1
|
Di Re J, Marini M, Hussain SI, Singh AK, Venkatesh A, Alshammari MA, Alshammari TK, Hamoud ARA, Imami AS, Haghighijoo Z, Fularcyzk N, Stertz L, Hawes D, Mosebarger A, Jernigan J, Chaljub C, Nehme R, Walss-Bass C, Schulmann A, Vawter MP, McCullumsmith R, Damoiseaux RD, Limon A, Labate D, Wells MF, Laezza F. βIV spectrin abundancy, cellular distribution and sensitivity to AKT/GSK3 regulation in schizophrenia. Mol Psychiatry 2025:10.1038/s41380-025-02917-1. [PMID: 39920295 DOI: 10.1038/s41380-025-02917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
Schizophrenia (SCZ) is a complex psychiatric disorder with unclear biological mechanisms. Spectrins, cytoskeletal proteins linked to neurodevelopmental disorders, are regulated by the AKT/GSK3 pathway, which is implicated in SCZ. However, the impact of SCZ-related dysregulation of this pathway on spectrin expression and distribution remains unexplored. Here, we show that βIV spectrin protein levels were reduced in neurons of the dorsolateral prefrontal cortex in SCZ postmortem samples compared to healthy control (HC) from the Human Brain Collection Core (HBCC). To investigate potential links between βIV spectrin and the AKT/GSK3 pathway, we analyzed the PsychEncode dataset, revealing elevated SPTBN4 and AKT2 mRNA levels with correlated gene transcription in both HCs and individuals with SCZ. Next, computational tools were employed to identify potential AKT and GSK3 phosphorylation sites on βIV spectrin, and two GSK3 sites were validated through in vitro assays. To assess whether βIV spectrin distribution and sensitivity to AKT/GSK3 are altered in SCZ, we used iPSC-derived neurons from two independent cohorts of patients with significantly increased familial genetic risk for the disorder. Alteration in βIV spectrin levels and sensitivity to AKT/GSK3 inhibitors were consistently observed across both cohorts. Importantly, a Random Forest classifier applied to βIV spectrin imaging achieved up to 98% accuracy in classifying cells by diagnosis in postmortem samples, and by diagnosis or diagnosis × perturbation in iPSC samples. These findings reveal altered βIV spectrin levels and AKT/GSK3 sensitivity in SCZ, identifying βIV spectrin image-based endophenotypes as robust, generalizable predictive biomarkers of SCZ, with the potential for scalable clinical applications.
Collapse
Affiliation(s)
- Jessica Di Re
- Department of Pharmacology & Toxicology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Michela Marini
- Department of Mathematics, University of Houston, Houston, TX, USA
| | | | - Aditya K Singh
- Department of Pharmacology & Toxicology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Akshaya Venkatesh
- MD-PhD Combined Program, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Musaad A Alshammari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tahani K Alshammari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdul-Rizaq Ali Hamoud
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ali Sajid Imami
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Zahra Haghighijoo
- Department of Pharmacology & Toxicology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | - Laura Stertz
- Louis A. Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Derek Hawes
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Angela Mosebarger
- Department of Pharmacology & Toxicology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jordan Jernigan
- Department of Pharmacology & Toxicology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Claire Chaljub
- Department of Pharmacology & Toxicology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Consuelo Walss-Bass
- Louis A. Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Anton Schulmann
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Robert McCullumsmith
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, Promedica, Toledo, OH, USA
| | - Robert D Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Agenor Limon
- Department of Neurology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Demetrio Labate
- Department of Mathematics, University of Houston, Houston, TX, USA
| | - Michael F Wells
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
2
|
Benitez MJ, Retana D, Ordoñez-Gutiérrez L, Colmena I, Goméz MJ, Álvarez R, Ciorraga M, Dopazo A, Wandosell F, Garrido JJ. Transcriptomic alterations in APP/PS1 mice astrocytes lead to early postnatal axon initial segment structural changes. Cell Mol Life Sci 2024; 81:444. [PMID: 39485512 PMCID: PMC11530419 DOI: 10.1007/s00018-024-05485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 09/20/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Alzheimer´s disease (AD) is characterized by neuronal function loss and degeneration. The integrity of the axon initial segment (AIS) is essential to maintain neuronal function and output. AIS alterations are detected in human post-mortem AD brains and mice models, as well as, neurodevelopmental and mental disorders. However, the mechanisms leading to AIS deregulation in AD and the extrinsic glial origin are elusive. We studied early postnatal differences in AIS cellular/molecular mechanisms in wild-type or APP/PS1 mice and combined neuron-astrocyte co-cultures. We observed AIS integrity alterations, reduced ankyrinG expression and shortening, in APP/PS1 mice from P21 and loss of AIS integrity at 21 DIV in wild-type and APP/PS1 neurons in the presence of APP/PS1 astrocytes. AnkyrinG decrease is due to mRNAs and protein reduction of retinoic acid synthesis enzymes Rdh1 and Aldh1b1, as well as ADNP (Activity-dependent neuroprotective protein) in APP/PS1 astrocytes. This effect was mimicked by wild-type astrocytes expressing ADNP shRNA. In the presence of APP/PS1 astrocytes, wild-type neurons AIS is recovered by inhibition of retinoic acid degradation, and Adnp-derived NAP peptide (NAPVSIPQ) addition or P2X7 receptor inhibition, both regulated by retinoic acid levels. Moreover, P2X7 inhibitor treatment for 2 months impaired AIS disruption in APP/PS1 mice. Our findings extend current knowledge on AIS regulation, providing data to support the role of astrocytes in early postnatal AIS modulation. In conclusion, AD onset may be related to very early glial cell alterations that induce AIS and neuronal function changes, opening new therapeutic approaches to detect and avoid neuronal function loss.
