1
|
Pitchakarn P, Karinchai J, Buacheen P, Imsumran A, Wongnoppavich A, Boonyapranai K, Ounjaijean S. Ficus lindsayana Leaf Extract Protects C2C12 Mouse Myoblasts Against the Suppressive Effects of Bisphenol-A on Myogenic Differentiation. Int J Mol Sci 2025; 26:476. [PMID: 39859191 PMCID: PMC11765284 DOI: 10.3390/ijms26020476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Recently, toxicological and epidemiological research has provided strong support for the unfavorable effects of bisphenol-A (BPA, 2,2'-bis(4-hydroxyphenyl) propane) on myogenesis and its underlying mechanisms. Researchers have therefore been looking for new strategies to prevent or mitigate these injurious effects of BPA on the human body. It has been found that plant extracts may act as potential therapeutic agents or functional foods, preventing human diseases caused by BPA. We previously reported that Ficus lindsayana (FL) extract exhibits anti-inflammation activity in macrophages via suppressing the expression of inflammation-related molecules and anti-insulin resistance in inflammation-treated adipocytes. In this study, we investigated whether Ficus lindsayana leaf extract (FLLE) protects C2C12 mouse myoblasts against the suppressive effects of BPA on myogenic differentiation. The viability of BPA-stimulated C2C12 myoblasts was significantly increased when co-treated with FLLE (200 µg/mL), suggesting that the extract may lessen the inhibitory effects of BPA on cell division. We also found that FLLE significantly increased neo-myotube formation by inducing the fusion of myoblasts into multinucleated myotubes when compared to the BPA-treated control cells, without impacting cell viability. In addition, the levels of myogenin and myocyte enhancer factor 2A (MEF2A), which are crucial markers and regulators of myogenesis, were markedly increased by the addition of FLLE (50 µg/mL) to the BPA-treated C2C12 cells. This finding suggests that FLLE effectively improved myogenic differentiation in BPA-exposed myoblasts. FLLE treatment (50 µg/mL) significantly raised total Akt protein levels in the BPA-treated C2C12 cells, enhancing protein phosphorylation. In addition, FLLE (50 µg/mL) obviously increased the phosphorylation levels of p70S6K and 4E-BP1, key downstream targets of the Akt/mTOR signaling cascade, by elevating total p70S6K and 4E-BP1 levels. These results suggest that FLLE diminishes the decline in myogenic differentiation induced by BPA via the regulation of the myocyte differentiation-related signaling pathway. The information obtained from this study demonstrates the health benefits of this plant, which warrants further investigation as an alternative medicine, functional ingredient, or food supplement that can prevent the negative health effects of BPA or other toxicants.
Collapse
Affiliation(s)
- Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.); (P.B.); (A.I.); (A.W.)
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.); (P.B.); (A.I.); (A.W.)
| | - Pensiri Buacheen
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.); (P.B.); (A.I.); (A.W.)
| | - Arisa Imsumran
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.); (P.B.); (A.I.); (A.W.)
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.); (P.B.); (A.I.); (A.W.)
| | - Kongsak Boonyapranai
- Research Center for Non-Infectious Diseases and Environmental Health Sciences, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sakaewan Ounjaijean
- Research Center for Non-Infectious Diseases and Environmental Health Sciences, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Cook NE, McGovern MR, Zaman T, Lundin PM, Vaughan RA. Effect of mTORC Agonism via MHY1485 with and without Rapamycin on C2C12 Myotube Metabolism. Int J Mol Sci 2024; 25:6819. [PMID: 38999929 PMCID: PMC11241331 DOI: 10.3390/ijms25136819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
The mechanistic target of rapamycin complex (mTORC) regulates protein synthesis and can be activated by branched-chain amino acids (BCAAs). mTORC has also been implicated in the regulation of mitochondrial metabolism and BCAA catabolism. Some speculate that mTORC overactivation by BCAAs may contribute to insulin resistance. The present experiments assessed the effect of mTORC activation on myotube metabolism and insulin sensitivity using the mTORC agonist MHY1485, which does not share structural similarities with BCAAs. METHODS C2C12 myotubes were treated with MHY1485 or DMSO control both with and without rapamycin. Gene expression was assessed using qRT-PCR and insulin sensitivity and protein expression by western blot. Glycolytic and mitochondrial metabolism were measured by extracellular acidification rate and oxygen consumption. Mitochondrial and lipid content were analyzed by fluorescent staining. Liquid chromatography-mass spectrometry was used to assess extracellular BCAAs. RESULTS Rapamycin reduced p-mTORC expression, mitochondrial content, and mitochondrial function. Surprisingly, MHY1485 did not alter p-mTORC expression or cell metabolism. Neither treatment altered indicators of BCAA metabolism or extracellular BCAA content. CONCLUSION Collectively, inhibition of mTORC via rapamycin reduces myotube metabolism and mitochondrial content but not BCAA metabolism. The lack of p-mTORC activation by MHY1485 is a limitation of these experiments and warrants additional investigation.
