1
|
Ryman‐Tubb T, Lothion‐Roy JH, Metzler VM, Harris AE, Robinson BD, Rizvanov AA, Jeyapalan JN, James VH, England G, Rutland CS, Persson JL, Kenner L, Rubin MA, Mongan NP, de Brot S. Comparative pathology of dog and human prostate cancer. Vet Med Sci 2022; 8:110-120. [PMID: 34628719 PMCID: PMC8788985 DOI: 10.1002/vms3.642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Though relatively rare in dogs, prostate cancer (PCa) is the most common non-cutaneous cancer in men. Human and canine prostate glands share many functional, anatomical and physiological features. Due to these similarities, canine PCa has been proposed as a model for PCa in men. PCa is typically androgen-dependent at diagnosis in men and for this reason, androgen deprivation therapies (ADT) are important treatments for advanced PCa in men. In contrast, there is some evidence that PCa is diagnosed more commonly in castrate dogs, at which point, limited therapeutic options are available. In men, a major limitation of current ADT is that progression to a lethal and incurable form of PCa, termed castrate-resistant prostate cancer (CRPC), is common. There is, therefore, an urgent need for a better understanding of the mechanism of PCa initiation and progression to CRPC to enable the development of novel therapeutic approaches. This review focuses on the functional, physiological, endocrine and histopathological similarities and differences in the prostate gland of these species. In particular, we focus on common physiological roles for androgen signalling in the prostate of men and dogs, we review the short- and longer-term effects of castration on PCa incidence and progression in the dog and relate how this knowledge may be relevant to understanding the mechanisms of CRPC in men.
Collapse
Affiliation(s)
- Toby Ryman‐Tubb
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Jennifer H. Lothion‐Roy
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Veronika M. Metzler
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Anna E. Harris
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | | | - Albert A. Rizvanov
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
- Institute of Fundamental Medicine and ScienceKazan Federal UniversityKazanTatarstanRussia
| | - Jennie N. Jeyapalan
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Victoria H. James
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Gary England
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Catrin S. Rutland
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Jenny L. Persson
- Department of Molecular BiologyUmeå UniversitetUmeåSweden
- Department of Biomedical SciencesMalmö UniversitetMalmöSweden
| | - Lukas Kenner
- Department of Experimental PathologyLaboratory Animal Pathology Medical University WienViennaAustria
| | - Mark A. Rubin
- Bern Center for Precision MedicineUniversity of Bern and InselspitalBernSwitzerland
- Department of BioMedical ResearchUniversity of Bern and InselspitalBernSwitzerland
| | - Nigel P. Mongan
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
- Department of PharmacologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - Simone de Brot
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
- COMPATH, Institute of Animal PathologyUniversity of BernBernSwitzerland
| |
Collapse
|
2
|
Nascimento-Gonçalves E, Seixas F, Ferreira R, Colaço B, Parada B, Oliveira PA. An overview of the latest in state-of-the-art murine models for prostate cancer. Expert Opin Drug Discov 2021; 16:1349-1364. [PMID: 34224283 DOI: 10.1080/17460441.2021.1943354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Prostate cancer (PCa) is a complex, heterogenous and multifocal disease, which is debilitating for patients and often fatal - due to bone metastasis and castration-resistant cancer. The use of murine models that mimic human disease has been crucial in the development of innovative therapies and for better understanding the mechanisms associated with initiation and progression of PCa. AREAS COVERED This review presents a critical analysis of murine models for the study of PCa, highlighting their strengths, weaknesses and applications. EXPERT OPINION In animal models, disease may not occur exactly as it does in humans, and sometimes the levels of efficacy that certain treatments obtain in animal models cannot be translated into clinical practice. To choose the most appropriate animal model for each research work, it is crucial to understand the anatomical and physiological differences between the mouse and the human prostate, while it is also important to identify biological similarities and differences between murine and human prostate tumors. Although significant progress has already been made, thanks to many years of research and study, the number of new challenges and obstacles to overcome mean there is a long and difficult road still to travel.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Fernanda Seixas
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Animal and Veterinary Research Centre (CECAV), UTAD, Vila Real, Portugal
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Bruno Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Department of Zootechnics, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Belmiro Parada
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (Icbr), Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal
| |
Collapse
|
3
|
