1
|
Yang Y, Bao X, Shao Y, Gao CY. Recent advances in organic fluorescent probes for detecting phosgene, mustard gas, nerve agents and their mimics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125815. [PMID: 39914287 DOI: 10.1016/j.saa.2025.125815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025]
Abstract
Chemical warfare agents (CWAs) have been notorious for a century, especially sarin and mustard gas, which have produced intolerable menace to civilian lives and environmental security. As a result, developing simple, rapid, portable, sensitive, and selective detection technologies for CWAs is critical. This review primarily covered the recent progress in developing organic fluorescent probes for detecting phosgene, mustard gas, and nerve agents and their mimics. The review mainly discussed various sensing reactions utilized in the covalent strategies like cyclization, elimination, phosphorylation, alkylation, and sprioring-opening reaction, as well as the supramolecular approaches. The comparison of these probes highlighted the successful development of fluorescent probes for CWAs, some with detection limits in nano mol/L in solution and ppb scale in vapor state within seconds. These will contribute to a more effective system for detecting and monitoring CWAs in the future and improve the ability to respond to chemical attacks. Finally, the review discussed the limitations of current probes, emphasizing the need for on-site and real-time detection. It also called for research into new mechanisms and kits for rapid early warning of various CWAs to facilitate emergency handling and decontamination.
Collapse
Affiliation(s)
- Yang Yang
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Material Science, Inner Mongolia Minzu University, Tongliao 028000 PR China.
| | - Xiaoying Bao
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Material Science, Inner Mongolia Minzu University, Tongliao 028000 PR China
| | - Yuxin Shao
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Material Science, Inner Mongolia Minzu University, Tongliao 028000 PR China
| | - Chao-Ying Gao
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Material Science, Inner Mongolia Minzu University, Tongliao 028000 PR China.
| |
Collapse
|
2
|
Kilani M, Mao G. Nanomaterials-Enabled Sensors for Detecting and Monitoring Chemical Warfare Agents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409984. [PMID: 39723726 DOI: 10.1002/smll.202409984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Despite their restrictions under international treaties, many chemical warfare agents (CWAs) and their toxic analogues are still used in various industrial sectors such as agriculture and chemical manufacturing. Thus, the need for sensitive and selective CWA detection remains critical. Commercially available detection methods, while accurate, are often bulky, expensive, and require specialized personnel. Sensors incorporating nanomaterials present a promising alternative, offering rapid, portable, and cost-effective detection due to their unique properties, such as high surface area and tunable reactivity. This review covers the four main CWA categories: nerve agents, blister agents, blood agents, and choking agents, highlighting recent progress in nanosensor development for each category. It discusses various sensing mechanisms employed, including fluorescence, colorimetry, chemiresistivity, electrochemistry, and Raman spectroscopy. Despite these advancements, challenges remain, particularly regarding the scalability, stability, and selectivity of nanomaterials-based sensors in complex environments. The review concludes by emphasizing the need to address these challenges and explore novel nanomaterials, the development of scalable nanomanufacturing techniques, and the integration of artificial intelligence to fully unlock the potential of nanomaterials in CWA sensing for homeland security and personal safety.
Collapse
Affiliation(s)
- Mohamed Kilani
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
| |
Collapse
|
3
|
Cavallaro A, Santonocito R, Puglisi R, Pappalardo A, La Spada F, Parlascino R, Riolo M, Cacciola SO, Tuccitto N, Trusso Sfrazzetto G. Fast detection of penicillium rot and the conservation status of packaged citrus fruit using an optical array sensor. Chem Commun (Camb) 2024; 60:13702-13705. [PMID: 39499202 DOI: 10.1039/d4cc04700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
A novel optical array sensor designed to detect the conservation status of citrus fruit as well as contamination of ripened fruits by green mold incited by the fungus Penicillium digitatum is reported here. The device demonstrates high sensitivity, specificity, and cost-effectiveness, making it suitable for integration into the citrus fruit supply chain, including production and packaging systems.
Collapse
Affiliation(s)
- Alessia Cavallaro
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy.
| | - Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy.
| | - Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy.
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy.
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Federico La Spada
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy
| | - Rossana Parlascino
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy
| | - Mario Riolo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy
| | - Santa Olga Cacciola
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy
| | - Nunzio Tuccitto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy.
