1
|
Huo Q, Wang W, Dai J, Yuan X, Yu D, Xu B, Chi Y, Li H, Pei XL, Zhu G, Zhang L. Hypoxia and HIF-1 inhibition enhance lentiviral transduction efficiency: a novel strategy for gene delivery optimization. BMC Biotechnol 2025; 25:34. [PMID: 40346583 PMCID: PMC12065270 DOI: 10.1186/s12896-025-00969-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
Lentiviral vectors are widely used for stable gene delivery, but their transduction efficiency can be limited by suboptimal experimental conditions. Here, we investigated the role of oxygen concentration and hypoxia-inducible factor 1 (HIF-1) signaling in lentiviral packaging and transduction. We found that packaging lentivirus under hypoxic conditions (10% O₂) significantly increased viral titers and transduction efficiency by approximately 10%. However, hypoxic conditions during viral entry impaired infection efficiency, likely due to HIF-1α-mediated cellular protective mechanisms. Pretreatment of cells with the HIF-1 inhibitor PX-478 reversed this effect, enhancing viral entry and genome integration in a dose-dependent manner. Combining hypoxic virus packaging with PX-478 pretreatment synergistically improved transduction efficiency by 20%. These findings suggest that HIF-1 inhibition and controlled hypoxia significantly enhance lentiviral transduction efficiency, establishing a versatile strategy with broad applicability across viral vector-dependent biomedical applications.
Collapse
Affiliation(s)
- Qianyu Huo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin & CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin & CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jiawen Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin & CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xu Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin & CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Dandan Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin & CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Bingqi Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin & CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin & CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin & CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiao Lei Pei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin & CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Guoqing Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin & CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin & CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Cheever A, Lindsay HG, Kang CC, Hansen M, Demars K, O’Neill KL, Weber KS. Chimeric autoantibody receptor T cells specifically eliminate Graves' Disease autoreactive B cells. Front Immunol 2025; 16:1562662. [PMID: 40264771 PMCID: PMC12011768 DOI: 10.3389/fimmu.2025.1562662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction Chimeric antigen receptor (CAR) T cells have recently become an important treatment for hematological cancers by efficiently eliminating B cells. B cell depleting CAR T cells are also in clinical trials for their use in treating severe autoimmune diseases and have shown promise in patients who have exhausted other treatment options; however, they do result in immunosuppression due to B cell depletion. Specifically eliminating the disease-causing B cells while leaving the healthy B cells untouched could address this limitation. Methods A chimeric autoantibody receptor (CAAR) has an autoantigen as the binding domain of the CAR T cell and could allow for specific targeting of autoreactive B cell populations. In Graves' Disease (GD), pathogenesis is centered around autoreactive B cells which are specific for thyroid stimulating hormone receptor (TSHR). By engineering epitopes of TSHR as the binding domain, our CAAR was able to bind to anti-TSHR antibodies and B cell receptors. Results These TSHR CAAR T cells specifically eliminated anti-TSHR B cells, without exhibiting cytotoxicity against healthy B cells. We hypothesized that soluble autoantibodies and thyroid stimulating hormone (TSH) could bind to the CAAR, potentially causing overactivation or inhibition. When evaluated, we found that one construct was significantly impacted by soluble autoantibodies, while the other construct was uninhibited. Soluble TSH did not significantly affect either construct. The TSHR CAAR T cells were also effective at eliminating anti-TSHR B cells in the presence of plasma from various GD patients. Discussion Thus, TSHR CAAR T cells show promise in eliminating the disease-causing autoreactive B cells in GD without eliminating healthy cells. This treatment mechanism also has the potential to be used in other B cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - K. Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
3
|
Buckingham AB, Ho S, Knops-Mckim F, Ingemarsdotter CK, Lever AM. Optimization of a lentivirus-mediated gene therapy targeting HIV-1 RNA to eliminate HIV-1-infected cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102341. [PMID: 39434850 PMCID: PMC11491724 DOI: 10.1016/j.omtn.2024.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024]
Abstract
Persistence of HIV-1 in cellular reservoirs results in lifelong infection, with cure achieved only in rare cases through ablation of marrow-derived cells. We report on optimization of an approach that could potentially be aimed at eliminating these reservoirs, hijacking the HIV-1 alternative splicing process to functionalize the herpes simplex virus thymidine kinase (HSVtk)/ganciclovir (GCV) cell suicide system through targeted RNA trans-splicing at the HIV-1 D4 donor site. AUG1-deficient HSVtk therapeutic pre-mRNA was designed to gain an in-frame start codon from HIV-1 tat1. D4-targeting lentiviral vectors were produced and used to transduce HIV-1-expressing cells, where trans-spliced HIV-1 tat/HSVtk mRNA was successfully detected. However, translation of catalytically active HSVtk polypeptides from internal AUGs in HSVtk ΔAUG1 caused GCV-mediated cytotoxicity in uninfected cells. Modifying these sites in the D4 opt 2 lentiviral vector effectively mitigated this major off-target effect. Promoter choice was optimized for increased transgene expression. Affinity for HIV-1 RNA predicted in silico correlated with the propensity of opt 2 payloads to induce HIV-1 RNA trans-splicing and killing of HIV-1-expressing cells with no significant effect on uninfected cells. Following latency reversing agent (LRA) optimization and treatment, 45% of lymphocytes in an HIV-1-infected latency model could be eliminated with D4 opt 2/GCV. Further development would be warranted to exploit this approach.