Collapse
Affiliation(s)
- Norah E. Cook
- Department of Health and Human Performance, High Point University, High Point, NC 27262-3598, USA; (N.E.C.); (M.R.M.)
| | - Macey R. McGovern
- Department of Health and Human Performance, High Point University, High Point, NC 27262-3598, USA; (N.E.C.); (M.R.M.)
| | - Toheed Zaman
- Department of Chemistry, High Point University, High Point, NC 27262-3598, USA; (T.Z.); (P.M.L.)
| | - Pamela M. Lundin
- Department of Chemistry, High Point University, High Point, NC 27262-3598, USA; (T.Z.); (P.M.L.)
| | - Roger A. Vaughan
- Department of Health and Human Performance, High Point University, High Point, NC 27262-3598, USA; (N.E.C.); (M.R.M.)
| |
Collapse
|
3
|
Levitt DE, Bourgeois BL, Rodríguez-Graciani KM, Molina PE, Simon L. Alcohol Impairs Bioenergetics and Differentiation Capacity of Myoblasts from Simian Immunodeficiency Virus-Infected Female Macaques. Int J Mol Sci 2024; 25:2448. [PMID: 38397125 PMCID: PMC10888832 DOI: 10.3390/ijms25042448] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Alcohol misuse and HIV independently induce myopathy. We previously showed that chronic binge alcohol (CBA) administration, with or without simian immunodeficiency virus (SIV), decreases differentiation capacity of male rhesus macaque myoblasts. We hypothesized that short-term alcohol and CBA/SIV would synergistically decrease differentiation capacity and impair bioenergetic parameters in female macaque myoblasts. Myoblasts from naïve (CBA-/SIV-), vehicle [VEH]/SIV, and CBA/SIV (N = 4-6/group) groups were proliferated (3 days) and differentiated (5 days) with 0 or 50 mM ethanol (short-term). CBA/SIV decreased differentiation and increased non-mitochondrial oxygen consumption rate (OCR) versus naïve and/or VEH/SIV. Short-term alcohol decreased differentiation; increased maximal and non-mitochondrial OCR, mitochondrial reactive oxygen species (ROS) production, and aldolase activity; and decreased glycolytic measures, ATP production, mitochondrial membrane potential (ΔΨm), and pyruvate kinase activity. Mitochondrial ROS production was closely associated with mitochondrial network volume, and differentiation indices were closely associated with key bioenergetic health and function parameters. Results indicate that short-term alcohol and CBA non-synergistically decrease myoblast differentiation capacity. Short-term alcohol impaired myoblast glycolytic function, driving the bioenergetic deficit. Results suggest potentially differing mechanisms underlying decreased differentiation capacity with short-term alcohol and CBA, highlighting the need to elucidate the impact of different alcohol use patterns on myopathy.
