1
|
Fink JC, Webb LJ. The Effect of Phosphoserine-Containing Membranes on Electrostatic Fields at the Protein-Protein Interface Measured through Vibrational Stark Effect Spectroscopy. Biochemistry 2025; 64:2280-2290. [PMID: 40346024 DOI: 10.1021/acs.biochem.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
In the cell, Ras GTPases function as membrane-bound molecular switches for a variety of cell signaling pathways. Ras isoforms have long been of interest because of the connection between amino acid mutations and tumorigenesis. Much research focused on Ras has used truncated, solubilized constructs, which exclude the membrane-binding domain and therefore ignore the effects of membrane binding on Ras function. Since the membrane is a highly charged surface, it could have a significant impact on the electrostatic environment at or near the protein-protein interface. Here, we use a thiocyanate probe chemically inserted into the Ras-binding domain of RalGDS to investigate the effect of membrane binding at the Ras active site. Changes in the electric field caused by the membrane were measured by the probe as vibrational energy shifts in the infrared (IR) spectrum. For a selection of mutants which caused large shifts at this interface on the soluble H-Ras construct, binding to a 30% phosphatidylserine (PS)/70% phosphatidylcholine (PC) nanodisc caused reduced shifts compared to the solubilized counterparts. Additionally, the vibrational probe bonded to the wildtype (WT) Ras construct demonstrated a shift of 0.7 cm-1 as a PC nanodisc was doped from 0% to 30% PS, but mutations introduced to the Ras active site caused the probe to show no shift across these PS concentrations. These results indicate that the local membrane environment has an effect on the electrostatics at the Ras active site and needs to be considered when investigating the effect of oncogenic mutations on Ras function.
Collapse
Affiliation(s)
- Jackson C Fink
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lauren J Webb
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Khakimzhan A, Izri Z, Thompson S, Dmytrenko O, Fischer P, Beisel C, Noireaux V. Cell-free expression with a quartz crystal microbalance enables rapid, dynamic, and label-free characterization of membrane-interacting proteins. Commun Biol 2024; 7:1005. [PMID: 39152195 PMCID: PMC11329788 DOI: 10.1038/s42003-024-06690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Integral and interacting membrane proteins (IIMPs) constitute a vast family of biomolecules that perform essential functions in all forms of life. However, characterizing their interactions with lipid bilayers remains limited due to challenges in purifying and reconstituting IIMPs in vitro or labeling IIMPs without disrupting their function in vivo. Here, we report cell-free transcription-translation in a quartz crystal microbalance with dissipation (TXTL-QCMD) to dynamically characterize interactions between diverse IIMPs and membranes without protein purification or labeling. As part of TXTL-QCMD, IIMPs are synthesized using cell-free transcription-translation (TXTL), and their interactions with supported lipid bilayers are measured using a quartz crystal microbalance with dissipation (QCMD). TXTL-QCMD reconstitutes known IIMP-membrane dependencies, including specific association with prokaryotic or eukaryotic membranes, and the multiple-IIMP dynamical pattern-forming association of the E. coli division-coordinating proteins MinCDE. Applying TXTL-QCMD to the recently discovered Zorya anti-phage system that is unamenable to labeling, we discovered that ZorA and ZorB integrate within the lipids found at the poles of bacteria while ZorE diffuses freely on the non-pole membrane. These efforts establish the potential of TXTL-QCMD to broadly characterize the large diversity of IIMPs.