Collapse
Affiliation(s)
- Amanda B. Buckingham
- University of Cambridge, Department of Medicine, Level 5 Addenbrooke’s Hospital, Hills Rd, Cambridge CB2 0QQ, UK
| | - Sophia Ho
- University of Cambridge, Department of Medicine, Level 5 Addenbrooke’s Hospital, Hills Rd, Cambridge CB2 0QQ, UK
| | | | - Carin K. Ingemarsdotter
- University of Cambridge, Department of Medicine, Level 5 Addenbrooke’s Hospital, Hills Rd, Cambridge CB2 0QQ, UK
| | - Andrew M.L. Lever
- University of Cambridge, Department of Medicine, Level 5 Addenbrooke’s Hospital, Hills Rd, Cambridge CB2 0QQ, UK
| |
Collapse
|
4
|
Liu X, Wang X, Zhang J, Tian T, Ning Y, Chen Y, Li G, Cui Z. Myc-mediated inhibition of HIF1a degradation promotes M2 macrophage polarization and impairs CD8 T cell function through lactic acid secretion in ovarian cancer. Int Immunopharmacol 2024; 141:112876. [PMID: 39146780 DOI: 10.1016/j.intimp.2024.112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Ovarian cancer, the eleventh most prevalent cancer among women and a significant cause of cancer-related mortality, poses considerable challenges. While the Myc oncogene is implicated in diverse cancers, its impact on tumours expressing Myc during immune therapy processes remains enigmatic. Our study investigated Myc overexpression in a murine ovarian cancer cell line, focusing on alterations in HIF1a function. Seahorse experiments were utilized to validate metabolic shifts post-Myc overexpression. Moreover, we explored macrophage polarization and immunosuppressive potential following coculture with Myc-overexpressing tumour cells by employing Gpr132-/- mice to obtain mechanistic insights. In vivo experiments established an immune-competent tumour-bearing mouse model, and CD8 T cell, Treg, and macrophage infiltration post-Myc overexpression were evaluated via flow cytometry. Additionally, adoptive transfer of OTI CD8 T cells was conducted to investigate antigen-specific immune response variations after Myc overexpression. The findings revealed a noteworthy delay in HIF1a degradation, enhancing its functionality and promoting the classical Warburg effect upon Myc overexpression. Lactic acid secretion by Myc-overexpressing tumour cells promoted Gpr132-dependent M2 macrophage polarization, leading to the induction of macrophages capable of significantly suppressing CD8 T cell function. Remarkably, heightened macrophage infiltration in tumour microenvironments post-Myc overexpression was observed alongside impaired CD8 T cell infiltration and function. Interestingly, CD4 T-cell infiltration remained unaltered, and immune-suppressive effects were alleviated when Myc-overexpressing tumour cells were administered to Gpr132-/- mice, shedding light on potential therapeutic avenues for ovarian cancer management.
