1
|
Hege D, Gemmecker Y, Schall I, Oppong-Nti P, Schmitt G, Heider J. Single amino acid exchanges affect the substrate preference of an acetaldehyde dehydrogenase. Appl Microbiol Biotechnol 2025; 109:103. [PMID: 40278914 PMCID: PMC12031824 DOI: 10.1007/s00253-025-13468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
The NAD+-dependent aldehyde dehydrogenase AldB from Aromatoleum aromaticum was recombinantly produced in Escherichia coli and biochemically characterized. As suggested by its substrate spectrum, the most probably physiological function of AldB is the oxidation of short aliphatic aldehydes such as acetaldehyde, which occur as intermediates in the degradation of the corresponding alcohols. In addition, we generated some mutant variants in residue Tyr460, which is located at the neck region of the substrate channel and analyzed their effects on the catalytic parameters for different substrates. Single amino acid exchanges at this position revealed profound changes in substrate preference and substrate inhibition of the variants. KEY POINTS: • Small aliphatic aldehydes show the best catalytic efficiency with aldehyde dehydrogenase AldB • Amino acid exchanges at Y460 results in changed catalytic efficiencies and substrate inhibition • AldB is a member of a new clade of the aldehyde dehydrogenase superfamily.
Collapse
Affiliation(s)
- Dominik Hege
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| | - Yvonne Gemmecker
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| | - Iris Schall
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| | - Paula Oppong-Nti
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| | - Georg Schmitt
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| | - Johann Heider
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany.
- Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
2
|
Jin SB, Kim HA, Shin JA, Jung NH, Park SY, Hong S, Kong KH. Recombinant expression and tryptophan-assisted analysis of human sweet taste receptor T1R3's extracellular domain in sweetener interaction studies. Prep Biochem Biotechnol 2024; 54:1196-1203. [PMID: 38578840 DOI: 10.1080/10826068.2024.2336985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The human palate can discern multiple tastes; however, it predominantly perceives five fundamental flavors: sweetness, saltiness, sourness, bitterness, and umami. Sweetness is primarily mediated through the sweet taste receptor, a membrane-bound heterodimeric structure comprising T1R2-T1R3. However, unraveling the structural and mechanistic intricacies of the sweet taste receptor has proven challenging. This study aimed to address this knowledge gap by expressing an extracellular N-terminal domain encompassing the cysteine-rich domain of human hT1R3 (hT1R3-TMD) in Escherichia coli. The expressed protein was obtained as inclusion bodies, purified by metal affinity chromatography, and refolded using the dilution-refolding method. Through rigorous analysis, we confirmed the successful refolding of hT1R3-TMD and elucidated its structural characteristics using circular dichroism spectroscopy. Notably, the refolded protein was found to exist as either a monomer or a dimer, depending on its concentration. A tryptophan fluorescence quenching assay revealed that the dissociation constants for sucrose, sucralose, and brazzein were >9500 μM, 2380 μM and 14.3 μM, respectively. Our findings highlight the utility of this E. coli expression system for producing functional hT1R3-TMD for investigations and demonstrate the efficacy of the tryptophan fluorescence quenching assay in revealing complex interactions between sweet taste receptors and various sweeteners.