Collapse
Affiliation(s)
- Danielle E. Levitt
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.E.L.); (B.L.B.); (K.M.R.-G.); (P.E.M.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| | - Brianna L. Bourgeois
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.E.L.); (B.L.B.); (K.M.R.-G.); (P.E.M.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Keishla M. Rodríguez-Graciani
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.E.L.); (B.L.B.); (K.M.R.-G.); (P.E.M.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Patricia E. Molina
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.E.L.); (B.L.B.); (K.M.R.-G.); (P.E.M.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Liz Simon
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.E.L.); (B.L.B.); (K.M.R.-G.); (P.E.M.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Jung U, Kim M, Dowker-Key P, Noë S, Bettaieb A, Shepherd E, Voy B. Hypoxia promotes proliferation and inhibits myogenesis in broiler satellite cells. Poult Sci 2024; 103:103203. [PMID: 37980759 PMCID: PMC10685027 DOI: 10.1016/j.psj.2023.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023] Open
Abstract
Breast muscle myopathies in broilers compromise meat quality and continue to plague the poultry industry. Broiler breast muscle myopathies are characterized by impaired satellite cell (SC)-mediated repair, and localized tissue hypoxia and dysregulation of oxygen homeostasis have been implicated as contributing factors. The present study was designed to test the hypothesis that hypoxia disrupts the ability of SC to differentiate and form myotubes, both of which are key components of myofiber repair, and to determine the extent to which effects are reversed by restoration of oxygen tension. Primary SC were isolated from pectoralis major of young (5 d) Cobb 700 chicks and maintained in growth conditions or induced to differentiate under normoxic (20% O2) or hypoxic (1% O2) conditions for up to 48 h. Hypoxia enhanced SC proliferation while inhibiting myogenic potential, with decreased fusion index and suppressed myotube formation. Reoxygenation after hypoxia partially reversed effects on both proliferation and myogenesis. Western blotting showed that hypoxia diminished myogenin expression, activated AMPK, upregulated proliferation markers, and increased molecular signaling of cellular stress. Hypoxia also promoted accumulation of lipid droplets in myotubes. Targeted RNAseq identified numerous differentially expressed genes across differentiation under hypoxia, including several genes that have been associated with myopathies in vivo. Altogether, these data demonstrate localized hypoxia may influence SC behavior in ways that disrupt muscle repair and promote the formation of myopathies in broilers.
Collapse
Affiliation(s)
- Usuk Jung
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Minjeong Kim
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Presley Dowker-Key
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Simon Noë
- Research Group for Neurorehabilitation (eNRGy), Department of Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium
| | - Ahmed Bettaieb
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Elizabeth Shepherd
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Brynn Voy
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
5
|
Noone J, Rooney MF, Karavyraki M, Yates A, O’Sullivan SE, Porter RK. Cancer-Cachexia-Induced Human Skeletal Muscle Myotube Degeneration Is Prevented via Cannabinoid Receptor 2 Agonism In Vitro. Pharmaceuticals (Basel) 2023; 16:1580. [PMID: 38004445 PMCID: PMC10675367 DOI: 10.3390/ph16111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Cachexia syndrome, leading to reduced skeletal muscle and fat mass, is highly prevalent in cancer patients, resulting in further negative implications for these patients. To date, there is no approved therapy for cachexia syndrome. The objective of this study was to establish an in vitro model of cancer cachexia in mature human skeletal muscle myotubes, with the intention of exploiting the cell model to assess potential cachexia therapeutics, specifically cannabinoid related drugs. Having cultured and differentiated primary human muscle myoblasts to mature myotubes, we successfully established two cancer cachexia models using conditioned media (CM) from human colon adenocarcinoma (SW480) and from non-small-cell lung carcinoma (H1299) cultured cells. The cancer-CM-induced extensive myotube degeneration, demonstrated by a significant reduction in mature myotube diameter, which progressed over the period studied. Myotube degeneration is a characteristic feature of cancer cachexia and was used in this study as an index of cachexia. Expression of cannabinoid 1 and 2 receptors (CB1R and CB2R) was confirmed in the mature human skeletal muscle myotubes. Subsequently, the effect of cannabinoid compounds on this myotube degeneration were assessed. Tetrahydrocannabinol (THC), a partial CB1R/CB2R agonist, and JWH133, a selective CB2R agonist, proved efficacious in protecting mature human myotubes from the deleterious effects of both (SW480 and H1299) cancer cachexia conditions. ART27.13, a full, peripherally selective CB1R/CB2R agonist, currently being trialled in cancer cachexia (IRAS ID 278450, REC 20/NE/0198), was also significantly protective against myotube degeneration in both (SW480 and H1299) cancer cachexia conditions. Furthermore, the addition of the CB2R antagonist AM630, but not the CB1R antagonist Rimonabant, abolished the protective effect of ART27.13. In short, we have established a convenient and robust in vitro model of cancer-induced human skeletal muscle cachexia. The data obtained using the model demonstrate the therapeutic potential of ART27.13 in cancer-induced cachexia prevention and provides evidence indicating that this effect is via CB2R, and not CB1R.