Collapse
Affiliation(s)
- Xiangyu Liu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiangyu Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jingjing Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tian Tian
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ying Ning
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guoliang Li
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
5
|
Baroncini L, Muller CKS, Kadzioch NP, Wolfensberger R, Russenberger D, Bredl S, Mlambo T, Speck RF. Pro-inflammatory macrophages suppress HIV replication in humanized mice and ex vivo co-cultures. Front Immunol 2024; 15:1439328. [PMID: 39575258 PMCID: PMC11578737 DOI: 10.3389/fimmu.2024.1439328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/04/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Very little is known about the role of macrophages as immune mediators during natural HIV infection. Humanized mice are an extremely valuable in vivo model for studying HIV pathogenesis. However, the presence of murine mononuclear phagocytes in these models represents a significant limitation for studying their human counterpart. Therefore, we have developed a novel humanized mouse model that allows selective depletion of human myeloid cells at a time point of our choosing. Methods We genetically engineered human hematopoietic stem and progenitor cells (HSPCs) to express an inducible caspase-9 (iCas9) suicide system under a synthetic myeloid promoter. Using these HSPCs, we generated humanized mice. iCasp9 induction in vivo resulted in selective human myeloid cell death in this inducible human myeloid depletion (iHMD) mouse model. In addition, we co-cultured monocyte-derived macrophages with ex vivo HIV-infected PBMCs to further mechanistically investigate the effect of macrophages on HIV replication using flow cytometry, cytokine analysis, and RNA sequencing of both macrophages and CD4+ T cells. Results HIV infection induced a pro-inflammatory phenotype in HIV-infected humanized NSG mice during the early and late stages of HIV infection. Myeloid cell depletion in HIV-infected iHMD-NSG mice resulted in a rapid increase in HIV RNA replication, which was accompanied by a loss of pro-inflammatory cytokines. Co-culture of macrophages with ex vivo HIV-infected PBMCs reproduced their anti-HIV effects observed in vivo. Transcriptomic data showed macrophages upregulate antiviral cytokines and chemokines in co-culture, while inducing CD4+ T cells to upregulate HIV restriction factors and downregulate pathways involved in protein expression and cell replication. Discussion This study describes a novel role of macrophages as effector cells, both ex vivo and in vivo, acting against HIV replication and limiting disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roberto F. Speck
- Department of Infectious Diseases and Hospital Epidemiology, University of Zurich,
University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Seidler AE, Donath S, Gentemann L, Buettner M, Heisterkamp A, Kalies S. Protocol for the application of single-cell damage in murine intestinal organoid models. STAR Protoc 2024; 5:103153. [PMID: 39088328 PMCID: PMC11342180 DOI: 10.1016/j.xpro.2024.103153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 06/05/2024] [Indexed: 08/03/2024] Open
Abstract
Spatially defined organoid damage enables the study of cellular repair processes. However, capturing dynamic events in living tissues is technically challenging. Here, we present a protocol for the application of single-cell damage in intestinal organoid models. We describe steps for isolating and cultivating murine colon organoids, lentivirus generation and transduction of organoids, single-cell ablation by a femtosecond laser, and follow-up imaging analysis. We provide examples for the image acquisition pipeline of dynamic processes in organoids using a confocal microscope. For complete details on the use and execution of this protocol, please refer to Donath et al.1,2.
Collapse
Affiliation(s)
- Anna Elisabeth Seidler
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany.
| | - Sören Donath
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Lara Gentemann
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany; REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
| | - Manuela Buettner
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany; Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Stefan Kalies
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany; REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany.
| |
Collapse
|
7
|
Mier NC, Roper DK. Effects of an indole derivative on cell proliferation, transfection, and alternative splicing in production of lentiviral vectors by transient co-transfection. PLoS One 2024; 19:e0297817. [PMID: 38833479 PMCID: PMC11149887 DOI: 10.1371/journal.pone.0297817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/12/2024] [Indexed: 06/06/2024] Open
Abstract
Lentiviral vectors derived from human immunodeficiency virus type I are widely used to deliver functional gene copies to mammalian cells for research and gene therapies. Post-transcriptional splicing of lentiviral vector transgene in transduced host and transfected producer cells presents barriers to widespread application of lentiviral vector-based therapies. The present study examined effects of indole derivative compound IDC16 on splicing of lentiviral vector transcripts in producer cells and corresponding yield of infectious lentiviral vectors. Indole IDC16 was shown previously to modify alternative splicing in human immunodeficiency virus type I. Human embryonic kidney 293T cells were transiently transfected by 3rd generation backbone and packaging plasmids using polyethyleneimine. Reverse transcription-quantitative polymerase chain reaction of the fraction of unspliced genomes in human embryonic kidney 293T cells increased up to 31% upon the indole's treatment at 2.5 uM. Corresponding yield of infectious lentiviral vectors decreased up to 4.5-fold in a cell transduction assay. Adjusting timing and duration of IDC16 treatment indicated that the indole's disruption of early stages of transfection and cell cycle had a greater effect on exponential time course of lentiviral vector production than its reduction of post-transcriptional splicing. Decrease in transfected human embryonic kidney 293T proliferation by IDC16 became significant at 10 uM. These findings indicated contributions by early-stage transfection, cell proliferation, and post-transcriptional splicing in transient transfection of human embryonic kidney 293T cells for lentiviral vector production.
