1
|
Rafeek RAM, Ketheesan N, Good MF, Pandey M, Lepletier A. Low-dose interleukin 2 therapy halts the progression of post-streptococcal autoimmune complications in a rat model of rheumatic heart disease. mBio 2025; 16:e0382324. [PMID: 39998162 PMCID: PMC11980396 DOI: 10.1128/mbio.03823-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
Acute rheumatic fever (ARF) is an autoimmune disease triggered by antibodies and T cells targeting the group A Streptococcus (GAS, Strep A) bacterium, often leading to rheumatic heart disease (RHD) and Sydenham's chorea. Long-term monthly penicillin injections are recognized as a cornerstone of public health programs to prevent Strep A reinfection and progression of ARF. However, compliance is poor, and better tools are required to slow disease progression. Preclinical evidence suggests that this can be achieved. Using a rat model that replicates post-streptococcal autoimmune complications, we explored the potential of low-dose interleukin-2 (LD-IL-2) as an immunotherapeutic intervention for ARF/RHD. In this model, injections of recombinant M protein from Strep A type 5 (rM5) to Lewis rats induce cardiac tissue inflammation, conduction abnormalities, and cross-reactive antibodies against cardiac and brain proteins central to disease pathogenesis. In animals injected with rM5 and treated with LD-IL-2, no cardiac functional or histological changes was observed. LD-IL-2 therapy effectively reduced the production of cross-reactive antibodies raised against host proteins and significantly increased regulatory T cells in the mediastinal lymph nodes. These novel findings suggest that LD-IL-2 will be an effective immunotherapeutic agent for treating ARF and has the potential to replace the standard monthly penicillin injections. IMPORTANCE Post-streptococcal autoimmune syndromes, including acute rheumatic fever, rheumatic heart disease, and Sydenham's chorea, represent a significant yet often under-recognized health and economic burden. This is especially true in low-income countries and among Indigenous populations in high-income nations, where the disease burden is most severe. These conditions arise from an autoimmune response to group A Streptococcus infections, leading to long-term health complications, disability, and premature death. Despite their widespread impact, no vaccine is currently available to prevent reinfections, and no specific therapy exists to treat the resulting autoimmune process. This study uses a rat model of rheumatic heart disease to evaluate the potential of low-dose interleukin 2 therapy in improving clinical outcomes and reducing the incidence of autoimmune diseases triggered by streptococcal infections.
Collapse
Affiliation(s)
| | - Natkunam Ketheesan
- School of Science and Technology, University of New England, New South Wales, Australia
| | - Michael F. Good
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Manisha Pandey
- School of Science and Technology, University of New England, New South Wales, Australia
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Ailin Lepletier
- School of Science and Technology, University of New England, New South Wales, Australia
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
2
|
Kawakami N, Wekerle H. Life history of a brain autoreactive T cell: From thymus through intestine to blood-brain barrier and brain lesion. Neurotherapeutics 2024; 21:e00442. [PMID: 39237437 PMCID: PMC11585894 DOI: 10.1016/j.neurot.2024.e00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Brain antigen-specific autoreactive T cells seem to play a key role in inducing inflammation in the central nervous system (CNS), a characteristic feature of human multiple sclerosis (MS). These T cells are generated within the thymus, where they escape negative selection and become integrated into the peripheral immune repertoire of immune cells. Typically, these autoreactive T cells rest in the periphery without attacking the CNS. When autoimmune T cells enter gut-associated lymphatic tissue (GALT), they may be stimulated by the microbiota and its metabolites. After activation, the cells migrate into the CNS through the blood‒brain barrier, become reactivated upon interacting with local antigen-presenting cells, and induce inflammatory lesions within the brain parenchyma. This review describes how microbiota influence autoreactive T cells during their life, starting in the thymus, migrating through the periphery and inducing inflammation in their target organ, the CNS.