Collapse
Affiliation(s)
- John Noone
- School of Biochemistry & Immunology, Trinity College Dublin, D02R590 Dublin, Ireland; (J.N.); (M.F.R.)
| | - Mary F. Rooney
- School of Biochemistry & Immunology, Trinity College Dublin, D02R590 Dublin, Ireland; (J.N.); (M.F.R.)
| | - Marilena Karavyraki
- School of Biochemistry & Immunology, Trinity College Dublin, D02R590 Dublin, Ireland; (J.N.); (M.F.R.)
| | - Andrew Yates
- Artelo Bioscience, Ltd., Alderly Edge, Cheshire SK10 4TG, UK (S.E.O.)
| | | | - Richard K. Porter
- School of Biochemistry & Immunology, Trinity College Dublin, D02R590 Dublin, Ireland; (J.N.); (M.F.R.)
| |
Collapse
|
6
|
Bourgeois BL, Levitt DE, Molina PE, Simon L. Differential expression of adipocyte and myotube extracellular vesicle miRNA cargo in chronic binge alcohol-administered SIV-infected male macaques. Alcohol 2023; 108:1-9. [PMID: 36351490 PMCID: PMC10033305 DOI: 10.1016/j.alcohol.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
Our studies in chronic binge alcohol (CBA) -treated simian immunodeficiency virus (SIV)-infected macaques and in people living with HIV (PLWH) show significant alterations in metabolic homeostasis. CBA promotes a profibrotic phenotype in adipose tissue and skeletal muscle (SKM) and decreases adipose-derived stem cell and myoblast differentiation, making adipose and SKM potential drivers in metabolic dysregulation. Furthermore, we have shown that the differential expression of microRNAs (miRs) in SKM contributes to impaired myoblast differentiation potential. Beyond modulation of intracellular responses, miRs can be transported in extracellular vesicles (EVs) to mediate numerous cellular responses through intercellular and interorgan communication. This study tested the hypothesis that CBA alters concentration and miR cargo of EVs derived from adipocytes and myotubes isolated from SIV-infected male macaques. Fourteen male rhesus macaques received either CBA (2.5 g/kg/day) or sucrose (VEH) for 14.5 months. Three months following the initiation of CBA/VEH, all animals were infected with SIVmac251 and 2.5 months later were initiated on antiretroviral therapy. SKM and adipose tissue samples were collected at the study endpoint (blood alcohol concentration = 0 mM). EVs were isolated by ultracentrifugation of myotube and adipocyte cell culture supernatant. Nanoparticle tracking revealed no differences in concentration or size of particles between VEH and CBA groups. Adipocyte-derived EVs from CBA animals showed decreased miR-let-7a expression (p = 0.03). Myotube-derived EVs from CBA animals had decreased miR-16 (p = 0.04) and increased miR-133a and miR-133b (both p = 0.04) expression. These results indicate that CBA administration differentially regulates EV miR content but does not alter the number of EVs from adipocytes or myotubes. Future studies are warranted to determine the functional relevance of CBA-altered EV miR cargo and their role in intercellular and interorgan communication and metabolic dysregulation.
Collapse
Affiliation(s)
- Brianna L Bourgeois
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Danielle E Levitt
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Patricia E Molina
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Liz Simon
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
7
|
Jung U, Kim M, Piacquadio K, Shepherd E, Voy BH. Technical note: an optimized method to isolate, purify, and differentiate satellite cells from broiler chicks. J Anim Sci 2022; 100:skac342. [PMID: 36271876 PMCID: PMC9733497 DOI: 10.1093/jas/skac342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/21/2022] [Indexed: 12/15/2022] Open
Abstract
Development and maintenance of healthy muscle fibers rely on the myogenic potential of satellite cells (SC), muscle stem cells that proliferate and differentiate to form myotubes. Satellite cells are indispensable for post-hatch muscle growth as well as muscle repair and regeneration when myofibers are damaged. Pectoralis major of young broiler chicks (5-d olds) is a readily available source of SC, which can be used in vitro to elucidate cellular and molecular mechanisms responsible for muscle growth and regeneration in broilers. Here, we optimized a method for efficient isolation, purification, and differentiation of SC, from young broiler chicks. This procedure includes a simple method that allows SC to be purified from other muscle cell types that can impede the fidelity of follow-on experiments, particularly highly sensitive measures such as RNAseq. The methods for culturing and differentiating SC into multinucleated myotubes were also optimized by testing serum types, concentrations, and the effects of chicken embryo extract. Using the isolation procedure, a highly pure SC population (94.6 ± 2.11% Pax7+) with high viability and yield was obtained, and their capacity to differentiate into myotubes was confirmed. Enrichment for SC and myogenic capacity were maintained through multiple passages and after cryopreservation. Analysis of gene expression over the first 48 h of differentiation confirmed that SC exhibited the expected molecular signature of myogenesis. Taken together, this method simplifies the ability to isolate and maintain a relatively pure population of SC with strong myogenic potential from young broiler chicks, and should support downstream applications for assessing the impact of nutrients, metabolites, and other physiological cues on muscle growth and development in broilers.