Collapse
Affiliation(s)
- Nataly Carolina Mier
- Department of Biological Engineering, Utah State University, Logan, Utah, United States of America
| | - Donald Keith Roper
- Department of Biological Engineering, Utah State University, Logan, Utah, United States of America
| |
Collapse
|
8
|
Danačíková Š, Straka B, Daněk J, Kořínek V, Otáhal J. In vitro human cell culture models in a bench-to-bedside approach to epilepsy. Epilepsia Open 2024; 9:865-890. [PMID: 38637998 PMCID: PMC11145627 DOI: 10.1002/epi4.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 04/20/2024] Open
Abstract
Epilepsy is the most common chronic neurological disease, affecting nearly 1%-2% of the world's population. Current pharmacological treatment and regimen adjustments are aimed at controlling seizures; however, they are ineffective in one-third of the patients. Although neuronal hyperexcitability was previously thought to be mainly due to ion channel alterations, current research has revealed other contributing molecular pathways, including processes involved in cellular signaling, energy metabolism, protein synthesis, axon guidance, inflammation, and others. Some forms of drug-resistant epilepsy are caused by genetic defects that constitute potential targets for precision therapy. Although such approaches are increasingly important, they are still in the early stages of development. This review aims to provide a summary of practical aspects of the employment of in vitro human cell culture models in epilepsy diagnosis, treatment, and research. First, we briefly summarize the genetic testing that may result in the detection of candidate pathogenic variants in genes involved in epilepsy pathogenesis. Consequently, we review existing in vitro cell models, including induced pluripotent stem cells and differentiated neuronal cells, providing their specific properties, validity, and employment in research pipelines. We cover two methodological approaches. The first approach involves the utilization of somatic cells directly obtained from individual patients, while the second approach entails the utilization of characterized cell lines. The models are evaluated in terms of their research and clinical benefits, relevance to the in vivo conditions, legal and ethical aspects, time and cost demands, and available published data. Despite the methodological, temporal, and financial demands of the reviewed models they possess high potential to be used as robust systems in routine testing of pathogenicity of detected variants in the near future and provide a solid experimental background for personalized therapy of genetic epilepsies. PLAIN LANGUAGE SUMMARY: Epilepsy affects millions worldwide, but current treatments fail for many patients. Beyond traditional ion channel alterations, various genetic factors contribute to the disorder's complexity. This review explores how in vitro human cell models, either from patients or from cell lines, can aid in understanding epilepsy's genetic roots and developing personalized therapies. While these models require further investigation, they offer hope for improved diagnosis and treatment of genetic forms of epilepsy.
Collapse
Affiliation(s)
- Šárka Danačíková
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Department of Physiology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Barbora Straka
- Neurogenetics Laboratory of the Department of Paediatric Neurology, Second Faculty of MedicineCharles University and Motol University Hospital, Full Member of the ERN EpiCAREPragueCzech Republic
| | - Jan Daněk
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Vladimír Kořínek
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jakub Otáhal
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
9
|
Berman RE, Dampier W, Nonnemacher MR, Wigdahl B. What's in a cure: designing a broad-spectrum HIV gene therapy. Curr Opin HIV AIDS 2024; 19:150-156. [PMID: 38547339 PMCID: PMC11188629 DOI: 10.1097/coh.0000000000000846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW The leading gene editing strategy for a human immunodeficiency virus type 1 (HIV-1) cure involves the delivery of SaCas9 and two guide RNAs (gRNAs) in an adeno-associated viral (AAV) vector. As a dual-component system, CRISPR is targeted to a genetic locus through the choice of a Cas effector and gRNA protospacer design pair. As CRISPR research has expanded in recent years, these components have been investigated for utilization in cure strategies, which will be discussed in this article. RECENT FINDINGS Type II SpCas9 and SaCas9 have been the leading Cas effectors across gene editing therapeutics to date. Additionally, extensive research has expanded the potential to multiplex gRNAs and target them effectively to the highly genetically diverse HIV-1 provirus. More recently, the Type V family of Cas12 effectors opens a new opportunity to use a smaller Cas protein for packaging into an AAV vector with multiplexed gRNAs. SUMMARY In understanding the individual components of a CRISPR/Cas therapeutic cure for HIV-1, it is important to know that the currently used strategies can be improved upon. Future areas will include alternative smaller Cas effectors, multiplexed gRNAs designs, and/or alternative delivery modalities.