Collapse
Affiliation(s)
- Aset Khakimzhan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ziane Izri
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Seth Thompson
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Oleg Dmytrenko
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Patrick Fischer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Chase Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080, Würzburg, Germany
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Hariharan P, Guan L. Reconstitution of the Melibiose Permease of Salmonella enterica serovar Typhimurium (MelB St) into Lipid Nanodiscs. Bio Protoc 2024; 14:e5045. [PMID: 39131193 PMCID: PMC11309958 DOI: 10.21769/bioprotoc.5045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Membrane proteins play critical roles in cell physiology and pathology. The conventional way to study membrane proteins at protein levels is to use optimal detergents to extract proteins from membranes. Identification of the optimal detergent is tedious , and in some cases, the protein functions are compromised. While this detergent-based approach has produced meaningful results in membrane protein research, a lipid environment should be more suitable to recapture the protein's native folding and functions. This protocol describes how to prepare amphipathic membrane scaffold-proteins (MSPs)-based nanodiscs of a cation-coupled melibiose symporter of Salmonella enterica serovar Typhimurium (MelBSt), a member of the major facilitator superfamily. MSPs generate nano-assemblies containing membrane proteins surrounded by a patch of native lipids to better preserve their native conformations and functions. This protocol requires purified membrane protein in detergents, purified MSPs in solution, and detergent-destabilized phospholipids. The mixture of all three components at specific ratios is incubated in the presence of Bio-Beads SM-2 resins, which absorb all detergent molecules, allowing the membrane protein to associate with lipids surrounded by the MSPs. By reconstituting the purified membrane proteins back into their native-like lipid environment, these nanodisc-like particles can be directly used in cryo-EM single-particle analysis for structure determination and other biophysical analyses. It is noted that nanodiscs may potentially limit the dynamics of membrane proteins due to suboptimal nanodisc size compared to the native lipid bilayer. Key features • This protocol was built based on the method originally developed by Sligar et al. [1] and modified for a specific major facilitator superfamily transporter • This protocol is robust and reproducible • Lipid nanodiscs can increase membrane protein stability, and reconstituted transporters in lipid nanodiscs can regain function if their function is compromised using detergents • The reconstituted lipids nanodisc can be used for cryo-EM single-particle analysis.
Collapse
Affiliation(s)
- Parameswaran Hariharan
- Dept of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Lan Guan
- Dept of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
4
|
Woubshete M, Cioccolo S, Byrne B. Advances in Membrane Mimetic Systems for Manipulation and Analysis of Membrane Proteins: Detergents, Polymers, Lipids and Scaffolds. Chempluschem 2024; 89:e202300678. [PMID: 38315323 DOI: 10.1002/cplu.202300678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Extracting membrane proteins from the hydrophobic environment of the biological membrane, in a physiologically relevant and stable state, suitable for downstream analysis remains a challenge. The traditional route to membrane protein extraction has been to use detergents and the last 15 years or so have seen a veritable explosion in the development of novel detergents with improved properties, making them more suitable for individual proteins and specific applications. There have also been significant advances in the development of encapsulation of membrane proteins in lipid based nanodiscs, either directly from the native membrane using polymers allowing effective capture of the protein and protein-associated membrane lipids, or via reconstitution of detergent extracted and purified protein into nanodiscs of defined lipid composition. All of these advances have been successfully applied to the study of membrane proteins via a range of techniques and there have been some spectacular membrane protein structures solved. In addition, the first detailed structural and biophysical analyses of membrane proteins retained within a biological membrane have been reported. Here we summarise and review the recent advances with respect to these new agents and systems for membrane protein extraction, reconstitution and analysis.
Collapse
Affiliation(s)
- Menebere Woubshete
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Sara Cioccolo
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
- Department of Chemistry, Imperial College London, White City, London, W12 0BZ, United Kingdom
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| |
Collapse
|
5
|
Necelis M, McDermott C, Belcher Dufrisne M, Baryiames C, Columbus L. Solution NMR investigations of integral membrane proteins: Challenges and innovations. Curr Opin Struct Biol 2023; 82:102654. [PMID: 37542910 PMCID: PMC10529709 DOI: 10.1016/j.sbi.2023.102654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 08/07/2023]
Abstract
Compared to soluble protein counterparts, the understanding of membrane protein stability, solvent interactions, and function are not as well understood. Recent advancements in labeling, expression, and stabilization of membrane proteins have enabled solution nuclear magnetic resonance spectroscopy to investigate membrane protein conformational states, ligand binding, lipid interactions, stability, and folding. This review highlights these advancements and new understandings and provides examples of recent applications.