Pistollato F, Bernasconi C, McCarthy J, Campia I, Desaintes C, Wittwehr C, Deceuninck P, Whelan M. Alzheimer's Disease, and Breast and Prostate Cancer Research: Translational Failures and the Importance to Monitor Outputs and Impact of Funded Research. Animals (Basel) 2020; 10:E1194. [PMID: 32674379 PMCID: PMC7401638 DOI: 10.3390/ani10071194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Dementia and cancer are becoming increasingly prevalent in Western countries. In the last two decades, research focused on Alzheimer's disease (AD) and cancer, in particular, breast cancer (BC) and prostate cancer (PC), has been substantially funded both in Europe and worldwide. While scientific research outcomes have contributed to increase our understanding of the disease etiopathology, still the prevalence of these chronic degenerative conditions remains very high across the globe. By definition, no model is perfect. In particular, animal models of AD, BC, and PC have been and still are traditionally used in basic/fundamental, translational, and preclinical research to study human disease mechanisms, identify new therapeutic targets, and develop new drugs. However, animals do not adequately model some essential features of human disease; therefore, they are often unable to pave the way to the development of drugs effective in human patients. The rise of new technological tools and models in life science, and the increasing need for multidisciplinary approaches have encouraged many interdisciplinary research initiatives. With considerable funds being invested in biomedical research, it is becoming pivotal to define and apply indicators to monitor the contribution to innovation and impact of funded research. Here, we discuss some of the issues underlying translational failure in AD, BC, and PC research, and describe how indicators could be applied to retrospectively measure outputs and impact of funded biomedical research.
Collapse
Affiliation(s)
- Francesca Pistollato
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Camilla Bernasconi
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Janine McCarthy
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
- Physicians Committee for Responsible Medicine (PCRM), Washington, DC 20016, USA;
| | - Ivana Campia
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Christian Desaintes
- European Commission, Directorate General for Research and Innovation (RTD), 1000 Brussels, Belgium;
| | - Clemens Wittwehr
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Pierre Deceuninck
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| |
Collapse
|
4
|
Lee YR, Pandolfi PP. PTEN Mouse Models of Cancer Initiation and Progression. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037283. [PMID: 31570383 DOI: 10.1101/cshperspect.a037283] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is one of the most frequently mutated, deleted, and functionally inactivated tumor suppressor genes in human cancer. PTEN is found mutated both somatically and in the germline of patients with PTEN hamartoma tumor syndrome (PHTS). PTEN encodes a dual lipid and protein phosphatase that dephosphorylates the lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3), in turn negatively regulating the oncogenic PI3K-AKT pathway, a key proto-oncogenic player in cancer development and progression. Because of importance of PTEN in tumorigenesis, a large number of sophisticated genetically engineered mouse models (GEMMs) has been designed to elucidate the underlying mechanisms by which the "PTEN pathway" promotes tumorigenesis, while simultaneously providing a well-tailored system for the identification of novel therapies and offering platforms for new drug discoveries. This review summarizes the major cancer mouse models through which the PTEN pathway has been genetically deconstructed, and outlines the rapid development of GEMMs toward more detailed functional and tissue-specific analysis.
Collapse
Affiliation(s)
- Yu-Ru Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
5
|
Mapelli SN, Albino D, Mello-Grand M, Shinde D, Scimeca M, Bonfiglio R, Bonanno E, Chiorino G, Garcia-Escudero R, Catapano CV, Carbone GM. A Novel Prostate Cell Type-Specific Gene Signature to Interrogate Prostate Tumor Differentiation Status and Monitor Therapeutic Response (Running Title: Phenotypic Classification of Prostate Tumors). Cancers (Basel) 2020; 12:cancers12010176. [PMID: 31936761 PMCID: PMC7016595 DOI: 10.3390/cancers12010176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, we extracted prostate cell-specific gene sets (metagenes) to define the epithelial differentiation status of prostate cancers and, using a deconvolution-based strategy, interrogated thousands of primary and metastatic tumors in public gene profiling datasets. We identified a subgroup of primary prostate tumors with low luminal epithelial enrichment (LumElow). LumElow tumors were associated with higher Gleason score and mutational burden, reduced relapse-free and overall survival, and were more likely to progress to castration-resistant prostate cancer (CRPC). Using discriminant function analysis, we generate a predictive 10-gene classifier for clinical implementation. This mini-classifier predicted with high accuracy the luminal status in both primary tumors and CRPCs. Immunohistochemistry for COL4A1, a low-luminal marker, sustained the association of attenuated luminal phenotype with metastatic disease. We found also an association of LumE score with tumor phenotype in genetically engineered mouse models (GEMMs) of prostate cancer. Notably, the metagene approach led to the discovery of drugs that could revert the low luminal status in prostate cell lines and mouse models. This study describes a novel tool to dissect the intrinsic heterogeneity of prostate tumors and provide predictive information on clinical outcome and treatment response in experimental and clinical samples.