Collapse
Affiliation(s)
- Naoto Kawakami
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| | - Hartmut Wekerle
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany; Emeritus Group Neuroimmunology, Max Planck Institute of Biological Intelligence, Germany.
| |
Collapse
|
3
|
Munif MR, Hart RA, Rafeek RAM, Mallawaarachchi AC, Anderson L, McMillan DJ, Sriprakash KS, Ketheesan N. Mechanisms that potentially contribute to the development of post-streptococcal glomerulonephritis. Pathog Dis 2024; 82:ftae024. [PMID: 39341789 PMCID: PMC11556339 DOI: 10.1093/femspd/ftae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024] Open
Abstract
Post-streptococcal glomerulonephritis (PSGN) is primarily associated with preceding group A streptococcal skin or throat infections, now mainly observed in economically disadvantaged communities. This condition significantly predisposes individuals to later-life chronic kidney disease and concurrent renal complications, with the elderly experiencing increased severity and less favourable outcomes. Streptococcal pyrogenic exotoxin B and nephritis-associated plasmin receptor are identified nephritogenic antigens (nephritogens). Pathogenesis of PSGN is multifactorial. It can involve the formation of antigen-antibody immune complexes, causing inflammatory damage to renal glomeruli. Deposition of circulating immune complexes or in situ formation of immune complexes in glomeruli, or both, results in glomerulonephritis. Additionally, molecular mimicry is hypothesized as a mechanism, wherein cross-reactivity between anti-streptococcal antibodies and glomerular intrinsic matrix proteins leads to glomerulonephritis. Besides, as observed in clinical studies, streptococcal inhibitor of complement, a streptococcal-secreted protein, can also be associated with PSGN. However, the interplay between these streptococcal antigens in the pathogenesis of PSGN necessitates further investigation. Despite the clinical significance of PSGN, the lack of credible animal models poses challenges in understanding the association between streptococcal antigens and the disease process. This review outlines the postulated mechanisms implicated in the development of PSGN with possible therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Raguib Munif
- School of Science & Technology, University of New England, NSW, Australia
- Department of Surgery and Obstetrics, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Robert A Hart
- School of Science & Technology, University of New England, NSW, Australia
| | - Rukshan A M Rafeek
- School of Science & Technology, University of New England, NSW, Australia
| | - Amali C Mallawaarachchi
- School of Clinical Medicine, University of New South Wales, NSW, Australia
- Garvan Institute of Medical Research, NSW, Australia
| | - Lyndal Anderson
- Sydney Medical School, The University of Sydney, NSW, Australia
- Royal Prince Alfred Hospital, NSW, Australia
| | - David J McMillan
- School of Science & Technology, University of New England, NSW, Australia
- School of Science, Technology, Engineering and Genecology Research Centre, University of the Sunshine Coast, Queensland, Australia
| | - Kadaba S Sriprakash
- School of Science & Technology, University of New England, NSW, Australia
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Natkunam Ketheesan
- School of Science & Technology, University of New England, NSW, Australia
- School of Science, Technology, Engineering and Genecology Research Centre, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
4
|
Diebold M, Fehrenbacher L, Frosch M, Prinz M. How myeloid cells shape experimental autoimmune encephalomyelitis: At the crossroads of outside-in immunity. Eur J Immunol 2023; 53:e2250234. [PMID: 37505465 DOI: 10.1002/eji.202250234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/21/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of central nervous system (CNS) autoimmunity. It is most commonly used to mimic aspects of multiple sclerosis (MS), a demyelinating disorder of the human brain and spinal cord. The innate immune response displays one of the core pathophysiological features linked to both the acute and chronic stages of MS. Hence, understanding and targeting the innate immune response is essential. Microglia and other CNS resident MUs, as well as infiltrating myeloid cells, diverge substantially in terms of both their biology and their roles in EAE. Recent advances in the field show that antigen presentation, as well as disease-propagating and regulatory interactions with lymphocytes, can be attributed to specific myeloid cell types and cell states in EAE lesions, following a distinct temporal pattern during disease initiation, propagation and recovery. Furthermore, single-cell techniques enable the assessment of characteristic proinflammatory as well as beneficial cell states, and identification of potential treatment targets. Here, we discuss the principles of EAE induction and protocols for varying experimental paradigms, the composition of the myeloid compartment of the CNS during health and disease, and systematically review effects on myeloid cells for therapeutic approaches in EAE.
