1
|
Makarov AY, Buravlev AA, Romanenko GV, Bogomyakov AS, Zakharov BA, Morozov VA, Sukhikh AS, Shundrina IK, Shundrin LA, Irtegova IG, Cherepanova SV, Bagryanskaya IY, Nikulshin PV, Zibarev AV. Hysteretic Room-Temperature Magnetic Bistability of the Crystalline 4,7-Difluoro-1,3,2-Benzodithiazolyl Radical. Chempluschem 2024; 89:e202300736. [PMID: 38332534 DOI: 10.1002/cplu.202300736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
The title radical R⋅, synthesized by reduction of the corresponding cation R+, is thermally stable up to ~380 K in the crystalline state under anaerobic conditions. With SQUID magnetometry, single-crystal and powder XRD, solid-state EPR and TG-DSC, reversible spin-Peierls transition between diamagnetic and paramagnetic states featuring ~10 K hysteretic loop is observed for R⋅ in the temperature range ~310-325 K; ΔH=~2.03 kJ mol-1 and ΔS=~6.23 J mol-1 K-1. The transition is accompanied by mechanical movement of the crystals, i. e., by thermosalient behavior. The low-temperature diamagnetic P-1 polymorph of R⋅ consists of R⋅2 π-dimers arranged in (…R⋅2…)n π-stacks; whereas the high-temperature paramagnetic P21/c polymorph, of uniform (…R⋅…)n π-stacks. With the XRD geometries, CASSCF and broken-symmetry DFT jointly suggest strong antiferromagnetic (AF) interactions within R⋅2 and weak between R⋅2 for the (…R⋅2…)n stacks; and moderate AF interactions between R⋅ for the (…R⋅…)n stacks. The fully hydrocarbon archetype of R⋅ does not reveal the aforementioned properties. Thus, the fluorinated 1,3,2-benzodithiazolyls pave a new pathway in the design and synthesis of metal-less magnetically-bistable materials.
Collapse
Affiliation(s)
- Alexander Yu Makarov
- Vorozhtsov Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Alexander A Buravlev
- Vorozhtsov Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
- Department of Natural Sciences National Research University, Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Galina V Romanenko
- International Tomography Center, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Artem S Bogomyakov
- International Tomography Center, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Boris A Zakharov
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
- Department of Natural Sciences National Research University, Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Vitaly A Morozov
- International Tomography Center, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Alexander S Sukhikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
- Department of Physics, National Research University - Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Inna K Shundrina
- Vorozhtsov Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Leonid A Shundrin
- Vorozhtsov Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Irina G Irtegova
- Vorozhtsov Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Svetlana V Cherepanova
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Irina Yu Bagryanskaya
- Vorozhtsov Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Pavel V Nikulshin
- Vorozhtsov Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
- Current address: Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Andrey V Zibarev
- Vorozhtsov Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| |
Collapse
|