Biology Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M. Germany
| |
Collapse
|