Collapse
Affiliation(s)
- Usuk Jung
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Minjeong Kim
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Kamille Piacquadio
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Elizabeth Shepherd
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Brynn H Voy
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
8
|
VanGenderen CA, Granet JA, Filippelli RL, Liu Y, Chang NC. Modulating Myogenesis: An Optimized In Vitro Assay to Pharmacologically Influence Primary Myoblast Differentiation. Curr Protoc 2022; 2:e565. [PMID: 36165685 DOI: 10.1002/cpz1.565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The intentional pharmacological manipulation of myogenesis is an important technique for understanding the underlying mechanisms of muscle differentiation and disease etiology. Using the pharmacological agent metformin as an example molecule, we present a systematic approach to examine the impact of pharmacological agents on the myogenic program. This consists of optimizing the in vitro differentiation of primary myoblast cells followed by the generation of a dose-response curve for a respective pharmaceutical. To assess myogenic differentiation, we utilized three approaches (incorporating both transcriptional and protein techniques) to assess the effects of biologically active agents on the in vitro differentiation of primary myogenic progenitors. First, the immunofluorescent visualization of myosin heavy chain (MYHC), which is expressed in differentiated myofibers, is used to obtain the fusion index, a quantitative read-out of differentiation efficiency. Second, quantitative reverse transcription PCR (RT-qPCR) reveals the expression of myogenic factors (Pax7, Myf5, Myod, Myog, Myh2) at the transcript level. Third, western blotting is used to assess the protein expression levels of the myogenic markers (PAX7, MYF5, MYOD, MYOG, and MYHC). By monitoring the expression of these various myogenic factors during the differentiation process, the relative cellular state and differentiation status between samples can be determined. Combined, these approaches enable the successful assessment of the impact of pharmacological agents on myogenic differentiation. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Immunofluorescence assay for qualitative and quantitative assessment of pharmacological agents on in vitro myogenic differentiation Support Protocol 1: Evaluating myogenic gene expression by RT-qPCR Support Protocol 2: Evaluating myogenic protein expression by western blot.
Collapse
Affiliation(s)
| | | | | | - Yiyang Liu
- McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
9
|
Spexin Promotes the Proliferation and Differentiation of C2C12 Cells In Vitro—The Effect of Exercise on SPX and SPX Receptor Expression in Skeletal Muscle In Vivo. Genes (Basel) 2021; 13:genes13010081. [PMID: 35052420 PMCID: PMC8774514 DOI: 10.3390/genes13010081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 01/04/2023] Open
Abstract
SPX (spexin) and its receptors GalR2 and GalR3 (galanin receptor subtype 2 and galanin receptor subtype 3) play an important role in the regulation of lipid and carbohydrate metabolism in human and animal fat tissue. However, little is still known about the role of this peptide in the metabolism of muscle. The aim of this study was to determine the impact of SPX on the metabolism, proliferation and differentiation of the skeletal muscle cell line C2C12. Moreover, we determined the effect of exercise on the SPX transduction pathway in mice skeletal muscle. We found that increased SPX, acting via GalR2 and GalR3 receptors, and ERK1/2 phosphorylation stimulated the proliferation of C2C12 cells (p < 0.01). We also noted that SPX stimulated the differentiation of C2C12 by increasing mRNA and protein levels of differentiation markers Myh, myogenin and MyoD (p < 0.01). SPX consequently promoted myoblast fusion into the myotubule (p < 0.01). Moreover, we found that, in the first stage (after 2 days) of myocyte differentiation, GalR2 and GalR3 were involved, whereas in the last stage (day six), the effect of SPX was mediated by the GalR3 isoform. We also noted that exercise stimulated SPX and GalR2 expression in mice skeletal muscle as well as an increase in SPX concentration in blood serum. These new insights may contribute to a better understanding of the role of SPX in the metabolism of skeletal muscle.