Collapse
Affiliation(s)
- Matthew Necelis
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Connor McDermott
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | | | | | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
6
|
Vénien-Bryan C, Fernandes CAH. Overview of Membrane Protein Sample Preparation for Single-Particle Cryo-Electron Microscopy Analysis. Int J Mol Sci 2023; 24:14785. [PMID: 37834233 PMCID: PMC10573263 DOI: 10.3390/ijms241914785] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Single-particle cryo-electron microscopy (cryo-EM SPA) has recently emerged as an exceptionally well-suited technique for determining the structure of membrane proteins (MPs). Indeed, in recent years, huge increase in the number of MPs solved via cryo-EM SPA at a resolution better than 3.0 Å in the Protein Data Bank (PDB) has been observed. However, sample preparation remains a significant challenge in the field. Here, we evaluated the MPs solved using cryo-EM SPA deposited in the PDB in the last two years at a resolution below 3.0 Å. The most critical parameters for sample preparation are as follows: (i) the surfactant used for protein extraction from the membrane, (ii) the surfactant, amphiphiles, nanodiscs or other molecules present in the vitrification step, (iii) the vitrification method employed, and (iv) the type of grids used. The aim is not to provide a definitive answer on the optimal sample conditions for cryo-EM SPA of MPs but rather assess the current trends in the MP structural biology community towards obtaining high-resolution cryo-EM structures.
Collapse
Affiliation(s)
| | - Carlos A. H. Fernandes
- Unité Mixte de Recherche (UMR) 7590, Centre National de la Recherche Scientifique (CNRS), Muséum National d’Histoire Naturelle, Institut de Recherche pour le Développement (IRD), Institut de Minéralogie, Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, 75005 Paris, France;
| |
Collapse
|
7
|
Gu S, Huang M, Handel TM. On-bead purification and nanodisc reconstitution of human chemokine receptor complexes for structural and biophysical studies. STAR Protoc 2023; 4:102460. [PMID: 37516969 PMCID: PMC10407235 DOI: 10.1016/j.xpro.2023.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/02/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Chemokine receptors, a subfamily of G-protein-coupled receptors (GPCRs), are responsible for cell migration during physiological processes as well as in diseases like inflammation and cancers. Here, we present a protocol for solubilizing, purifying, and reconstituting complexes of chemokine receptors with their ligands in "nanodiscs," soluble lipid bilayers that mimic the native environment of membrane receptors. The protocol yields chemokine receptor complexes with sufficient purity and yield for structural and biophysical studies and should be applicable to other GPCRs.
Collapse
Affiliation(s)
- Siyi Gu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA 92093, USA.
| | - Mian Huang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
8
|
Odenkirk MT, Zhang G, Marty MT. Do Nanodisc Assembly Conditions Affect Natural Lipid Uptake? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2006-2015. [PMID: 37524089 PMCID: PMC10528108 DOI: 10.1021/jasms.3c00170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Lipids play critical roles in modulating membrane protein structure, interactions, and activity. Nanodiscs provide a tunable membrane mimetic that can model these endogenous protein-lipid interactions in a nanoscale lipid bilayer. However, most studies of membrane proteins with nanodiscs use simple synthetic lipids that lack the headgroup and fatty acyl diversity of natural extracts. Prior research has successfully used natural lipid extracts in nanodiscs that more accurately mimic natural environments, but it is not clear how nanodisc assembly may bias the incorporated lipid profiles. Here, we applied lipidomics to investigate how nanodisc assembly conditions affect the profile of natural lipids in nanodiscs. Specifically, we tested the effects of assembly temperature, nanodisc size, and lipidome extract complexity. Globally, our analysis demonstrates that the lipids profiles are largely unaffected by nanodisc assembly conditions. However, a few notable changes emerged within individual lipids and lipid classes, such as a differential incorporation of cardiolipin and phosphatidylglycerol lipids from the E. coli polar lipid extract at different temperatures. Conversely, some classes of brain lipids were affected by nanodisc size at higher temperatures. Collectively, these data enable the application of nanodiscs to study protein-lipid interactions in complex lipid environments.