Collapse
Affiliation(s)
- Martin Diebold
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
| | - Luca Fehrenbacher
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
| | - Maximilian Frosch
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Kasarełło K, Seta M, Sulejczak D, Snarski E, Cudnoch-Jędrzejewska A. Effect of Hematopoietic Stem Cell Transplantation and Post-Transplantation Cyclophosphamide on the Microglia Phenotype in Rats with Experimental Allergic Encephalomyelitis. Arch Immunol Ther Exp (Warsz) 2023; 71:10. [PMID: 36964399 PMCID: PMC10039091 DOI: 10.1007/s00005-023-00675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/16/2023] [Indexed: 03/26/2023]
Abstract
Microglia are the resident immune cells of the central nervous system, playing a role in the inflammatory process development and resolution, presenting two main phenotypes, pro-inflammatory M1, and anti-inflammatory M2. Therapies affecting the microglia phenotype may be beneficial in treating inflammatory neurodegenerative diseases. In our experiments, we used the animal multiple sclerosis model, experimental allergic encephalomyelitis (EAE). Rats were treated during the pre- or symptomatic phase of the disease with cyclophosphamide, followed by hematopoietic stem cell transplantation, and with/without post-transplantation cyclophosphamide. Our study aimed to analyze the microglia phenotype in animals subjected to this treatment. The number of M1 cells in the spinal cord, and inducible nitric oxide synthase (iNOS) levels in the brain were similar in all experimental groups. The differences were observed in M2 cells number and arginase 1 (Arg1) levels, which were decreased in EAE animals, and increased after treatment in the symptomatic phase of EAE, and in the pre-symptomatic phase, but only with post-transplantation cyclophosphamide. Analysis of gene expression in the brain showed decreased iNOS expression in EAE animals treated in the symptomatic phase of EAE and no differences in Arg1 expression. Results indicate that treatment applied to experimental animals influences the microglia phenotype, promoting differentiation towards M2 cells.
Collapse
Affiliation(s)
- Kaja Kasarełło
- Chair and Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Martyna Seta
- Chair and Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Emilian Snarski
- Chair and Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
de Jong TV, Chen H, Brashear WA, Kochan KJ, Hillhouse AE, Zhu Y, Dhande IS, Hudson EA, Sumlut MH, Smith ML, Kalbfleisch TS, Doris PA. mRatBN7.2: familiar and unfamiliar features of a new rat genome reference assembly. Physiol Genomics 2022; 54:251-260. [PMID: 35543507 PMCID: PMC9236863 DOI: 10.1152/physiolgenomics.00017.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rat genomic tools have been slower to emerge than for those of humans and mice and have remained less thorough and comprehensive. The arrival of a new and improved rat reference genome, mRatBN7.2, in late 2020 is a welcome event. This assembly, like predecessor rat reference assemblies, is derived from an inbred Brown Norway rat. In this "user" survey we hope to provide other users of this assembly some insight into its characteristics and some assessment of its improvements as well as a few caveats that arise from the unique aspects of this assembly. mRatBN7.2 was generated by the Wellcome Sanger Institute as part of the large Vertebrate Genomes Project. This rat assembly has now joined human, mouse, chicken, and zebrafish in the National Center for Biotechnology Information (NCBI)'s Genome Reference Consortium, which provides ongoing curation of the assembly. Here we examine the technical procedures by which the assembly was created and assess how this assembly constitutes an improvement over its predecessor. We also indicate the technical limitations affecting the assembly, providing illustrations of how these limitations arise and the impact that results for this reference assembly.