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy.
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
4
|
Wang Y, Wang Z, Gao Y, Yan J, Chen Y, Yang L. Three-dimensional photonic crystal optical gas sensor for trace detection and ultrafast response of chemical warfare agent in atmospheric humidity. Talanta 2024; 277:126383. [PMID: 38852345 DOI: 10.1016/j.talanta.2024.126383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Chemical warfare agents (CWAs) are toxic that pose a threat to the environment and human health, even trace amounts of CWAs can be fatal. In view of this, there is an urgent need to develop gas sensors for trace detection and ultrafast response of CWAs. Herein, an optical gas sensor has been proposed based on metal-organic frameworks (MOFs) three-dimensional (3D) photonic crystal to detect trace CWAs' simulant (dimethyl methylphosphonate, DMMP) in different atmospheric humidity (RH 20 %, RH 40 %, RH 60 %, RH 80 %). At relative humidity (RH) of 20 %, the sensor shows excellent selectivity of DMMP due to the specific interactions of van der Waals force between UiO-67 and phosphoryl oxygen (OP) group of DMMP (C3H9O3P), the ultrahigh sensitivity (42.7 ppb), ultrafast response (0.5 s) are profit from the ordered superstructure of 3D photonic crystal and its complete photonic bandgap. At higher humidity (RH 40%-80 %), the sensor shows excellent stability, long-term repeatability, and it still keeps ultrahigh sensitivity (12.1 ppb), ultrafast response (0.49 s) for DMMP at RH 80 %. Moreover, an optical gas sensor array has been prepared to solve the problem of cross-sensitive between DMMP and other CWAs at highest humidity (RH ≥ 80 %), the average classification accuracy can reach 98.6 %.
Collapse
Affiliation(s)
- Yaru Wang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhaolong Wang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Yangfan Gao
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Jun Yan
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Yunlin Chen
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China.
| | - Liu Yang
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| |
Collapse
|
5
|
Sudittapong B, Taylor CGP, Williams J, Griffiths RJ, Hiscock JR, Ward MD. Coordination-cage binding and catalysed hydrolysis of organophosphorus chemical warfare agent simulants. RSC Adv 2024; 14:26032-26042. [PMID: 39161455 PMCID: PMC11331485 DOI: 10.1039/d4ra04705b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
The use of organophosphorus chemical warfare agents still remains an ongoing global threat. Here we investigate the binding of small-molecule organic guests including phosphate esters, sulfonate esters, carbonate esters and a sulfite ester - some of which act as simulants for organophosphorus chemical warfare agents - in the cavity of a water-soluble coordination cage. For several of these guest species, binding constants in the range 102 to 103 M-1 were determined in water/DMSO (98 : 2 v/v) solution, through a combination of fluorescence and 1H NMR spectroscopy, and subsequent fitting of titration data to a 1 : 1 binding isotherm model. For three cage/guest complexes crystallographic structure determinations were possible: in two cases (with guests phenyl methanesulfonate and phenyl propyl carbonate) the guest lies inside the cavity, forming a range of CH⋯O hydrogen-bonding interactions with the cage interior surface involving CH groups on the cationic cage surface that act as H-bond donors and O atoms on the guests that act as H-bond acceptors. In a third case, with the guest 4-nitrophenyl-methanesulfonate, the guest lies in the spaces outside a cage cavity between cages and forms weak CH⋯O interactions with the cage exterior surface: the cavity is occupied by a network of H-bonded water molecules, though this guest does show cavity binding in solution. For the isomeric guests 4-nitrophenyl-methanesulfonate and 4-nitrophenyl methyl sulfite, hydrolysis in water/DMSO (98 : 2 v/v) could be monitored colorimetrically via appearance of the 4-nitrophenolate anion; both showed accelerated hydrolysis rates in the presence of the host cage with second-order rate constants for the catalysed reactions in the range 10-3 to 10-2 M-1 s-1 at pH 9. The typical rate dependence on external pH and the increased reaction rates when chloride ions are present (which can bind inside the cavity and displace other cavity-bound guests) imply that the catalysed reaction actually occurs at the external surface of the cage rather than inside the cavity.