Collapse
Affiliation(s)
- Melanie T. Odenkirk
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
- Bio5 Institute, University of Arizona, Tucson, AZ
| | - Guozhi Zhang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
- Bio5 Institute, University of Arizona, Tucson, AZ
| |
Collapse
|
9
|
Tran NNB, Bui ATA, Jaramillo-Martinez V, Weber J, Zhang Q, Urbatsch IL. Lipid environment determines the drug-stimulated ATPase activity of P-glycoprotein. Front Mol Biosci 2023; 10:1141081. [PMID: 36911528 PMCID: PMC9995911 DOI: 10.3389/fmolb.2023.1141081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
P-glycoprotein (Pgp) is a multidrug transporter that uses the energy from ATP binding and hydrolysis to export from cells a wide variety of hydrophobic compounds including anticancer drugs, and mediates the bioavailability and pharmacokinetics of many drugs. Lipids and cholesterol have been shown to modulate the substrate-stimulated ATPase activity of purified Pgp in detergent solution and the substrate transport activity after reconstitution into proteoliposomes. While lipid extracts from E. coli, liver or brain tissues generally support well Pgp's functionality, their ill-defined composition and high UV absorbance make them less suitable for optical biophysical assays. On the other hand, studies with defined synthetic lipids, usually the bilayer-forming phosphatidylcholine with or without cholesterol, are often plagued by low ATPase activity and low binding affinity of Pgp for drugs. Drawing from the lipid composition of mammalian plasma membranes, we here investigate how different head groups modulate the verapamil-stimulated ATPase activity of purified Pgp in detergent-lipid micelles and compare them with components of E. coli lipids. Our general approach was to assay modulation of verapamil-stimulation of ATPase activity by artificial lipid mixtures starting with the bilayer-forming palmitoyloyl-phosphatidylcholine (POPC) and -phosphatidylethanolamine (POPE). We show that POPC/POPE supplemented with sphingomyelin (SM), cardiolipin, or phosphatidic acid enhanced the verapamil-stimulated activity (Vmax) and decreased the concentration required for half-maximal activity (EC50). Cholesterol (Chol) and more so its soluble hemisuccinate derivative cholesteryl hemisuccinate substantially decreased EC50, perhaps by supporting the functional integrity of the drug binding sites. High concentrations of CHS (>15%) resulted in a significantly increased basal activity which could be due to binding of CHS to the drug binding site as transport substrate or as activator, maybe acting cooperatively with verapamil. Lastly, Pgp reconstituted into liposomes or nanodiscs displayed higher basal activity and sustained high levels of verapamil stimulated activity. The findings establish a stable source of artificial lipid mixtures containing either SM and cholesterol or CHS that restore Pgp functionality with activities and affinities similar to those in the natural plasma membrane environment and will pave the way for future functional and biophysical studies.
Collapse
Affiliation(s)
- Nghi N. B. Tran
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - A. T. A. Bui
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Valeria Jaramillo-Martinez
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Joachim Weber
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Ina L. Urbatsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
10
|
Ho PS, Kao TY, Li CC, Lan YJ, Lai YC, Chiang YW. Nanodisc Lipids Exhibit Singular Behaviors Implying Critical Phenomena. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15372-15383. [PMID: 36454955 DOI: 10.1021/acs.langmuir.2c02596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanodiscs are broadly used for characterization of membrane proteins as they are generally assumed to provide a near-native environment. In fact, it is an open question whether the physical properties of lipids in nanodiscs and membrane vesicles of the same lipid composition are identical. Here, we investigate the properties of lipids (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dilauroyl-sn-glycero-3-phosphocholine, and their mixtures) in two different sample types, nanodiscs and multilamellar vesicles, by means of spin-label electron spin resonance techniques. Our results provide a quantitative description of lipid dynamics and ordering, elucidating the molecular details of how lipids in the two sample types behave differently in response to temperature and lipid composition. We show that the properties of lipids are altered in nanodiscs such that the dissimilarity of the fluid and gel lipid phases is reduced, and the first-order phase transitions are largely abolished in nanodiscs. We unveil that the ensemble of lipids in the middle of a nanodisc bilayer, as probed by the end-chain spin-label 16-PC, is promoted to a state close to a miscibility critical point, thereby rendering the phase transitions continuous. Critical phenomena have recently been proposed to explain features of the heterogeneity in native cell membranes. Our results lay the groundwork for how to establish a near-native environment in nanodiscs with simple organization of lipid components.
