1
|
Reardon-Robinson ME, Nguyen MT, Sanchez BC, Osipiuk J, Rückert C, Chang C, Chen B, Nagvekar R, Joachimiak A, Tauch A, Das A, Ton-That H. A cryptic oxidoreductase safeguards oxidative protein folding in Corynebacterium diphtheriae. Proc Natl Acad Sci U S A 2023; 120:e2208675120. [PMID: 36787356 PMCID: PMC9974433 DOI: 10.1073/pnas.2208675120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
In many gram-positive Actinobacteria, including Actinomyces oris and Corynebacterium matruchotii, the conserved thiol-disulfide oxidoreductase MdbA that catalyzes oxidative folding of exported proteins is essential for bacterial viability by an unidentified mechanism. Intriguingly, in Corynebacterium diphtheriae, the deletion of mdbA blocks cell growth only at 37 °C but not at 30 °C, suggesting the presence of alternative oxidoreductase enzyme(s). By isolating spontaneous thermotolerant revertants of the mdbA mutant at 37 °C, we obtained genetic suppressors, all mapped to a single T-to-G mutation within the promoter region of tsdA, causing its elevated expression. Strikingly, increased expression of tsdA-via suppressor mutations or a constitutive promoter-rescues the pilus assembly and toxin production defects of this mutant, hence compensating for the loss of mdbA. Structural, genetic, and biochemical analyses demonstrated TsdA is a membrane-tethered thiol-disulfide oxidoreductase with a conserved CxxC motif that can substitute for MdbA in mediating oxidative folding of pilin and toxin substrates. Together with our observation that tsdA expression is upregulated at nonpermissive temperature (40 °C) in wild-type cells, we posit that TsdA has evolved as a compensatory thiol-disulfide oxidoreductase that safeguards oxidative protein folding in C. diphtheriae against thermal stress.
Collapse
Affiliation(s)
- Melissa E. Reardon-Robinson
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX77030
| | - Minh Tan Nguyen
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA90095
| | - Belkys C. Sanchez
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX77030
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
| | - Jerzy Osipiuk
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL60637
- Structural Biology Center, Argonne National Laboratory, Lemont, IL60439
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, D-33615Bielefeld, Germany
| | - Chungyu Chang
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA90095
| | - Bo Chen
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX77030
| | - Rahul Nagvekar
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX77030
- Stanford University, Stanford, CA94305
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL60637
- Structural Biology Center, Argonne National Laboratory, Lemont, IL60439
| | - Andreas Tauch
- Center for Biotechnology, Bielefeld University, D-33615Bielefeld, Germany
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT06030
| | - Hung Ton-That
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA90095
| |
Collapse
|
2
|
Ribonuclease J-Mediated mRNA Turnover Modulates Cell Shape, Metabolism and Virulence in Corynebacterium diphtheriae. Microorganisms 2021; 9:microorganisms9020389. [PMID: 33672886 PMCID: PMC7917786 DOI: 10.3390/microorganisms9020389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/16/2023] Open
Abstract
Controlled RNA degradation is a crucial process in bacterial cell biology for maintaining proper transcriptome homeostasis and adaptation to changing environments. mRNA turnover in many Gram-positive bacteria involves a specialized ribonuclease called RNase J (RnJ). To date, however, nothing is known about this process in the diphtheria-causative pathogen Corynebacterium diphtheriae, nor is known the identity of this ribonuclease in this organism. Here, we report that C. diphtheriae DIP1463 encodes a predicted RnJ homolog, comprised of a conserved N-terminal β-lactamase domain, followed by β-CASP and C-terminal domains. A recombinant protein encompassing the β-lactamase domain alone displays 5'-exoribonuclease activity, which is abolished by alanine-substitution of the conserved catalytic residues His186 and His188. Intriguingly, deletion of DIP1463/rnj in C. diphtheriae reduces bacterial growth and generates cell shape abnormality with markedly augmented cell width. Comparative RNA-seq analysis revealed that RnJ controls a large regulon encoding many factors predicted to be involved in biosynthesis, regulation, transport, and iron acquisition. One upregulated gene in the ∆rnj mutant is ftsH, coding for a membrane protease (FtsH) involved in cell division, whose overexpression in the wild-type strain also caused cell-width augmentation. Critically, the ∆rnj mutant is severely attenuated in virulence in a Caenorhabditis elegans model of infection, while the FtsH-overexpressing and toxin-less strains exhibit full virulence as the wild-type strain. Evidently, RNase J is a key ribonuclease in C. diphtheriae that post-transcriptionally influences the expression of numerous factors vital to corynebacterial cell physiology and virulence. Our findings have significant implications for basic biological processes and mechanisms of corynebacterial pathogenesis.
Collapse
|
3
|
Corynebacterium matruchotii Demography and Adhesion Determinants in the Oral Cavity of Healthy Individuals. Microorganisms 2020; 8:microorganisms8111780. [PMID: 33202844 PMCID: PMC7697164 DOI: 10.3390/microorganisms8111780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Corynebacterium matruchotii may be key in tooth biofilm formation, but information about demographics, bacterial partners, and binding ligands is limited. The aims of this study were to explore C. matruchotii’s demography by age and colonization site (plaque and saliva), in vitro bacterial–bacterial interactions in coaggregation and coadhesion assays, and glycolipids as potential binding ligands in thin-layer chromatogram binding assays. C. matruchotii prevalence increased from 3 months to 18 years old, with 90% and 100% prevalence in saliva and tooth biofilm, respectively. C. matruchotii aggregated in saliva in a dose-dependent manner but lacked the ability to bind to saliva-coated hydroxyapatite. In vivo, C. matruchotii abundance paralleled that of Actinomyces naeslundii, Capnocytophaga sp. HMT 326, Fusobacterium nucleatum subsp. polymorphum, and Tannerella sp. HMT 286. In vitro, C. matruchotii bound both planktonic and surface-bound A. naeslundii, Actinomyces odontolyticus, and F. nucleatum. In addition, C. matruchotii exhibited the ability to bind glycolipids isolated from human erythrocytes (blood group O), human granulocytes, rabbit intestine, human meconium, and rat intestine. Binding assays identified candidate carbohydrate ligands as isoglobotriaosylceramide, Galα3-isoglobotriaosylceramide, lactotriaosylceramide, lactotetraosylceramide, neolactotetraosylceramide, and neolactohexaosylceramide. Thus, C. matruchotii likely uses specific plaque bacteria to adhere to the biofilm and may interact with human tissues through carbohydrate interactions.
Collapse
|