1
|
Zhang JZ, Greenwood N, Hernandez J, Cuperus JT, Huang B, Ryder BD, Queitsch C, Gestwicki JE, Baker D. De novo designed Hsp70 activator dissolves intracellular condensates. Cell Chem Biol 2025; 32:463-473.e6. [PMID: 39922190 PMCID: PMC11928274 DOI: 10.1016/j.chembiol.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/29/2024] [Accepted: 01/09/2025] [Indexed: 02/10/2025]
Abstract
Protein quality control (PQC) is carried out in part by the chaperone Hsp70 in concert with adapters of the J-domain protein (JDP) family. The JDPs, also called Hsp40s, are thought to recruit Hsp70 into complexes with specific client proteins. However, the molecular principles regulating this process are not well understood. We describe the de novo design of Hsp70 binding proteins that either inhibit or stimulate Hsp70 ATPase activity. An ATPase stimulating design promoted the refolding of denatured luciferase in vitro, similar to native JDPs. Targeting of this design to intracellular condensates resulted in their nearly complete dissolution and revealed roles as cell growth promoting signaling hubs. The designs inform our understanding of chaperone structure-function relationships and provide a general and modular way to target PQC systems to regulate condensates and other cellular targets.
Collapse
Affiliation(s)
- Jason Z Zhang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - Nathan Greenwood
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jason Hernandez
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Bryan D Ryder
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Zorine D, Baker D. De novo design of alpha-beta repeat proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.590358. [PMID: 38915539 PMCID: PMC11195203 DOI: 10.1101/2024.06.15.590358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Proteins composed of a single structural unit tandemly repeated multiple times carry out a wide range of functions in biology. There has hence been considerable interest in designing such repeat proteins; previous approaches have employed strict constraints on secondary structure types and relative geometries, and most characterized designs either mimic a known natural topology, adhere closely to a parametric helical bundle architecture, or exploit very short repetitive sequences. Here, we describe Rosetta-based and deep learning hallucination methods for generating novel repeat protein architectures featuring mixed alpha-helix and beta-strand topologies, and 25 new highly stable alpha-beta proteins designed using these methods. We find that incorporation of terminal caps which prevent beta strand mediated intermolecular interactions increases the solubility and monomericity of individual designs as well as overall design success rate.
Collapse
Affiliation(s)
- Dmitri Zorine
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Zhang JZ, Greenwood N, Hernandez J, Cuperus JT, Huang B, Ryder BD, Queitsch C, Gestwicki JE, Baker D. De novo designed Hsp70 activator dissolves intracellular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558356. [PMID: 37781598 PMCID: PMC10541127 DOI: 10.1101/2023.09.18.558356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Protein quality control (PQC) is carried out in part by the chaperone Hsp70, in concert with adapters of the J-domain protein (JDP) family. The JDPs, also called Hsp40s, are thought to recruit Hsp70 into complexes with specific client proteins. However, the molecular principles regulating this process are not well understood. We describe the de novo design of a set of Hsp70 binding proteins that either inhibited or stimulated Hsp70's ATPase activity; a stimulating design promoted the refolding of denatured luciferase in vitro, similar to native JDPs. Targeting of this design to intracellular condensates resulted in their nearly complete dissolution. The designs inform our understanding of chaperone structure-function relationships and provide a general and modular way to target PQC systems to condensates and other cellular targets.
Collapse
Affiliation(s)
- Jason Z Zhang
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
| | - Nathan Greenwood
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Jason Hernandez
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California 94143, United States
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Bryan D Ryder
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California 94143, United States
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California 94143, United States
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Praetorius F, Leung PJY, Tessmer MH, Broerman A, Demakis C, Dishman AF, Pillai A, Idris A, Juergens D, Dauparas J, Li X, Levine PM, Lamb M, Ballard RK, Gerben SR, Nguyen H, Kang A, Sankaran B, Bera AK, Volkman BF, Nivala J, Stoll S, Baker D. Design of stimulus-responsive two-state hinge proteins. Science 2023; 381:754-760. [PMID: 37590357 PMCID: PMC10697137 DOI: 10.1126/science.adg7731] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023]
Abstract
In nature, proteins that switch between two conformations in response to environmental stimuli structurally transduce biochemical information in a manner analogous to how transistors control information flow in computing devices. Designing proteins with two distinct but fully structured conformations is a challenge for protein design as it requires sculpting an energy landscape with two distinct minima. Here we describe the design of "hinge" proteins that populate one designed state in the absence of ligand and a second designed state in the presence of ligand. X-ray crystallography, electron microscopy, double electron-electron resonance spectroscopy, and binding measurements demonstrate that despite the significant structural differences the two states are designed with atomic level accuracy and that the conformational and binding equilibria are closely coupled.
Collapse
Affiliation(s)
- Florian Praetorius
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Philip J. Y. Leung
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Maxx H. Tessmer
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Adam Broerman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Cullen Demakis
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, Washington, USA
| | - Acacia F. Dishman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Arvind Pillai
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Abbas Idris
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - David Juergens
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Justas Dauparas
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Xinting Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Paul M. Levine
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mila Lamb
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ryanne K. Ballard
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stacey R. Gerben
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hannah Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Asim K. Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA,USA
| |
Collapse
|