Collapse
Affiliation(s)
- Pei-Shan Ho
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Te-Yu Kao
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Chieh-Chin Li
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yei-Chen Lai
- Department of Chemistry, National Chung Hsing University, Taichung 402-002, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| |
Collapse
|
11
|
Peters SC, Childers KC, Mitchell CE, Avery NG, Reese SS, Mitchell C, Wo SW, Swanson CD, Brison CM, Spiegel PC. Stable binding to phosphatidylserine-containing membranes requires conserved arginine residues in tandem C domains of blood coagulation factor VIII. Front Mol Biosci 2022; 9:1040106. [PMID: 36387287 PMCID: PMC9643838 DOI: 10.3389/fmolb.2022.1040106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
At sites of vascular damage, factor VIII (fVIII) is proteolytically activated by thrombin and binds to activated platelet surfaces with activated factor IX (fIXa) to form the intrinsic "tenase" complex. Previous structural and mutational studies of fVIII have identified the C1 and C2 domains in binding to negatively charged membrane surfaces through β-hairpin loops with solvent-exposed hydrophobic residues and a ring of positively charged basic residues. Several hemophilia A-associated mutations within the C domains are suggested to disrupt lipid binding, preventing formation of the intrinsic tenase complex. In this study, we devised a novel platform for generating recombinant C1, C2, and C1C2 domain constructs and performed mutagenesis of several charged residues proximal to the putative membrane binding region of each C domain. Binding measurements between phosphatidylserine (PS)-containing lipid membrane surfaces and fVIII C domains demonstrated an ionic strength dependence on membrane binding affinity. Mutations to basic residues adjacent to the surface-exposed hydrophobic regions of C1 and C2 differentially disrupted membrane binding, with abrogation of binding occurring for mutations to conserved arginine residues in the C1 (R2163) and C2 (R2320) domains. Lastly, we determined the X-ray crystal structure of the porcine fVIII C2 domain bound to o-phospho-L-serine, the polar headgroup of PS, which binds to a basic cleft and makes charge-charge contact with R2320. We conclude that basic clefts in the fVIII C domains bind to PS-containing membranes through conserved arginine residues via a C domain modularity, where each C domain possesses modest electrostatic-dependent affinity and tandem C domains are required for high affinity binding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - P. Clint Spiegel
- Department of Chemistry, Western Washington University, Bellingham, WA, United States
| |
Collapse
|
12
|
Bruni R. High-Throughput Cell-Free Screening of Eukaryotic Membrane Proteins in Lipidic Mimetics. Curr Protoc 2022; 2:e510. [PMID: 35926131 DOI: 10.1002/cpz1.510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Membrane proteins (MPs) carry out important functions in the metabolism of cells, such as the detection of extracellular activities and the transport of small molecules across the plasma and organelle membranes. Expression of MPs for biochemical, biophysical, and structural analysis is in most cases achieved by overexpression of the desired target in an appropriate host, such as a bacterium. However, overexpression of MPs is usually toxic to the host cells and can lead to aggregation of target protein and to resistance to detergent extraction. An alternative to cell-based MP expression is cell-free (CF), or in vitro, expression. CF expression of MPs has several advantages over cell-based methods, including lack of toxicity issues, no requirement for detergent extraction, and direct incorporation of target proteins in various lipidic mimetics. This article describes a high-throughput method for the expression and purification of eukaryotic membrane proteins used in the author's lab. Basic Protocol 1 describes the selection and cloning of target genes into appropriate vectors for CF expression. Basic Protocol 2 describes the assembly of CF reactions for high-throughput screening. Basic Protocol 3 outlines methods for purification and detection of target proteins. Support Protocols 1-6 describe various accessory procedures: amplification of target, treatment of vectors to prepare them for ligation-independent cloning, and the preparation of S30 extract, T7 RNA polymerase, liposomes, and nanodiscs. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Target selection, construct design, and cloning into pET-based expression vectors Support Protocol 1: Amplification of target DNA Support Protocol 2: Preparation of ligation-independent cloning (LIC)-compatible vectors Basic Protocol 2: Assembly of small-scale cell-free reactions for high-throughput screening Support Protocol 3: Preparation of Escherichia coli S30 extract Support Protocol 4: Preparation of T7 RNA polymerase Support Protocol 5: Preparation of liposomes Support Protocol 6: Preparation of nanodiscs Basic Protocol 3: Purification and detection of cell-free reaction products.