Collapse
Affiliation(s)
- Sarah N. Mapelli
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; (S.N.M.); (D.A.); (D.S.)
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Domenico Albino
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; (S.N.M.); (D.A.); (D.S.)
| | - Maurizia Mello-Grand
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia Valenta, 13900 Biella, Italy; (M.M.-G.); (G.C.)
| | - Dheeraj Shinde
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; (S.N.M.); (D.A.); (D.S.)
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (R.B.); (E.B.)
| | - Rita Bonfiglio
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (R.B.); (E.B.)
| | - Elena Bonanno
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.S.); (R.B.); (E.B.)
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia Valenta, 13900 Biella, Italy; (M.M.-G.); (G.C.)
| | - Ramon Garcia-Escudero
- Molecular Oncology Unit, CIEMAT, 28040 Madrid, Spain
- Biomedicine Research Institute, Hospital 12 octubre, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28040 Madrid, Spain
- Correspondence: (R.G.-E.); (C.V.C.); (G.M.C.); Tel.: +41-918210074 (G.M.C.); Fax: +41-918200397 (G.M.C.)
| | - Carlo V. Catapano
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; (S.N.M.); (D.A.); (D.S.)
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
- Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
- Correspondence: (R.G.-E.); (C.V.C.); (G.M.C.); Tel.: +41-918210074 (G.M.C.); Fax: +41-918200397 (G.M.C.)
| | - Giuseppina M. Carbone
- Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; (S.N.M.); (D.A.); (D.S.)
- Correspondence: (R.G.-E.); (C.V.C.); (G.M.C.); Tel.: +41-918210074 (G.M.C.); Fax: +41-918200397 (G.M.C.)
| |
Collapse
|
6
|
Civenni G, Albino D, Shinde D, Vázquez R, Merulla J, Kokanovic A, Mapelli SN, Carbone GM, Catapano CV. Transcriptional Reprogramming and Novel Therapeutic Approaches for Targeting Prostate Cancer Stem Cells. Front Oncol 2019; 9:385. [PMID: 31143708 PMCID: PMC6521702 DOI: 10.3389/fonc.2019.00385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is the most common malignancy in men and the second cause of cancer-related deaths in western countries. Despite the progress in the treatment of localized prostate cancer, there is still lack of effective therapies for the advanced forms of the disease. Most patients with advanced prostate cancer become resistant to androgen deprivation therapy (ADT), which remains the main therapeutic option in this setting, and progress to lethal metastatic castration-resistant prostate cancer (mCRPC). Current therapies for prostate cancer preferentially target proliferating, partially differentiated, and AR-dependent cancer cells that constitute the bulk of the tumor mass. However, the subpopulation of tumor-initiating or tumor-propagating stem-like cancer cells is virtually resistant to the standard treatments causing tumor relapse at the primary or metastatic sites. Understanding the pathways controlling the establishment, expansion and maintenance of the cancer stem cell (CSC) subpopulation is an important step toward the development of more effective treatment for prostate cancer, which might enable ablation or exhaustion of CSCs and prevent treatment resistance and disease recurrence. In this review, we focus on the impact of transcriptional regulators on phenotypic reprogramming of prostate CSCs and provide examples supporting the possibility of inhibiting maintenance and expansion of the CSC pool in human prostate cancer along with the currently available methodological approaches. Transcription factors are key elements for instructing specific transcriptional programs and inducing CSC-associated phenotypic changes implicated in disease progression and treatment resistance. Recent studies have shown that interfering with these processes causes exhaustion of CSCs with loss of self-renewal and tumorigenic capability in prostate cancer models. Targeting key transcriptional regulators in prostate CSCs is a valid therapeutic strategy waiting to be tested in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carlo V. Catapano
- Institute of Oncology (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|