Collapse
Affiliation(s)
| | | | - James Williams
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Rebecca J Griffiths
- School of Chemistry and Forensic Science, University of Kent Canterbury CT2 7NH UK
| | - Jennifer R Hiscock
- School of Chemistry and Forensic Science, University of Kent Canterbury CT2 7NH UK
| | - Michael D Ward
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
6
|
Puglisi R, Cavallaro A, Pappalardo A, Petroselli M, Santonocito R, Trusso Sfrazzetto G. A New BODIPY-Based Receptor for the Fluorescent Sensing of Catecholamines. Molecules 2024; 29:3714. [PMID: 39125116 PMCID: PMC11314322 DOI: 10.3390/molecules29153714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The human body synthesizes catecholamine neurotransmitters, such as dopamine and noradrenaline. Monitoring the levels of these molecules is crucial for the prevention of important diseases, such as Alzheimer's, schizophrenia, Parkinson's, Huntington's, attention-deficit hyperactivity disorder, and paragangliomas. Here, we have synthesized, characterized, and functionalized the BODIPY core with picolylamine (BDPy-pico) in order to create a sensor capable of detecting these biomarkers. The sensing properties of the BDPy-pico probe in solution were studied using fluorescence titrations and supported by DFT studies. Catecholamine sensing was also performed in the solid state by a simple strip test, using an optical fiber as the detector of emissions. In addition, the selectivity and recovery of the sensor were assessed, suggesting the possibility of using this receptor to detect dopamine and norepinephrine in human saliva.
Collapse
Affiliation(s)
- Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
| | - Alessia Cavallaro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
- Research Unit of Catania, National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.), Viale Andrea Doria 6, 95125 Catania, Italy
| | - Manuel Petroselli
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain;
| | - Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
- Research Unit of Catania, National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.), Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
7
|
Santonocito R, Cavallaro A, Puglisi R, Pappalardo A, Tuccitto N, Petroselli M, Trusso Sfrazzetto G. Smartphone-Based Sensing of Cortisol by Functionalized Rhodamine Probes. Chemistry 2024; 30:e202401201. [PMID: 38600692 DOI: 10.1002/chem.202401201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
During a stress condition, the human body synthesizes catecholamine neurotransmitters and specific hormones (called "stress hormones"), the most important of which is cortisol. The monitoring of cortisol levels should be extremely important to control the stress levels, and for this reason, it shows important medical applications. The common analytical methods (HPLC, GC-MS) cannot be used in real life, due to the bulky size of the instruments and the necessity of specialized personnel. Molecular probes solve these problems due to their fast and easy use. The synthesis of new fluorescent rhodamine probes, able to interact by non-covalent interactions with cortisol, the recognition properties in solution as well as in solid state by Strip Test, using a smartphone as detector, are here reported. DFT calculations and FT-IR measurements suggest the formation of supramolecular complexes through hydrogen bonds as main non-covalent interaction. The present study represents one of the first sensor, based on synthetical chemical receptors, able to detect cortisol in a linear range from 1 mM to 1 pM, based on non-covalent molecular recognition and paves the way to the realization of practical point-of-care device for the monitoring of cortisol in real live.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Alessia Cavallaro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Nunzio Tuccitto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
- Laboratory for Molecular Surfaces and Nanotechnology - CSGI, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Manuel Petroselli
- Institute of Chemical Research of Catalonia (ICIQ), Av. PaÏsos Catalans 16, Tarragona, 43007, Spain
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
8
|
Saya L, Ratandeep, Arya B, Rastogi K, Verma M, Rani S, Sahu PK, Singh MR, Singh WR, Hooda S. Recent advances in sensing toxic nerve agents through DMMP model simulant using diverse nanomaterials-based chemical sensors. Talanta 2024; 272:125785. [PMID: 38394750 DOI: 10.1016/j.talanta.2024.125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Recent terrorist assaults have demonstrated the need for the exploration and design of sustainable and stable chemical sensors with quick reaction times combined with great sensitivity. Among several classes of chemical warfare agents, nerve agents have been proven to be the most hazardous. Even short-term exposure to them can result in severe toxic effects. Human beings inadvertently face the after-effects of these chemicals even several years after these chemicals were used. Due to the extreme toxicity and difficulty in handling, dimethyl methylphosphonate (DMMP), a simulant of nerve agents with much lesser toxicity, is frequently used in laboratories as a substitute. Having a chemical structure almost identical to those of nerve agents, DMMP can mimic the properties of nerve agents. Through this paper, authors have attempted to introduce the evolution of several chemical sensors used to detect DMMP in recent years, including field-effect transistors, chemicapacitors, chemiresistors, and mass-sensitive sensors. A detailed discussion of the role of nanomaterials as chemical sensors in the detection of DMMP has been the main focus of the work through a comprehensive overview of the research on gas sensors that have been reported making use of the properties of a wide range of nanomaterials.