Collapse
Affiliation(s)
- Tristan V. de Jong
- 1Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hao Chen
- 1Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wesley A. Brashear
- 2Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas
| | - Kelli J. Kochan
- 2Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas
| | - Andrew E. Hillhouse
- 2Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas
| | - Yaming Zhu
- 3Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, Texas
| | - Isha S. Dhande
- 3Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, Texas
| | - Elizabeth A. Hudson
- 4Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | - Mary H. Sumlut
- 4Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | - Melissa L. Smith
- 4Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | - Theodore S. Kalbfleisch
- 5Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky
| | - Peter A. Doris
- 3Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, Texas
| |
Collapse
|
7
|
Zhang R, Zhang S, Xu B, Wu Y, Liang S, Hou B, Wang M, Liu J, Yuan Q. Cornuside ameliorated experimental autoimmune encephalomyelitis by limiting the recruitment of CD4+ T lymphocytes in the spinal cord. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Rongbo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, China
| | | | - Bin Xu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - You Wu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Shunli Liang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Bonan Hou
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Mimi Wang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Jin Liu
- Zhejiang Chinese Medical University, China
| | - Qiang Yuan
- Zhejiang Chinese Medical University, China
| |
Collapse
|
8
|
Ferreira H, Amorim D, Lima AC, Pirraco RP, Costa-Pinto AR, Almeida R, Almeida A, Reis RL, Pinto-Ribeiro F, Neves NM. A biocompatible and injectable hydrogel to boost the efficacy of stem cells in neurodegenerative diseases treatment. Life Sci 2021; 287:120108. [PMID: 34717909 DOI: 10.1016/j.lfs.2021.120108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
AIMS Stem cell therapies emerged as treatment modalities with potential to cure neurodegenerative diseases (NDs). However, despite high expectations, their clinical use is still limited. Critical issues in treatment outcomes may be related to stem cells formulation and administration route. We develop a hydrogel as a cell carrier, consisting of compounds (phospholipids and hyaluronic acid-HA) naturally present in the central nervous system (CNS). The HA-based hydrogel physically crosslinked with liposomes is designed for direct injection into the CNS to significantly increase the bone marrow mesenchymal stem cells (BMSCs) bioavailability. MATERIALS AND METHODS Hydrogel compatibility is confirmed in vitro with BMSCs and in vivo through its intracerebroventricular injection in rats. To assess its efficacy, the main cause of chronic neurologic disability in young adults is selected, namely multiple sclerosis (MS). The efficacy of the developed formulation containing a lower number of cells than previously reported is demonstrated using an experimental autoimmune encephalomyelitis (EAE) rat model. KEY FINDINGS The distribution of the engineered hydrogel into corpus callosum can be ideal for NDs treatment, since damage of this white matter structure is responsible for important neuronal deficits. Moreover, the BMSCs-laden hydrogel significantly decreases disease severity and maximum clinical score and eliminated the relapse. SIGNIFICANCE The engineering of advanced therapies using this natural carrier can result in efficacious treatments for MS and related debilitating conditions.
Collapse
Affiliation(s)
- Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Diana Amorim
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Cláudia Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Rita Costa-Pinto
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Almeida
- Neurosurgery Department, Hospital de Braga, Braga, Portugal
| | - Armando Almeida
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
9
|
Rafeek RAM, Lobbe CM, Wilkinson EC, Hamlin AS, Andronicos NM, McMillan DJ, Sriprakash KS, Ketheesan N. Group A streptococcal antigen exposed rat model to investigate neurobehavioral and cardiac complications associated with post-streptococcal autoimmune sequelae. Animal Model Exp Med 2021; 4:151-161. [PMID: 34179722 PMCID: PMC8212825 DOI: 10.1002/ame2.12164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/03/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The neuropsychiatric disorders due to post-streptococcal autoimmune complications such as Sydenham's chorea (SC) are associated with acute rheumatic fever and rheumatic heart disease (ARF/RHD). An animal model that exhibits characteristics of both cardiac and neurobehavioral defects in ARF/RHD would be an important adjunct for future studies. Since age, gender, strain differences, and genotypes impact on the development of autoimmunity, we investigated the behavior of male and female Wistar and Lewis rat strains in two age cohorts (<6 weeks and >12 weeks) under normal husbandry conditions and following exposure to group A streptococcus (GAS). METHODS Standard behavioral assessments were performed to determine the impairments in fine motor control (food manipulation test), gait and balance (beam walking test), and obsessive-compulsive behavior (grooming and marble burying tests). Furthermore, electrocardiography, histology, and behavioral assessments were performed on male and female Lewis rats injected with GAS antigens. RESULTS For control Lewis rats there were no significant age and gender dependent differences in marble burying, food manipulation, beam walking and grooming behaviors. In contrast significant age-dependent differences were observed in Wistar rats in all the behavioral tests except for food manipulation. Therefore, Lewis rats were selected for further experiments to determine the effect of GAS. After exposure to GAS, Lewis rats demonstrated neurobehavioral abnormalities and cardiac pathology akin to SC and ARF/RHD, respectively. CONCLUSION We have characterised a new model that provides longitudinal stability of age-dependent behavior, to simultaneously investigate both neurobehavioral and cardiac abnormalities associated with post-streptococcal complications.