Collapse
Affiliation(s)
- María José Benitez
- Instituto Cajal, CSIC, Madrid, Spain
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Lara Ordoñez-Gutiérrez
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-ISCIII), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Inés Colmena
- Instituto Cajal, CSIC, Madrid, Spain
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-ISCIII), Madrid, Spain
| | | | - Rebeca Álvarez
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francisco Wandosell
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-ISCIII), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan José Garrido
- Instituto Cajal, CSIC, Madrid, Spain.
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-ISCIII), Madrid, Spain.
| |
Collapse
|
3
|
Dvorak NM, Di Re J, Vasquez TES, Marosi M, Shah P, Contreras YMM, Bernabucci M, Singh AK, Stallone J, Green TA, Laezza F. Fibroblast growth factor 13-mediated regulation of medium spiny neuron excitability and cocaine self-administration. Front Neurosci 2023; 17:1294567. [PMID: 38099204 PMCID: PMC10720079 DOI: 10.3389/fnins.2023.1294567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023] Open
Abstract
Cocaine use disorder (CUD) is a prevalent neuropsychiatric disorder with few existing treatments. Thus, there is an unmet need for the identification of new pharmacological targets for CUD. Previous studies using environmental enrichment versus isolation paradigms have found that the latter induces increased cocaine self-administration with correlative increases in the excitability of medium spiny neurons (MSN) of the nucleus accumbens shell (NAcSh). Expanding upon these findings, we sought in the present investigation to elucidate molecular determinants of these phenomena. To that end, we first employed a secondary transcriptomic analysis and found that cocaine self-administration differentially regulates mRNA for fibroblast growth factor 13 (FGF13), which codes for a prominent auxiliary protein of the voltage-gated Na+ (Nav) channel, in the NAcSh of environmentally enriched rats (i.e., resilient behavioral phenotype) compared to environmentally isolated rats (susceptible phenotype). Based upon this finding, we used in vivo genetic silencing to study the causal functional and behavioral consequences of knocking down FGF13 in the NAcSh. Functional studies revealed that knockdown of FGF13 in the NAcSh augmented excitability of MSNs by increasing the activity of Nav channels. These electrophysiological changes were concomitant with a decrease in cocaine demand elasticity (i.e., susceptible phenotype). Taken together, these data support FGF13 as being protective against cocaine self-administration, which positions it well as a pharmacological target for CUD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Thomas A. Green
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
4
|
Axonal TAU Sorting Requires the C-terminus of TAU but is Independent of ANKG and TRIM46 Enrichment at the AIS. Neuroscience 2021; 461:155-171. [PMID: 33556457 DOI: 10.1016/j.neuroscience.2021.01.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 01/06/2023]
Abstract
Somatodendritic missorting of the axonal protein TAU is a hallmark of Alzheimer's disease and related tauopathies. Rodent primary neurons and iPSC-derived neurons are used for studying mechanisms of neuronal polarity, including TAU trafficking. However, these models are expensive, time-consuming, and/or require the killing of animals. In this study, we tested four differentiation procedures to generate mature neuron cultures from human SH-SY5Y neuroblastoma cells and assessed the TAU sorting capacity. We show that SH-SY5Y-derived neurons, differentiated with sequential RA/BDNF treatment, are suitable for investigating axonal TAU sorting. These human neurons show pronounced neuronal polarity, axodendritic outgrowth, expression of the neuronal maturation markers TAU and MAP2, and, importantly, efficient axonal sorting of endogenous and transfected human wild-type TAU, similar to mouse primary neurons. We demonstrate that the N-terminal half of TAU is not sufficient for axonal targeting, as a C-terminus-lacking construct (N-term-TAUHA) is not axonally enriched in both neuronal cell models. Importantly, SH-SY5Y-derived neurons do not show the formation of a classical axon initial segment (AIS), indicated by the lack of ankyrin G (ANKG) and tripartite motif-containing protein 46 (TRIM46) at the proximal axon, which suggests that successful axonal TAU sorting is independent of classical AIS formation. Taken together, our results provide evidence that (i) SH-SY5Y-derived neurons are a valuable human neuronal cell model for studying TAU sorting readily accessible at low cost and without animal need, and that (ii) efficient axonal TAU targeting is independent of ANKG or TRIM46 enrichment at the proximal axon in these neurons.
Collapse
|