Collapse
Affiliation(s)
- Laishram Saya
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi 110021, India; Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India; Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India.
| | - Ratandeep
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India
| | - Bipasa Arya
- Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Kanjika Rastogi
- Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Manisha Verma
- Department of Physics, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Sanjeeta Rani
- Department of Physics, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Prasanta Kumar Sahu
- Department of Chemistry, Shivaji College, (University of Delhi), Raja Garden, New Delhi, 110027, India
| | - M Ramananda Singh
- Department of Chemistry, Kirorimal College, (University of Delhi), Delhi, 110007, India
| | - W Rameshwor Singh
- Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India.
| | - Sunita Hooda
- Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India.
| |
Collapse
|
9
|
Santonocito R, Puglisi R, Cavallaro A, Pappalardo A, Trusso Sfrazzetto G. Cortisol sensing by optical sensors. Analyst 2024; 149:989-1001. [PMID: 38226461 DOI: 10.1039/d3an01801f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
During a stress condition, the human body synthesizes catecholamine neurotransmitters and specific hormones (called "stress hormones"), the most important of which is cortisol. The monitoring of cortisol levels is extremely important for controlling the stress levels. For this reason, it has important medical applications. Common analytical methods (HPLC, GC-MS) cannot be used in real life due to the bulkiness of the instruments and the necessity of specialized operators. Molecular probes solve this problem. This review aims to provide a description of recent developments in this field, focusing on the analytical aspects and the possibility to obtain real practical devices from these molecular probes.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Alessia Cavallaro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
10
|
Durán Jiménez D, Venema T, de Bruin-Hoegée M, Alkema DPW, Busker RW, van Wuijckhuijse AL. CHART: a novel system for detector evaluation against toxic chemical aerosols. Sci Rep 2024; 14:1050. [PMID: 38200048 PMCID: PMC10781669 DOI: 10.1038/s41598-023-50718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Concern over the possibility of deliberate dispersion of chemical warfare agents and highly toxic pharmaceutical based agents as persistent aerosols has raised the need for experimental assessment of current and future defensive capabilities of armed forces and law enforcement agencies. Therefor we herewith present the design, realization and validation of the Chemical Hot Aerosol Research Tool (CHART) as a validated and safe experimental set-up for performance evaluation of chemical detection and identification equipment against chemical warfare agents and other highly toxic compounds. In the CHART liquid and solid compounds in solution or suspension are being dispersed as aerosols in a nebulization chamber. A broad dynamic particle size range can be generated, including particles known to be able to reach the lower respiratory tract. The aerosol generated is presented to the detection system-under-test while being monitored and characterized in real-time, using an optical particle counter and a time-of-flight aerosol analyzer, respectively. Additionally, the chemical composition of the aerosol is ex situ measured by analytical chemical methods. Evidently, in the design of the CHART significant emphasis was placed on laboratory safety and containment of toxic chemicals. The CHART presented in this paper has proven to be an indispensable experimental tool to study detectors and fieldable identification equipment against toxic chemical aerosols.