Collapse
Affiliation(s)
| | - Catherine M. Lobbe
- School of Science & TechnologyUniversity of New EnglandArmidaleNSWAustralia
| | - Ethan C. Wilkinson
- School of Science & TechnologyUniversity of New EnglandArmidaleNSWAustralia
| | - Adam S. Hamlin
- School of Science & TechnologyUniversity of New EnglandArmidaleNSWAustralia
| | | | - David J. McMillan
- School of Science & TechnologyUniversity of New EnglandArmidaleNSWAustralia
- School of Science, Technology, Engineering and Genecology Research CentreUniversity of the Sunshine CoastMaroochydore DCQLDAustralia
| | - Kadaba S. Sriprakash
- School of Science & TechnologyUniversity of New EnglandArmidaleNSWAustralia
- QIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - Natkunam Ketheesan
- School of Science & TechnologyUniversity of New EnglandArmidaleNSWAustralia
| |
Collapse
|
10
|
Zhang R, Liu J, Xu B, Wu Y, Liang S, Yuan Q. Cornuside alleviates experimental autoimmune encephalomyelitis by inhibiting Th17 cell infiltration into the central nervous system. J Zhejiang Univ Sci B 2021; 22:421-430. [PMID: 33973423 DOI: 10.1631/jzus.b2000771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present study was conducted to clarify the therapeutic effect of cornuside on experimental autoimmune encephalomyelitis (EAE) and its influence on T helper 17 (Th17) cell and regulatory T (Treg) cell infiltration into the central nervous system. Rats were randomly placed into four treatment groups: control, EAE, EAE+cornuside, and EAE+prednisolone. The neurological function scores of rats were assessed daily. On the second day after EAE rats began to show neurological deficit symptoms, the four groups were treated with normal saline, normal saline, cornuside (150 mg/kg), and prednisolone (5 mg/kg), respectively. The treatment was discontinued after two weeks, and the spinal cord was obtained for hematoxylin and eosin (H&E) and luxol fast blue staining, as well as retinoic acid receptor-related orphan receptor γ (RORγ) and forkhead box protein P3 (Foxp3) immunohistochemical staining. Blood was collected for Th17 and Treg cell flow cytometry testing, and the serum levels of interleukin (IL)-17A, IL-10, transforming growth factor-β (TGF-β), IL-6, IL-23, and IL-2 were measured via enzyme-linked immunosorbent assay (ELISA). Compared with rats in the EAE group, rats in the EAE+cornuside and EAE+prednisolone groups began to recover from neurological deficits earlier, and had a greater degree of improvement of symptoms. Focal inflammation, demyelination, and RORγ-positive cell infiltration were reduced by cornuside or prednisolone treatment, whereas the Foxp3-positive cell numbers were not significantly different. Meanwhile, the number of Th17 cells and the IL-17A, IL-6, and IL-23 levels were lower in the blood after cornuside or prednisolone treatment, whereas the number of Treg cells or the levels of IL-10, TGF-β, and IL-2 were not markedly different. Cornuside can alleviate symptoms of EAE neurological deficits through its anti-inflammatory and immunosuppressive effects, and Th17 cells may be one of its therapeutic targets.