Collapse
Affiliation(s)
- Soo-Bin Jin
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Hyun-A Kim
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Ji-Ae Shin
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Na-Hee Jung
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Seo-Young Park
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Sungguan Hong
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | - Kwang-Hoon Kong
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, Korea
| |
Collapse
|
3
|
Gemmecker Y, Winiarska A, Hege D, Kahnt J, Seubert A, Szaleniec M, Heider J. A pH-dependent shift of redox cofactor specificity in a benzyl alcohol dehydrogenase of aromatoleum aromaticum EbN1. Appl Microbiol Biotechnol 2024; 108:410. [PMID: 38976076 PMCID: PMC11231019 DOI: 10.1007/s00253-024-13225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
We characterise a reversible bacterial zinc-containing benzyl alcohol dehydrogenase (BaDH) accepting either NAD+ or NADP+ as a redox cofactor. Remarkably, its redox cofactor specificity is pH-dependent with the phosphorylated cofactors favored at lower and the dephospho-forms at higher pH. BaDH also shows different steady-state kinetic behavior with the two cofactor forms. From a structural model, the pH-dependent shift may affect the charge of a histidine in the 2'-phosphate-binding pocket of the redox cofactor binding site. The enzyme is phylogenetically affiliated to a new subbranch of the Zn-containing alcohol dehydrogenases, which share this conserved residue. BaDH appears to have some specificity for its substrate, but also turns over many substituted benzyl alcohol and benzaldehyde variants, as well as compounds containing a conjugated C=C double bond with the aldehyde carbonyl group. However, compounds with an sp3-hybridised C next to the alcohol/aldehyde group are not or only weakly turned over. The enzyme appears to contain a Zn in its catalytic site and a mixture of Zn and Fe in its structural metal-binding site. Moreover, we demonstrate the use of BaDH in an enzyme cascade reaction with an acid-reducing tungsten enzyme to reduce benzoate to benzyl alcohol. KEY POINTS: •Zn-containing BaDH has activity with either NAD + or NADP+ at different pH optima. •BaDH converts a broad range of substrates. •BaDH is used in a cascade reaction for the reduction of benzoate to benzyl alcohol.
Collapse
Affiliation(s)
- Yvonne Gemmecker
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| | - Agnieszka Winiarska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland
| | - Dominik Hege
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| | - Jörg Kahnt
- Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Seubert
- Faculty of Chemistry, Analytical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland.
| | - Johann Heider
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany.
- Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
4
|
Kondo Y, Li Y, Okajima T. Efficient Escorting Strategy for Aggregation-Prone Notch EGF Repeats with Sparcl1. Molecules 2024; 29:1031. [PMID: 38474544 DOI: 10.3390/molecules29051031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Epidermal growth factor (EGF) repeats are present in various proteins and form well-defined structures with three disulfide bonds. One representative protein is the Notch receptor. Each EGF repeat contains unique atypical O-linked glycans, such as O-linked N-acetylglucosamine (O-GlcNAc). To generate a monoclonal antibody against the O-GlcNAc moiety in mouse Notch1, we expressed the recombinant C-terminal His6-tagged Notch1 EGF14-15 protein in HEK293T cells to prepare the immunogen. Most of the proteins were not secreted and showed higher molecular weight ladders in the cell lysate, suggesting protein aggregation. To overcome this issue, we fused Sparcl1 as an extracellular escorting tag to the N-terminus of Notch1 EGF14-15. The fusion protein was efficiently secreted extracellularly without protein aggregates in the lysates. Following PreScission protease treatment, Notch1 EGF14-15 was efficiently released from the escorting tag. Notch1 EGF14-15 prepared using this method was indeed O-GlcNAcylated. The optimal length of the escorting tag was determined by generating deletion mutants to improve the extracellular secretion of EGF14-15. Hence, a large amount of EGF14-15 was successfully prepared from the culture supernatant of HEK293T cells, which were otherwise prone to aggregation.
Collapse
Affiliation(s)
- Yuji Kondo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yuxin Li
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
5
|
Peli Thanthri SH, Linz TH. Controlling the separation of native proteins with temperature in thermal gel transient isotachophoresis. Anal Bioanal Chem 2023; 415:4163-4172. [PMID: 36151350 PMCID: PMC10033466 DOI: 10.1007/s00216-022-04331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
Polyacrylamide gel electrophoresis (PAGE) is a ubiquitous technique used in biochemical research laboratories to characterize protein samples. Despite its popularity, PAGE is relatively slow and provides limited separation resolution, especially for native proteins. This report describes the development of a microfluidic thermal gel transient isotachophoresis (TG-tITP) method to rapidly separate native proteins with high resolution. Thermal gels were employed as a separations matrix because of their unique ability to change viscosity in response to temperature. Proteins were added into thermal gel and loaded into a microfluidic device. Electrolyte optimization was conducted to achieve robust tITP to isotachophoretically preconcentrate proteins and then electrophoretically separate them. Electropherograms were collected through both time and distance to enable both small and large proteins to be measured within a single analysis. The effects of temperature were evaluated and found to exhibit a pronounced effect on the separation. Temperature gradients were then employed to alter thermal gel viscosity over time to maximize separation resolution between proteins. The results herein demonstrate how gradient TG-tITP achieves rapid, high-performance separations of native proteins. This analysis provided a wide mass range (6-464 kDa) with two-fold higher resolution than native PAGE while requiring 15,000-fold less protein loading and providing five-fold faster analysis times.