Collapse
Affiliation(s)
- Dinesh Durán Jiménez
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288GJ, Rijswijk, The Netherlands.
| | - Tom Venema
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288GJ, Rijswijk, The Netherlands
| | - Mirjam de Bruin-Hoegée
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288GJ, Rijswijk, The Netherlands
- van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, P.O. Box 94157, 1090GD, Amsterdam, The Netherlands
| | - Duurt P W Alkema
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288GJ, Rijswijk, The Netherlands
| | - Ruud W Busker
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288GJ, Rijswijk, The Netherlands
| | - Arjan L van Wuijckhuijse
- Department of CBRN Protection, TNO Defence, Safety and Security, Lange Kleiweg 137, 2288GJ, Rijswijk, The Netherlands
| |
Collapse
|
11
|
Fan S, Burn PL, Gentle IR, Shaw PE. Effect of structure on excited-state intramolecular proton transfer-based sensors for phosphonofluoridate G-series nerve agent vapour detection. SENSORS & DIAGNOSTICS 2024; 3:1212-1223. [DOI: 10.1039/d4sd00120f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Excited-state intramolecular proton transfer emitters have emission that is significantly red shifted relative to the absorption spectra, which enables the sensitive detection of extant hydrogen fluoride found in G-series nerve agents.
Collapse
Affiliation(s)
- Shengqiang Fan
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Paul L. Burn
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Ian R. Gentle
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Paul E. Shaw
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
12
|
Fan S, Loch AS, Vongsanga K, Dennison GH, Burn PL, Gentle IR, Shaw PE. Differentiating Between V- and G-Series Nerve Agent and Simulant Vapours Using Fluorescent Film Responses. SMALL METHODS 2023:e2301048. [PMID: 37932024 DOI: 10.1002/smtd.202301048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Indexed: 11/08/2023]
Abstract
In-field rapid and reliable identification of nerve agents is critical for the protection of Defence and National Security personnel as well as communities. Fluorescence-based detectors can be portable and provide rapid detection of chemical threats. However, most current approaches cannot differentiate between dilute vapors of nerve agent classes and are susceptible to false positives due to the presence of common acids. Here a fluorescence-based method is shown for rapid differentiation between the V-series and phosphonofluoridate G-series nerve agents and avoids false positives due to common acids. Differentiation is achieved through harnessing two different mechanisms. Detection of the V-series is achieved using photoinduced hole transfer whereby the fluorescence of the sensing material is quenched in the presence of the V-series agent. The G-series is detected using a turn-on mechanism in which a silylated excited state intramolecular proton transfer sensing molecule is selectively deprotected by hydrogen fluoride, which is typically found as a contaminant and/or breakdown product in G-series agents such as sarin. The strategy provided discrimination between classes, as the sensor for the G-series agent class is insensitive to the V-series agent, and vice versa, and neither responded to common acids.
Collapse
Affiliation(s)
- Shengqiang Fan
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Alex S Loch
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Kylie Vongsanga
- CBRN Defence Branch, Sensors and Effectors Division, Defence Science and Technology Group, Fishermans Bend, VIC, 3207, Australia
| | - Genevieve H Dennison
- CBRN Defence Branch, Sensors and Effectors Division, Defence Science and Technology Group, Fishermans Bend, VIC, 3207, Australia
- Electro Optic Sensing and Electromagnetic Warfare, Sensors and Effectors Division, Defence Science and Technology Group, Edinburgh, SA, 5111, Australia
| | - Paul L Burn
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Ian R Gentle
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Paul E Shaw
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
13
|
Puglisi R, Santonocito R, Butera E, Mendola GL, Pappalardo A, Trusso Sfrazzetto G. Supramolecular Detection of a Sub-ppm Nerve Agent Simulant by a Smartphone Tool. ACS OMEGA 2023; 8:38038-38044. [PMID: 37867699 PMCID: PMC10586250 DOI: 10.1021/acsomega.3c03759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/02/2023] [Indexed: 10/24/2023]
Abstract
The widespread use of smartphones and related tools is extending their applications in several fields. Herein, we report a reusable smartphone coupled portable detection system for the sensing of sub-ppm level of a nerve agent mimic (dimethylmethylphosphonate) in the gas phase. The detection system is based on multiple hydrogen-bond interactions of the vapor analyte with an ad-hoc functionalized Bodipy chromophore scaffold. The multitopic approach used for the molecular recognition of DMMP leads to the highest binding constant values, high selectivity, and low limits of detection.