Collapse
Affiliation(s)
- Rongbo Zhang
- Department of Neurology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Jin Liu
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bin Xu
- Department of Neurology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - You Wu
- Department of Neurology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Shunli Liang
- Department of Neurology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Qiang Yuan
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
11
|
McCombe PA. The Short and Long-Term Effects of Pregnancy on Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. J Clin Med 2018; 7:jcm7120494. [PMID: 30486504 PMCID: PMC6306813 DOI: 10.3390/jcm7120494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
The role of pregnancy in multiple sclerosis (MS) is of importance because many patients with MS are young women in the childbearing age who require information to inform their reproductive decisions. Pregnancy is now well-known to be associated with fewer relapses of MS and reduced activity of autoimmune encephalomyelitis (EAE). However, in women with multiple sclerosis, this benefit is not always sufficient to protect against a rebound of disease activity if disease-modulating therapy is ceased for pregnancy. There is concern that use of assisted reproductive therapies can be associated with relapses of MS, but more data are required. It is thought that the beneficial effects of pregnancy are due to the pregnancy-associated changes in the maternal immune system. There is some evidence of this in human studies and studies of EAE. There is also evidence that having been pregnant leads to better long-term outcome of MS. The mechanism for this is not fully understood but it could result from epigenetic changes resulting from pregnancy or parenthood. Further studies of the mechanisms of the beneficial effects of pregnancy could provide information that might be used to produce new therapies.
Collapse
Affiliation(s)
- Pamela A McCombe
- The University of Queensland, Centre for Clinical Research, Brisbane, QLD 4029, Australia.
| |
Collapse
|
12
|
Consonni A, Cordiglieri C, Rinaldi E, Marolda R, Ravanelli I, Guidesi E, Elli M, Mantegazza R, Baggi F. Administration of bifidobacterium and lactobacillus strains modulates experimental myasthenia gravis and experimental encephalomyelitis in Lewis rats. Oncotarget 2018; 9:22269-22287. [PMID: 29854277 PMCID: PMC5976463 DOI: 10.18632/oncotarget.25170] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
Probiotics beneficial effects on the host are associated with regulation of the intestinal microbial homeostasis and with modulation of inflammatory immune responses in the gut and in periphery. In this study, we investigated the clinical efficacy of two lactobacillus and two bifidobacterium probiotic strains in experimental autoimmune myasthenia gravis (EAMG) and experimental autoimmune encephalomyelitis (EAE) models, induced in Lewis rats. Treatment with probiotics led to less severe disease manifestation in both models; ex vivo analyses showed preservation of neuromuscular junction in EAMG and myelin content in EAE spinal cord. Immunoregulatory transcripts were found differentially expressed in gut associated lymphoid tissue and in peripheral immunocompetent organs. Feeding EAMG animals with probiotics resulted in increased levels of Transforming Growth Factor-β (TGFβ) in serum, and increased percentages of regulatory T cells (Treg) in peripheral blood leukocyte. Exposure of immature dendritic cells to probiotics induced their maturation toward an immunomodulatory phenotype, and secretion of TGFβ. Our data showed that bifidobacteria and lactobacilli treatment effectively modulates disease symptoms in EAMG and EAE models, and support further investigations to evaluate their use in autoimmune diseases.
Collapse
Affiliation(s)
- Alessandra Consonni
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Chiara Cordiglieri
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Elena Rinaldi
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Roberta Marolda
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Ilaria Ravanelli
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Elena Guidesi
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, Piacenza, Italy
| | - Marina Elli
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, Piacenza, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Fulvio Baggi
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| |
Collapse
|
13
|
Motte J, Ambrosius B, Grüter T, Bachir H, Sgodzai M, Pedreiturria X, Pitarokoili K, Gold R. Capsaicin-enriched diet ameliorates autoimmune neuritis in rats. J Neuroinflammation 2018; 15:122. [PMID: 29690884 PMCID: PMC5916583 DOI: 10.1186/s12974-018-1165-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/18/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Autoimmune neuropathies are common PNS disorders and effective treatment is challenging. Environmental influence and dietary components are known to affect the course of autoimmune diseases. Capsaicin as pungent component of chili-peppers is common in human nutrition. An influence of capsaicin on autoimmune diseases has been postulated. METHODS We tested capsaicin in the animal model of experimental autoimmune neuritis (EAN) in Lewis rat. Rats were immunized with P2-peptide and were treated with capsaicin in different preventive settings. Electrophysiological, histological, and molecular biological analyses of the sciatic nerve were performed to analyze T-cell and macrophage cell count, TRPV1, and cytokine expression. Moreover, FACS analyses including the intestinal immune system were executed. RESULTS We observed an immunomodulatory effect of an early preventive diet-concept, where a physiological dosage of oral capsaicin was given 10 days before immunization in EAN. A reduced inflammation of the sciatic nerve was significant detectable clinically, electrophysiologically (CMAPs reduced in control group p < 0.01; increase of nerve conduction blocks in control group p < 0.05), histologically (significant reduction of T-cells, macrophages and demyelination), and at cytokine level. In contrast, this therapeutic effect was missing with capsaicin given from the day of immunization onwards. As possible underlying mechanism, we were able to show changes in the expression of the capsaicin receptor in the sciatic nerve and the small intestine, as well as altered immune cell populations in the small intestine. CONCLUSION This is the first report about the immunomodulatory effect of the common nutrient, capsaicin, in an experimental model for autoimmune neuropathies.