Collapse
Affiliation(s)
- Rachel E. Berman
- Department of Microbiology and Immunology, Drexel University College of Medicine
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Amissah OB, Basnet R, Chen W, Habimana JDD, Baiden BE, Owusu OA, Saeed BJ, Li Z. Enhancing antitumor response by efficiently generating large-scale TCR-T cells targeting a single epitope across multiple cancer antigens. Cell Immunol 2024; 399-400:104827. [PMID: 38733699 DOI: 10.1016/j.cellimm.2024.104827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
The need to contrive interventions to curb the rise in cancer incidence and mortality is critical for improving patients' prognoses. Adoptive cell therapy is challenged with quality large-scale production, heightening its production cost. Several cancer types have been associated with the expression of highly-immunogenic CTAG1 and CTAG2 antigens, which share common epitopes. Targeting two antigens on the same cancer could improve the antitumor response of TCR-T cells. In this study, we exploited an efficient way to generate large-fold quality TCR-T cells and also demonstrated that the common epitopes of CTAG1 and CTAG2 antigens provide an avenue for improved cancer-killing via dual-antigen-epitope targeting. Our study revealed that xeno/sera-free medium could expand TCR-T cells to over 500-fold, posing as a better replacement for FBS-supplemented media. Human AB serum was also shown to be a good alternative in the absence of xeno/sera-free media. Furthermore, TCR-T cells stimulated with beads-coated T-activator showed a better effector function than soluble T-activator stimulated TCR-T cells. Additionally, TCR-T cells that target multiple antigens in the same cancer yield better anticancer activity than those targeting a single antigen. This showed that targeting multiple antigens with a common epitope may enhance the antitumor response efficacy of T cell therapies.
Collapse
Affiliation(s)
- Obed Boadi Amissah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Rajesh Basnet
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Wenfang Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jean de Dieu Habimana
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Belinda Edwina Baiden
- College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Osei Asibey Owusu
- Department of Clinical and Medical Sciences, University of Exeter, Exeter, UK
| | - Babangida Jabir Saeed
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China; GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, China.
| |
Collapse
|
11
|
Maimaitili M, Chen M, Febbraro F, Ucuncu E, Kelly R, Niclis JC, Christiansen JR, Mermet-Joret N, Niculescu D, Lauritsen J, Iannielli A, Klæstrup IH, Jensen UB, Qvist P, Nabavi S, Broccoli V, Nykjær A, Romero-Ramos M, Denham M. Enhanced production of mesencephalic dopaminergic neurons from lineage-restricted human undifferentiated stem cells. Nat Commun 2023; 14:7871. [PMID: 38052784 PMCID: PMC10698156 DOI: 10.1038/s41467-023-43471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
Current differentiation protocols for generating mesencephalic dopaminergic (mesDA) neurons from human pluripotent stem cells result in grafts containing only a small proportion of mesDA neurons when transplanted in vivo. In this study, we develop lineage-restricted undifferentiated stem cells (LR-USCs) from pluripotent stem cells, which enhances their potential for differentiating into caudal midbrain floor plate progenitors and mesDA neurons. Using a ventral midbrain protocol, 69% of LR-USCs become bona fide caudal midbrain floor plate progenitors, compared to only 25% of human embryonic stem cells (hESCs). Importantly, LR-USCs generate significantly more mesDA neurons under midbrain and hindbrain conditions in vitro and in vivo. We demonstrate that midbrain-patterned LR-USC progenitors transplanted into 6-hydroxydopamine-lesioned rats restore function in a clinically relevant non-pharmacological behavioral test, whereas midbrain-patterned hESC-derived progenitors do not. This strategy demonstrates how lineage restriction can prevent the development of undesirable lineages and enhance the conditions necessary for mesDA neuron generation.
Collapse
Affiliation(s)
- Muyesier Maimaitili
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Muwan Chen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Fabia Febbraro
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Ekin Ucuncu
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Rachel Kelly
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | | | | | - Noëmie Mermet-Joret
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000C, Aarhus, Denmark
- Center of Excellence PROMEMO, Aarhus University, Aarhus, Denmark
| | - Dragos Niculescu
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
- Center of Excellence PROMEMO, Aarhus University, Aarhus, Denmark
| | - Johanne Lauritsen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Angelo Iannielli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Ida H Klæstrup
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Uffe Birk Jensen
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Per Qvist
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000C, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, 8000C, Aarhus, Denmark
- Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, 8000C, Aarhus, Denmark
| | - Sadegh Nabavi
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000C, Aarhus, Denmark
- Center of Excellence PROMEMO, Aarhus University, Aarhus, Denmark
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - Anders Nykjær
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
- Center of Excellence PROMEMO, Aarhus University, Aarhus, Denmark
| | - Marina Romero-Ramos
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark
| | - Mark Denham
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C, Aarhus, Denmark.