Collapse
Affiliation(s)
- Roberta Puglisi
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Rossella Santonocito
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Ester Butera
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Giulia Lorenza Mendola
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Andrea Pappalardo
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
- INSTM
Udr of Catania, Viale
Andrea Doria 6, Catania 95125, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
- INSTM
Udr of Catania, Viale
Andrea Doria 6, Catania 95125, Italy
| |
Collapse
|
14
|
Kumar V, Kim H, Pandey B, James TD, Yoon J, Anslyn EV. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century. Chem Soc Rev 2023; 52:663-704. [PMID: 36546880 DOI: 10.1039/d2cs00651k] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical warfare agents (CWAs) are among the most prominent threats to the human population, our peace, and social stability. Therefore, their detection and quantification are of utmost importance to ensure the security and protection of mankind. In recent years, significant developments have been made in supramolecular chemistry, analytical chemistry, and molecular sensors, which have improved our capability to detect CWAs. Fluorescent and colorimetric chemosensors are attractive tools that allow the selective, sensitive, cheap, portable, and real-time analysis of the potential presence of CWAs, where suitable combinations of selective recognition and transduction can be integrated. In this review, we provide a detailed discussion on recently reported molecular sensors with a specific focus on the sensing of each class of CWAs such as nerve agents, blister agents, blood agents, and other toxicants. We will also discuss the current technology used by military forces, and these discussions will include the type of instrumentation and established protocols. Finally, we will conclude this review with our outlook on the limitations and challenges in the area and summarize the potential of promising avenues for this field.
Collapse
Affiliation(s)
- Vinod Kumar
- Process and Technology Development Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India.
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Bipin Pandey
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| |
Collapse
|
15
|
Ma Y, Xiao X, Ji Q. Design of surface nanostructures for chirality sensing based on quartz crystal microbalance. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1201-1219. [PMID: 36348938 PMCID: PMC9623132 DOI: 10.3762/bjnano.13.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/06/2022] [Indexed: 05/09/2023]
Abstract
Quartz crystal microbalance (QCM) has been widely used for various sensing applications, including chirality detection due to the high sensitivity to nanogram or picogram mass changes, fast response, real-time detection, easy operation, suitability in different media, and low experimental cost. The sensing performance of QCM is dependent on the surface design of the recognition layers. Various strategies have been employed for studying the relationship between the structural features and the specific detection of chiral isomers. This review provides an overview of the construction of chiral sensing layers by various nanostructures and materials in the QCM system, which include organic molecules, supermolecular assemblies, inorganic nanostructures, and metal surfaces. The sensing mechanisms based on these surface nanostructures and the related potentials for chiral detection by the QCM system are also summarized.
Collapse
Affiliation(s)
- Yinglin Ma
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Xiangyun Xiao
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Qingmin Ji
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| |
Collapse
|
16
|
Maurya CK, Pathak U, Gupta PK. Ditopic Chemodosimeter for Selective Detection of Nerve Agent Tabun Simulant DCNP. ChemistrySelect 2022. [DOI: 10.1002/slct.202202103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chandra Kant Maurya
- Synthetic Chemistry Division Defence R&D Establishment (DRDE) Jhansi Road Gwalior (MP) India- 474002
| | - Uma Pathak
- Synthetic Chemistry Division Defence R&D Establishment (DRDE) Jhansi Road Gwalior (MP) India- 474002
| | - Pradeep Kumar Gupta
- Synthetic Chemistry Division Defence R&D Establishment (DRDE) Jhansi Road Gwalior (MP) India- 474002
| |
Collapse
|
17
|
Wilson D, Christie G, Fryer P, Hall I, Landel J, Whitehead K. Lessons to learn from roadmapping in cleaning and decontamination. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Park JH, Song SG, Shin MH, Song C, Bae HY. N-Triflyl Phosphoric Triamide: A High-Performance Purely Organic Trifurcate Quartz Crystal Microbalance Sensor for Chemical Warfare Agent. ACS Sens 2022; 7:423-429. [PMID: 35119283 DOI: 10.1021/acssensors.1c02715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
G-, V-, and A-series nerve agents are extremely toxic organophosphorus chemical warfare agents (CWAs) that incorporate P═O functional groups. Their colorless, tasteless, and odorless nature makes rapid and efficient detection challenging. Here, we report an unprecedented N-triflyl phosphoric triamide (N-TPT) receptor, which is a new class of triple hydrogen bonding donor molecular sensors for CWA recognition via noncovalent host-guest-type interactions. The highly robust trifurcate structures were designed based on density functional theory (DFT) computations and synthesized from N-triflyl phosphorimidoyl trichloride by simple stepwise processes. Quartz crystal microbalance (QCM) analysis allowed robust detection of typical CWA simulants, such as dimethyl methylphosphonate. The concentration-dependent QCM profiles were fitted with the Sips isotherm model, revealing that the thermodynamic parameters of the binding behaviors are roughly correlated with the calculated results. Developed N-TPT receptors show higher binding abilities than previously reported receptors and reasonable selectivity over other volatile compounds.