Collapse
Affiliation(s)
- Renato Bruni
- Center on Membrane Protein Production and Analysis (COMPPÅ), New York Structural Biology Center, New York, New York
| |
Collapse
|
13
|
Julien JA, Mutchek SG, Fernandez MG, Glover KJ. Facile production of tagless membrane scaffold protein for nanodiscs. Anal Biochem 2022; 638:114497. [PMID: 34848201 PMCID: PMC8702480 DOI: 10.1016/j.ab.2021.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 02/03/2023]
Abstract
The initial step in the preparation of nanodiscs is to express and purify the membrane scaffold protein (MSP) to homogeneity. Current methods used for the isolation and purification of MSP utilize nickel affinity chromatography. However, the presence of a polyhistidine tag on the MSP often interferes with downstream steps where nanodiscs reconstituted with protein need to be isolated from empty ones. Therefore, one must engage in the finicky process of removing the polyhistidine tag from the MSP using a protease before the formation of nanodiscs. Herein, we describe a robust streamlined approach to produce tagless MSP by expression as inclusion bodies followed by cleavage with cyanogen bromide, and purification by gel filtration chromatography. In addition, the MSP prepared is devoid of tryptophan residues which facilitates tryptophan-based spectroscopic studies of reconstituted proteins. Dynamic light scattering and transmission electron microscopy showed that the tagless MSP produced was competent to produce nanodiscs.
Collapse
Affiliation(s)
- Jeffrey A Julien
- Department of Chemistry, Lehigh University, 6 E. Packer Ave. Bethlehem, Pennsylvania, 18015, USA
| | - Sarah G Mutchek
- Department of Chemistry, Lehigh University, 6 E. Packer Ave. Bethlehem, Pennsylvania, 18015, USA
| | - Martin G Fernandez
- Department of Chemistry, Lehigh University, 6 E. Packer Ave. Bethlehem, Pennsylvania, 18015, USA
| | - Kerney Jebrell Glover
- Department of Chemistry, Lehigh University, 6 E. Packer Ave. Bethlehem, Pennsylvania, 18015, USA.
| |
Collapse
|
14
|
Julien JA, Fernandez MG, Brandmier KM, Del Mundo JT, Bator CM, Loftus LA, Gomez EW, Gomez ED, Glover KJ. Rapid preparation of nanodiscs for biophysical studies. Arch Biochem Biophys 2021; 712:109051. [PMID: 34610337 DOI: 10.1016/j.abb.2021.109051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 11/15/2022]
Abstract
Nanodiscs, which are disc-shaped entities that contain a central lipid bilayer encased by an annulus of amphipathic helices, have emerged as a leading native-like membrane mimic. The current approach for the formation of nanodiscs involves the creation of a mixed-micellar solution containing membrane scaffold protein, lipid, and detergent followed by a time consuming process (3-12 h) of dialysis and/or incubation with sorptive beads to remove the detergent molecules from the sample. In contrast, the methodology described herein provides a facile and rapid procedure for the preparation of nanodiscs in a matter of minutes (<15 min) using Sephadex® G-25 resin to remove the detergent from the sample. A panoply of biophysical techniques including analytical ultracentrifugation, dynamic light scattering, gel filtration chromatography, circular dichroism spectroscopy, and cryogenic electron microscopy were employed to unequivocally confirm that aggregates formed by this method are indeed nanodiscs. We believe that this method will be attractive for time-sensitive and high-throughput experiments.
Collapse
Affiliation(s)
- Jeffrey A Julien
- Department of Chemistry, Lehigh University, 6 E. Packer Ave. Bethlehem, Pennsylvania, 18015, USA
| | - Martin G Fernandez
- Department of Chemistry, Lehigh University, 6 E. Packer Ave. Bethlehem, Pennsylvania, 18015, USA
| | - Katrina M Brandmier
- Department of Chemistry, Lehigh University, 6 E. Packer Ave. Bethlehem, Pennsylvania, 18015, USA
| | - Joshua T Del Mundo
- Department of Chemical Engineering, The Pennsylvania State University, 121 Chemical and Biomedical Engineering Building, University Park, PA, 16802, USA
| | - Carol M Bator
- Huck Institutes of Life Sciences, Cryo-EM Facility, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lucie A Loftus
- Department of Chemistry, Lehigh University, 6 E. Packer Ave. Bethlehem, Pennsylvania, 18015, USA
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, 121 Chemical and Biomedical Engineering Building, University Park, PA, 16802, USA
| | - Enrique D Gomez
- Department of Chemical Engineering, The Pennsylvania State University, 121 Chemical and Biomedical Engineering Building, University Park, PA, 16802, USA; Department of Materials Science and Engineering, The Pennsylvania State University, 404 Steidle Building, University Park, PA, 16802, USA
| | - Kerney Jebrell Glover
- Department of Chemistry, Lehigh University, 6 E. Packer Ave. Bethlehem, Pennsylvania, 18015, USA.