- Department of Biomedicine, Aarhus University, 8000C, Aarhus, Denmark.
| |
Collapse
|
12
|
Wang X, Yang X, Yuan X, Wang W, Wang Y. Chimeric antigen receptor-engineered NK cells: new weapons of cancer immunotherapy with great potential. Exp Hematol Oncol 2022; 11:85. [PMID: 36324149 PMCID: PMC9628181 DOI: 10.1186/s40164-022-00341-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T (CAR-T) cells have obtained prominent achievement in the clinical immunotherapy of hematological malignant tumors, leading to a rapid development of cellular immunotherapy in cancer treatment. Scientists are also aware of the prospective advantages of CAR engineering in cellular immunotherapy. Due to various limitations such as the serious side effects of CAR-T therapy, researchers began to investigate other immune cells for CAR modification. Natural killer (NK) cells are critical innate immune cells with the characteristic of non-specifically recognizing target cells and with the potential to become "off-the-shelf" products. In recent years, many preclinical studies on CAR-engineered NK (CAR-NK) cells have shown their remarkable efficacy in cancer therapy and their superiority over autologous CAR-T cells. In this review, we summarize the generation, mechanisms of anti-tumor activity and unique advantages of CAR-NK cells, and then analyze some challenges and recent clinical trials about CAR-NK cells therapy. We believe that CAR-NK therapy is a promising prospect for cancer immunotherapy in the future.
Collapse
Affiliation(s)
- Xiao Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xuejiao Yang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiang Yuan
- grid.13291.380000 0001 0807 1581Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Wenbo Wang
- grid.24516.340000000123704535Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yueying Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
13
|
Bergmann T, Liu Y, Skov J, Mogus L, Lee J, Pfisterer U, Handfield LF, Asenjo-Martinez A, Lisa-Vargas I, Seemann SE, Lee JTH, Patikas N, Kornum BR, Denham M, Hyttel P, Witter MP, Gorodkin J, Pers TH, Hemberg M, Khodosevich K, Hall VJ. Production of human entorhinal stellate cell-like cells by forward programming shows an important role of Foxp1 in reprogramming. Front Cell Dev Biol 2022; 10:976549. [PMID: 36046338 PMCID: PMC9420913 DOI: 10.3389/fcell.2022.976549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Stellate cells are principal neurons in the entorhinal cortex that contribute to spatial processing. They also play a role in the context of Alzheimer's disease as they accumulate Amyloid beta early in the disease. Producing human stellate cells from pluripotent stem cells would allow researchers to study early mechanisms of Alzheimer's disease, however, no protocols currently exist for producing such cells. In order to develop novel stem cell protocols, we characterize at high resolution the development of the porcine medial entorhinal cortex by tracing neuronal and glial subtypes from mid-gestation to the adult brain to identify the transcriptomic profile of progenitor and adult stellate cells. Importantly, we could confirm the robustness of our data by extracting developmental factors from the identified intermediate stellate cell cluster and implemented these factors to generate putative intermediate stellate cells from human induced pluripotent stem cells. Six transcription factors identified from the stellate cell cluster including RUNX1T1, SOX5, FOXP1, MEF2C, TCF4, EYA2 were overexpressed using a forward programming approach to produce neurons expressing a unique combination of RELN, SATB2, LEF1 and BCL11B observed in stellate cells. Further analyses of the individual transcription factors led to the discovery that FOXP1 is critical in the reprogramming process and omission of RUNX1T1 and EYA2 enhances neuron conversion. Our findings contribute not only to the profiling of cell types within the developing and adult brain's medial entorhinal cortex but also provides proof-of-concept for using scRNAseq data to produce entorhinal intermediate stellate cells from human pluripotent stem cells in-vitro.