Collapse
Affiliation(s)
| | - Thomas H Linz
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA.
| |
Collapse
|
6
|
Zhang X, Malik B, Young C, Zhang H, Larkin D, Liao XH, Refetoff S, Liu M, Arvan P. Maintaining the thyroid gland in mutant thyroglobulin-induced hypothyroidism requires thyroid cell proliferation that must continue in adulthood. J Biol Chem 2022; 298:102066. [PMID: 35618019 PMCID: PMC9213252 DOI: 10.1016/j.jbc.2022.102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/14/2022] Open
Abstract
Congenital hypothyroidism with biallelic thyroglobulin (Tg protein, encoded by the TG gene) mutation is an endoplasmic reticulum (ER) storage disease. Many patients (and animal models) grow an enlarged thyroid (goiter), yet some do not. In adulthood, hypothyroid TGcog/cog mice (bearing a Tg-L2263P mutation) exhibit a large goiter, whereas adult WIC rats bearing the TGrdw/rdw mutation (Tg-G2298R) exhibit a hypoplastic thyroid. Homozygous TG mutation has been linked to thyroid cell death, and cytotoxicity of the Tg-G2298R protein was previously thought to explain the lack of goiter in WIC-TGrdw/rdw rats. However, recent studies revealed that TGcog/cog mice also exhibit widespread ER stress–mediated thyrocyte death, yet under continuous feedback stimulation, thyroid cells proliferate in excess of their demise. Here, to examine the relative proteotoxicity of the Tg-G2298R protein, we have used CRISPR–CRISPR-associated protein 9 technology to generate homozygous TGrdw/rdw knock-in mice in a strain background identical to that of TGcog/cog mice. TGrdw/rdw mice exhibit similar phenotypes of defective Tg protein folding, thyroid histological abnormalities, hypothyroidism, and growth retardation. TGrdw/rdw mice do not show evidence of greater ER stress response or stress-mediated cell death than TGcog/cog mice, and both mouse models exhibit sustained thyrocyte proliferation, with comparable goiter growth. In contrast, in WIC-TGrdw/rdw rats, as a function of aging, the thyrocyte proliferation rate declines precipitously. We conclude that the mutant Tg-G2298R protein is not intrinsically more proteotoxic than Tg-L2263P; rather, aging-dependent difference in maintenance of cell proliferation is the limiting factor, which accounts for the absence of goiter in adult WIC-TGrdw/rdw rats.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Bhoomanyu Malik
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Crystal Young
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Hao Zhang
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Dennis Larkin
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Xiao-Hui Liao
- Departments of Medicine, Pediatrics, and Committee on Genetics, The University of Chicago, Chicago Illinois, USA
| | - Samuel Refetoff
- Departments of Medicine, Pediatrics, and Committee on Genetics, The University of Chicago, Chicago Illinois, USA
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA.
| |
Collapse
|
7
|
Wang P, Du B, Smith J, Lao W, Wong CS, Zeng EY. Development and field evaluation of the organic-diffusive gradients in thin-films (o-DGT) passive water sampler for microcystins. CHEMOSPHERE 2022; 287:132079. [PMID: 34523453 DOI: 10.1016/j.chemosphere.2021.132079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
The presence of microcystins (MCs) in waterbodies requires a simple and reliable monitoring technique to characterize better their spatiotemporal distribution and ecological risks. An organic-diffusive gradients in thin films (o-DGT) passive sampler based on polyacrylamide diffusive gel and hydrophilic-lipophilic balance (HLB) binding gel was developed for MCs in water. The mass accumulation of three MCs (MC-LR, -RR, and -YR) was linear over 10 days (R2 ≥ 0.98). Sampling rates (2.68-3.22 mL d-1) and diffusion coefficients (0.90-1.08 × 10-6 cm2 s-1) of three MCs were obtained at 20 °C. Two different passive samplers, o-DGT and the Solid Phase Adsorption Toxin Tracking device (SPATT), were co-deployed to estimate MC levels at three lakes in California, USA. Measured total MC concentrations were up to 10.9 μg L-1, with MC-LR the primary variant at a measured maximum concentration of 2.74 μg L-1. Time-weighted average MC concentrations by o-DGT were lower than grab water samples, probably because grab sampling measures both dissolved and particulate phases (i.e., MCs in cyanobacteria). Passive water samplers by design can only measure dissolved-phase MCs, which are considerably less during the cyanobacteria-laden periods observed. Both o-DGT and grab samples gave comparable results for three MC variants at low levels of MCs, e.g., <0.1 μg L-1. o-DGT showed a higher correlation with grab sampling than SPATT did. This study demonstrates that o-DGT can be effectively used for monitoring and evaluation of dissolved MCs in waters.