| |
Collapse
|
15
|
Abstract
Membrane proteins (MPs) play essential roles in numerous cellular processes. Because around 70% of the currently marketed drugs target MPs, a detailed understanding of their structure, binding properties, and functional dynamics in a physiologically relevant environment is crucial for a more detailed understanding of this important protein class. We here summarize the benefits of using lipid nanodiscs for NMR structural investigations and provide a detailed overview of the currently used lipid nanodisc systems as well as their applications in solution-state NMR. Despite the increasing use of other structural methods for the structure determination of MPs in lipid nanodiscs, solution NMR turns out to be a versatile tool to probe a wide range of MP features, ranging from the structure determination of small to medium-sized MPs to probing ligand and partner protein binding as well as functionally relevant dynamical signatures in a lipid nanodisc setting. We will expand on these topics by discussing recent NMR studies with lipid nanodiscs and work out a key workflow for optimizing the nanodisc incorporation of an MP for subsequent NMR investigations. With this, we hope to provide a comprehensive background to enable an informed assessment of the applicability of lipid nanodiscs for NMR studies of a particular MP of interest.
Collapse
Affiliation(s)
- Umut Günsel
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
16
|
Manna P, Davies T, Hoffmann M, Johnson MP, Schlau-Cohen GS. Membrane-dependent heterogeneity of LHCII characterized using single-molecule spectroscopy. Biophys J 2021; 120:3091-3102. [PMID: 34214527 DOI: 10.1016/j.bpj.2021.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022] Open
Abstract
In green plants, light harvesting complex of Photosystem II (LHCII) absorbs and transports excitation energy toward the photosynthetic reaction centers and serves as a site for energy-dependent nonphotochemical quenching (qE), the photoprotective dissipation of energy as heat. LHCII is thought to activate dissipation through conformational changes that change the photophysical behaviors. Understanding this balance requires a characterization of how the conformations of LHCII, and thus its photophysics, are influenced by individual factors within the membrane environment. Here, we used ensemble and single-molecule fluorescence to characterize the excited-state lifetimes and switching kinetics of LHCII embedded in nanodisc- and liposome-based model membranes of various sizes and lipid compositions. As the membrane area decreased, the quenched population and the rate of conformational dynamics both increased because of interactions with other proteins, the aqueous solution, and/or disordered lipids. Although the conformational states and dynamics were similar in both thylakoid and asolectin lipids, photodegradation increased with thylakoid lipids, likely because of their charge and pressure properties. Collectively, these findings demonstrate the ability of membrane environments to tune the conformations and photophysics of LHCII.
Collapse
Affiliation(s)
- Premashis Manna
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Thomas Davies
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Madeline Hoffmann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
17
|
Errasti-Murugarren E, Bartoccioni P, Palacín M. Membrane Protein Stabilization Strategies for Structural and Functional Studies. MEMBRANES 2021; 11:membranes11020155. [PMID: 33671740 PMCID: PMC7926488 DOI: 10.3390/membranes11020155] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Accounting for nearly two-thirds of known druggable targets, membrane proteins are highly relevant for cell physiology and pharmacology. In this regard, the structural determination of pharmacologically relevant targets would facilitate the intelligent design of new drugs. The structural biology of membrane proteins is a field experiencing significant growth as a result of the development of new strategies for structure determination. However, membrane protein preparation for structural studies continues to be a limiting step in many cases due to the inherent instability of these molecules in non-native membrane environments. This review describes the approaches that have been developed to improve membrane protein stability. Membrane protein mutagenesis, detergent selection, lipid membrane mimics, antibodies, and ligands are described in this review as approaches to facilitate the production of purified and stable membrane proteins of interest for structural and functional studies.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- Laboratory of Amino acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain;
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 28029 Barcelona, Spain
- Correspondence: (E.E.-M.); (M.P.)
| | - Paola Bartoccioni
- Laboratory of Amino acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain;
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 28029 Barcelona, Spain
| | - Manuel Palacín
- Laboratory of Amino acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain;
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 28029 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence: (E.E.-M.); (M.P.)
| |
Collapse
|