Collapse
Affiliation(s)
- Tobias Bergmann
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yong Liu
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jonathan Skov
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Leo Mogus
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Julie Lee
- Novo Nordisk Foundation Center for Stem Cell Research, DanStem University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrich Pfisterer
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Andrea Asenjo-Martinez
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irene Lisa-Vargas
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan E. Seemann
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jimmy Tsz Hang Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nikolaos Patikas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Birgitte Rahbek Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark Denham
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Poul Hyttel
- Disease, Stem Cells and Embryology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Menno P. Witter
- Kavli Institute for Systems Neuroscience, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Tune H. Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vanessa Jane Hall
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
14
|
Zhao Y, Dong J. Effect of inactivating RNA viruses by coupled UVC and UVA LEDs evaluated by a viral surrogate commonly used as a genetic vector. BIOMEDICAL OPTICS EXPRESS 2022; 13:4429-4444. [PMID: 36032577 PMCID: PMC9408255 DOI: 10.1364/boe.468445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
RNA viruses are ubiquitous in nature, many of which can cause severe infectious syndromes to humanity, e.g., the SARS-CoV-2 virus. Ultraviolet (UV) radiation has been widely studied for inactivating various species of microorganisms, including viruses. The most applicable UV light for viruses ranges from 200nm to 280nm in wavelength, i.e., UVC. More recently, the synergy of UVA light with UVC has been studied in disinfecting bacteria in polluted water. However, little attention has been paid to studying viral inactivation by coupled UVC and UVA LEDs. The necessity of such research is to find an effective and economical solution for the LEDs of these two bands. Along this track, we attempt to tackle two major challenges. The first is to find a suitable viral surrogate that can safely be used in ordinary labs. In this aspect, lentivirus is commonly used as a genetic vector and has been selected to surrogate RNA viruses. Another is to determine the effective dosage of the coupled UVC and UVA light. To this end, the surrogate lentivirus was irradiated by 280nm (UVC) LEDs, 365nm (UVA) LEDs, and their combination at various doses. Survival rates were detected to compare the efficacy of various options. Moreover, the viral RNA damage was detected by RT-qPCR to disclose the mechanism of viral death. The results have shown that for the same duration of irradiation, the effect of the full-power 280nm LEDs is equivalent to that of the half-power 280nm LEDs combined with a suitable radiant power of the 365nm LEDs. The observations have been further confirmed by the effect of damaging the viral RNA by either the 280nm or 365nm light. In conclusion, the experimental results provide clear evidence of alleviating the requirement of UVC LEDs in viral inactivation by substituting them partially with UVA LEDs.
Collapse
Affiliation(s)
- Yun Zhao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jianfei Dong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
15
|
Zhang H, Ye X, Wen J, Cai Z, Li Y, Zhang M, Shen L, Cai J. Anti-HER2 scFv-CCL19-IL7 recombinant protein inhibited gastric tumor growth in vivo. Sci Rep 2022; 12:10461. [PMID: 35729189 PMCID: PMC9213520 DOI: 10.1038/s41598-022-14336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
HER-2 targeted therapies, such as monoclonal antibodies (mAbs) and CAR-T cell therapy have been applied in the treatment of various of cancers. However, the anti-HER2 CAR-T cell therapy are limited by its expensive production procedure and fatal side effects such as cytokine storm or "On target, off tumor". The application of anti-HER2 mAbs to the soild tumor are also plagued by the patients resistant with different mechanisms. Thus, the recombinant protein technology can be presented as an attractive methods in advantage its less toxic and lower cost. In this study, we produced a HER-2-targeting recombinant protein, which is the fusion of the anti-HER-2 single chain fragment variable domain, CCL19 and IL7 (HCI fusion protein). Our results showed that the recombinant protein can induce the specific lysis effects of immune cells on HER-2-positive gastric tumor cells and can suppress gastric tumor growth in a xenograft model by chemotactic autoimmune cell infiltration into tumor tissues and activated T cells. Taken together, our results revealed that the HCI fusion protein can be applied as a subsequent clinical drug in treating HER-2 positive gastric tumors.
Collapse
Affiliation(s)
- Haiqiang Zhang
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- Department of Oncology &Surgery, Hebei General Hospital, 348 West Heping Road, Shijiazhuang, 050051, Hebei, China
- Department of Surgery, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xueshuai Ye
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- Department of Oncology &Surgery, Hebei General Hospital, 348 West Heping Road, Shijiazhuang, 050051, Hebei, China
| | - Junye Wen
- Department of Oncology &Surgery, Hebei General Hospital, 348 West Heping Road, Shijiazhuang, 050051, Hebei, China
| | - Ziqi Cai
- Hebei Cell Therapy Technology Innovation Center, HOFOY Medicine Hebei Co., LTD, 238 Yangzi River Avenue, Shijiazhuang, 050000, China
| | - Yang Li
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- Department of Oncology &Surgery, Hebei General Hospital, 348 West Heping Road, Shijiazhuang, 050051, Hebei, China
| | - Mengya Zhang
- Hebei Cell Therapy Technology Innovation Center, HOFOY Medicine Hebei Co., LTD, 238 Yangzi River Avenue, Shijiazhuang, 050000, China
| | - Li Shen
- Hebei Cell Therapy Technology Innovation Center, HOFOY Medicine Hebei Co., LTD, 238 Yangzi River Avenue, Shijiazhuang, 050000, China
| | - Jianhui Cai
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.