Collapse
Affiliation(s)
- Po Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Bowen Du
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, USA
| | - Jayme Smith
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, USA
| | - Wenjian Lao
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, USA
| | - Charles S Wong
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China; Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, USA.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
8
|
Peli Thanthri SH, Ward CL, Cornejo MA, Linz TH. Simultaneous Preconcentration and Separation of Native Protein Variants Using Thermal Gel Electrophoresis. Anal Chem 2020; 92:6741-6747. [PMID: 32249567 DOI: 10.1021/acs.analchem.0c00876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins must maintain proper folding conformations and express the correct post-translational modifications (PTMs) to exhibit appropriate biological activity. However, assessing protein folding and PTMs is difficult because routine polyacrylamide gel electrophoresis (PAGE) methods lack the separation resolution necessary to identify variants of a single protein. Additionally, standard PAGE denatures proteins prior to analysis precluding determinations of folding states or PTMs. To overcome these limitations, a microfluidic thermal gel electrophoresis platform was developed to provide high-sensitivity, high-resolution analyses of native protein variants. A thermally reversible gel was utilized as a separation matrix while in its solid state (30 °C). This thermal gel provided sufficient separation resolution to identify three variants of a fluorescently labeled model protein. To increase detection sensitivity, analyte preconcentration was conducted in parallel with the separation. Continuous analyte enrichment afforded detection limits of 500 fg of protein (250 pM) while simultaneous baseline separation resolution was achieved between variants. The effects of temperature on thermal gel electrophoresis were also characterized. The unique temperature-dependent outcomes illustrated how method performance can be tuned through a thermal dimension. Ultimately, the high detection sensitivity and separation resolution provided by thermal gel electrophoresis enabled rapid screening of native protein variants.
Collapse
Affiliation(s)
- Shakila H Peli Thanthri
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489, United States
| | - Cassandra L Ward
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489, United States
| | - Mario A Cornejo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489, United States
| | - Thomas H Linz
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489, United States
| |
Collapse
|
9
|
The Reaction Mechanism of Metallo-β-Lactamases Is Tuned by the Conformation of an Active-Site Mobile Loop. Antimicrob Agents Chemother 2018; 63:AAC.01754-18. [PMID: 30348667 DOI: 10.1128/aac.01754-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022] Open
Abstract
Carbapenems are "last resort" β-lactam antibiotics used to treat serious and life-threatening health care-associated infections caused by multidrug-resistant Gram-negative bacteria. Unfortunately, the worldwide spread of genes coding for carbapenemases among these bacteria is threatening these life-saving drugs. Metallo-β-lactamases (MβLs) are the largest family of carbapenemases. These are Zn(II)-dependent hydrolases that are active against almost all β-lactam antibiotics. Their catalytic mechanism and the features driving substrate specificity have been matter of intense debate. The active sites of MβLs are flanked by two loops, one of which, loop L3, was shown to adopt different conformations upon substrate or inhibitor binding, and thus are expected to play a role in substrate recognition. However, the sequence heterogeneity observed in this loop in different MβLs has limited the generalizations about its role. Here, we report the engineering of different loops within the scaffold of the clinically relevant carbapenemase NDM-1. We found that the loop sequence dictates its conformation in the unbound form of the enzyme, eliciting different degrees of active-site exposure. However, these structural changes have a minor impact on the substrate profile. Instead, we report that the loop conformation determines the protonation rate of key reaction intermediates accumulated during the hydrolysis of different β-lactams in all MβLs. This study demonstrates the existence of a direct link between the conformation of this loop and the mechanistic features of the enzyme, bringing to light an unexplored function of active-site loops on MβLs.
Collapse
|