Collapse
Affiliation(s)
- Jin Hyun Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sun Gu Song
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Myoung Hyeon Shin
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Changsik Song
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Han Yong Bae
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
19
|
Tuccitto N, Catania G, Pappalardo A, Trusso Sfrazzetto G. Agile Detection of Chemical Warfare Agents by Machine Vision: a Supramolecular Approach. Chemistry 2021; 27:13715-13718. [PMID: 34414611 PMCID: PMC8518932 DOI: 10.1002/chem.202102094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Indexed: 12/18/2022]
Abstract
The supramolecular detection by image analysis of a simulant chemical warfare agent on a solid device containing a selective molecular sensor based on a BODIPY scaffold is reported. The recognition properties were investigated in solution, demonstrating high affinity (log K 6.60) and sensitivity (LOD 10 ppt). A test strip also confirmed the sensing properties in gas phase. Image analysis of the solid device allows quantitative information about the simulant to be obtained, recovering the sensor almost 5 times and thus confirming the goal of the supramolecular approach.
Collapse
Affiliation(s)
- Nunzio Tuccitto
- Department of Chemical SciencesUniversity of Catania95125CataniaItaly
- Laboratory for Molecular Surfaces and Nanotechnology – CSGI95125CataniaItaly
| | - Gaetano Catania
- Department of Chemical SciencesUniversity of Catania95125CataniaItaly
| | - Andrea Pappalardo
- Department of Chemical SciencesUniversity of Catania95125CataniaItaly
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania95125CataniaItaly
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical SciencesUniversity of Catania95125CataniaItaly
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania95125CataniaItaly
| |
Collapse
|
20
|
Khayal A, Dawane V, Amin MA, Tirth V, Yadav VK, Algahtani A, Khan SH, Islam S, Yadav KK, Jeon BH. Advances in the Methods for the Synthesis of Carbon Dots and Their Emerging Applications. Polymers (Basel) 2021; 13:3190. [PMID: 34578091 PMCID: PMC8469539 DOI: 10.3390/polym13183190] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/11/2023] Open
Abstract
Cutting-edge technologies are making inroads into new areas and this remarkable progress has been successfully influenced by the tiny level engineering of carbon dots technology, their synthesis advancement and impressive applications in the field of allied sciences. The advances of science and its conjugation with interdisciplinary fields emerged in carbon dots making, their controlled characterization and applications into faster, cheaper as well as more reliable products in various scientific domains. Thus, a new era in nanotechnology has developed into carbon dots technology. The understanding of the generation process, control on making processes and selected applications of carbon dots such as energy storage, environmental monitoring, catalysis, contaminates detections and complex environmental forensics, drug delivery, drug targeting and other biomedical applications, etc., are among the most promising applications of carbon dots and thus it is a prominent area of research today. In this regard, various types of carbon dot nanomaterials such as oxides, their composites and conjugations, etc., have been garnering significant attention due to their remarkable potential in this prominent area of energy, the environment and technology. Thus, the present paper highlights the role and importance of carbon dots, recent advancements in their synthesis methods, properties and emerging applications.
Collapse
Affiliation(s)
- Areeba Khayal
- Industrial Chemistry Section, Aligarh Muslim University, Aligarh 202002, India;
| | - Vinars Dawane
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382030, India;
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia or (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Saudi Arabia
| | | | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia or (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Saudi Arabia
| | - Samreen Heena Khan
- Centre of Research and Development, YNC ENVIS PRIVATE LIMITED, New Delhi 110059, India;
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61413, Saudi Arabia;
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad 462044, India;
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|