- Department of Oncology &Surgery, Hebei General Hospital, 348 West Heping Road, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
16
|
Quach ABV, Little SR, Shih SCC. Viral Generation, Packaging, and Transduction on a Digital Microfluidic Platform. Anal Chem 2022; 94:4039-4047. [PMID: 35192339 DOI: 10.1021/acs.analchem.1c05227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viral-based systems are a popular delivery method for introducing exogenous genetic material into mammalian cells. Unfortunately, the preparation of lentiviruses containing the machinery to edit the cells is labor-intensive, with steps requiring optimization and sensitive handling. To mitigate these challenges, we introduce the first microfluidic method that integrates lentiviral generation, packaging, and transduction. The new method allows the production of viral titers between 106 and 107 (similar to macroscale production) and high transduction efficiency for hard-to-transfect cell lines. We extend the technique for gene editing applications and show how this technique can be used to knock out and knock down estrogen receptor gene─a gene prominently responsible for 70% of breast cancer cases. This new technique is automated with multiplexing capabilities, which have the potential to standardize the methods for viral-based genome engineering.
Collapse
Affiliation(s)
- Angela B V Quach
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.,Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| | - Samuel R Little
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.,Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec H3G 1M8, Canada
| | - Steve C C Shih
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.,Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.,Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec H3G 1M8, Canada
| |
Collapse
|
17
|
Geng L, Kroning KE, Wang W. SPARK: A Transcriptional Assay for Recording Protein-Protein Interactions in a Defined Time Window. Curr Protoc 2021; 1:e190. [PMID: 34260831 DOI: 10.1002/cpz1.190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein-protein interactions (PPIs) are ubiquitously involved in cellular processes such as gene expression, enzymatic catalysis, and signal transduction. To study dynamic PPIs, real-time methods such as Förster resonance energy transfer and bioluminescence resonance energy transfer can provide high temporal resolution, but they only allow PPI detection in a limited area at a time and do not permit post-PPI analysis or manipulation of the cells. Integration methods such as the yeast two-hybrid system and split protein systems integrate PPI signals over time and allow subsequent analysis, but they lose information on dynamics. To address some of these limitations, an assay named SPARK (Specific Protein Association tool giving transcriptional Readout with rapid Kinetics) has recently been published. Similar to many existing integrators, SPARK converts PPIs into a transcriptional signal. SPARK, however, also adds blue light as a co-stimulus to achieve temporal gating; SPARK only records PPIs during light stimulation. Here, we describe the procedures for using SPARK assays to study a dynamic PPI of interest, including designing DNA constructs and optimization in HEK293T/17 cell cultures. These protocols are generally applicable to various PPI partners and can be used in different biological contexts. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Designing DNA constructs for SPARK Basic Protocol 2: Performing the SPARK assay in HEK293T/17 cell cultures Support Protocol 1: Lentivirus preparation Support Protocol 2: Immunostaining of SPARK components.
Collapse
Affiliation(s)
- Lequn Geng
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Kayla E Kroning
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
18
|
Gill KP, Denham M. Optimized Transgene Delivery Using Third-Generation Lentiviruses. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2020; 133:e125. [PMID: 32986282 PMCID: PMC7583475 DOI: 10.1002/cpmb.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lentivirus system enables efficient genetic modification of both dividing and non-dividing cells and therefore is a useful tool for elucidating developmental processes and disease pathogenesis. The development of third-generation lentiviruses has resulted in improved biosafety, low immunogenicity, and substantial packaging capabilities. However, because third-generation lentiviruses require successful co-transfection with four plasmids, this typically means that lower titers are attained. This is problematic, as it is often desirable to produce purified lentiviruses with high titers (>1 × 108 TU/ml), especially for in vivo applications. The manufacturing process for lentiviruses involves several critical experimental factors that can influence titer, purity, and transduction efficiency. Here, we describe a straightforward, stepwise protocol for the reproducible manufacture of high-titer third-generation lentiviruses (1 × 108 to 1 × 109 TU/ml). This optimized protocol enhances transgene expression by use of Lipofectamine transfection and optimized serum replacement medium, a single ultracentrifugation step, use of a sucrose cushion, and addition of a histone deacetylation inhibitor. Furthermore, we provide alternate methods for titration analyses, including functional and genomic integration analyses, using common laboratory techniques such as FACS as well as genomic DNA extraction and qPCR. These optimized methods will be beneficial for investigating developmental processes and disease pathogenesis in vitro and in vivo. © 2020 The Authors. Basic Protocol 1: Lentivirus production Support Protocol: Lentivirus concentration Basic Protocol 2: Lentivirus titration Alternate Protocol 1: Determination of viral titration by FACS analysis Alternate Protocol 2: Determination of viral titration by genome integration analysis.
Collapse
Affiliation(s)
- Katherine P. Gill
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular MedicineAarhus UniversityAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Mark Denham
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular MedicineAarhus UniversityAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| |
Collapse
|