Collapse
MESH Headings
- Animals
- Capsaicin/therapeutic use
- Cell Movement/drug effects
- Cytokines/metabolism
- Diet/methods
- Disease Models, Animal
- Evoked Potentials, Motor/drug effects
- Female
- Freund's Adjuvant/toxicity
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/pathology
- Macrophages/drug effects
- Macrophages/pathology
- Neural Conduction/drug effects
- Neuritis, Autoimmune, Experimental/diet therapy
- Neuritis, Autoimmune, Experimental/pathology
- Neuritis, Autoimmune, Experimental/physiopathology
- Rats
- Rats, Inbred Lew
- S100 Proteins/metabolism
- Sciatic Nerve/drug effects
- Sciatic Nerve/metabolism
- Sciatic Nerve/pathology
- T-Lymphocytes/drug effects
- TRPV Cation Channels/metabolism
Collapse
Affiliation(s)
- Jeremias Motte
- Department of Neurology, Ruhr University Bochum, St. Josef- Hospital, Gudrunstrasse 56, 44791 Bochum, Germany
| | - Björn Ambrosius
- Department of Neurology, Ruhr University Bochum, St. Josef- Hospital, Gudrunstrasse 56, 44791 Bochum, Germany
| | - Thomas Grüter
- Department of Neurology, Ruhr University Bochum, St. Josef- Hospital, Gudrunstrasse 56, 44791 Bochum, Germany
| | - Hussein Bachir
- Department of Neurology, Ruhr University Bochum, St. Josef- Hospital, Gudrunstrasse 56, 44791 Bochum, Germany
| | - Melissa Sgodzai
- Department of Neurology, Ruhr University Bochum, St. Josef- Hospital, Gudrunstrasse 56, 44791 Bochum, Germany
| | - Xiomara Pedreiturria
- Department of Neurology, Ruhr University Bochum, St. Josef- Hospital, Gudrunstrasse 56, 44791 Bochum, Germany
| | - Kalliopi Pitarokoili
- Department of Neurology, Ruhr University Bochum, St. Josef- Hospital, Gudrunstrasse 56, 44791 Bochum, Germany
| | - Ralf Gold
- Department of Neurology, Ruhr University Bochum, St. Josef- Hospital, Gudrunstrasse 56, 44791 Bochum, Germany
| |
Collapse
|
14
|
Bjelobaba I, Begovic-Kupresanin V, Pekovic S, Lavrnja I. Animal models of multiple sclerosis: Focus on experimental autoimmune encephalomyelitis. J Neurosci Res 2018; 96:1021-1042. [PMID: 29446144 DOI: 10.1002/jnr.24224] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is a chronic, progressive disorder of the central nervous system (CNS) that affects more than two million people worldwide. Several animal models resemble MS pathology; the most employed are experimental autoimmune encephalomyelitis (EAE) and toxin- and/or virus-induced demyelination. In this review we will summarize our knowledge on the utility of different animal models in MS research. Although animal models cannot replicate the complexity and heterogeneity of the MS pathology, they have proved to be useful for the development of several drugs approved for treatment of MS patients. This review focuses on EAE because it represents both clinical and pathological features of MS. During the past decades, EAE has been effective in illuminating various pathological processes that occur during MS, including inflammation, CNS penetration, demyelination, axonopathy, and neuron loss mediated by immune cells.
Collapse
Affiliation(s)
- Ivana Bjelobaba
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| | | | - Sanja Pekovic
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|