Collapse
|
10
|
Levitt DE, Ferguson TF, Primeaux SD, Zavala JA, Ahmed J, Marshall RH, Simon L, Molina PE. Skeletal muscle bioenergetic health and function in people living with HIV: association with glucose tolerance and alcohol use. Am J Physiol Regul Integr Comp Physiol 2021; 321:R781-R790. [PMID: 34585616 PMCID: PMC8616628 DOI: 10.1152/ajpregu.00197.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
At-risk alcohol use is prevalent and increases dysglycemia among people living with human immunodeficiency virus (PLWH). Skeletal muscle (SKM) bioenergetic dysregulation is implicated in dysglycemia and type 2 diabetes. The objective of this study was to determine the relationship between at-risk alcohol, glucose tolerance, and SKM bioenergetic function in PLWH. Thirty-five PLWH (11 females, 24 males, age: 53 ± 9 yr, body mass index: 29.0 ± 6.6 kg/m2) with elevated fasting glucose enrolled in the ALIVE-Ex study provided medical history and alcohol use information [Alcohol Use Disorders Identification Test (AUDIT)], then underwent an oral glucose tolerance test (OGTT) and SKM biopsy. Bioenergetic health and function and mitochondrial volume were measured in isolated myoblasts. Mitochondrial gene expression was measured in SKM. Linear regression adjusting for age, sex, and smoking was performed to examine the relationship between glucose tolerance (2-h glucose post-OGTT), AUDIT, and their interaction with each outcome measure. Negative indicators of bioenergetic health were significantly (P < 0.05) greater with higher 2-h glucose (proton leak) and AUDIT (proton leak, nonmitochondrial oxygen consumption, and bioenergetic health index). Mitochondrial volume was increased with the interaction of higher 2-h glucose and AUDIT. Mitochondrial gene expression decreased with higher 2-h glucose (TFAM, PGC1B, PPARG, MFN1), AUDIT (MFN1, DRP1, MFF), and their interaction (PPARG, PPARD, MFF). Decreased expression of mitochondrial genes were coupled with increased mitochondrial volume and decreased bioenergetic health in SKM of PLWH with higher AUDIT and 2-h glucose. We hypothesize these mechanisms reflect poorer mitochondrial health and may precede overt SKM bioenergetic dysregulation observed in type 2 diabetes.
Collapse
Affiliation(s)
- Danielle E Levitt
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Tekeda F Ferguson
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Epidemiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Stefany D Primeaux
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Joint Diabetes, Endocrinology & Metabolism Center, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Jeanette A Zavala
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jameel Ahmed
- Section of Cardiology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Richard H Marshall
- Department of Radiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
11
|
Levitt DE, Chalapati N, Prendergast MJ, Simon L, Molina PE. Ethanol-Impaired Myogenic Differentiation is Associated With Decreased Myoblast Glycolytic Function. Alcohol Clin Exp Res 2020; 44:2166-2176. [PMID: 32945016 PMCID: PMC7680427 DOI: 10.1111/acer.14453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Myopathy affects nearly half of individuals with alcohol use disorder (AUD), and impaired skeletal muscle regenerative potential is a probable contributing factor. Previous findings from our laboratory indicate that chronic in vivo and in vitro ethanol (EtOH) treatment decreases myogenic potential of skeletal muscle myoblasts. Myogenesis, a highly coordinated process, requires shifts in cellular metabolic state allowing for myoblasts to proliferate and differentiate into mature myotubes. The objective of this study was to determine whether alcohol interferes with myoblast mitochondrial and glycolytic metabolism and impairs myogenic differentiation. METHODS Myoblasts were isolated from vastus lateralis muscle excised from alcohol-naïve adult male (n = 5) and female (n = 5) rhesus macaques. Myoblasts were proliferated for 3 days (day 0 differentiation; D0) and differentiated for 5 days (D5) with or without 50 mM EtOH. Metabolism was assessed using a mitochondrial stress test to measure oxygen consumption (OCR) and extracellular acidification (ECAR) rates at D0. Differentiation was examined at D5. Expression of mitochondrial and glycolytic genes and mitochondrial DNA (mtDNA) was measured at D0 and D5. RESULTS Ethanol significantly (p < 0.05) increased myoblast maximal OCR and decreased ECAR at D0, and decreased fusion index, myotubes per field, and total nuclei at D5. The EtOH-induced decrease in ECAR was associated with the EtOH-mediated decreases in fusion index and myotubes per field. EtOH did not alter the decrease in glycolytic gene expression and increase in mtDNA from D0 to D5. CONCLUSION During myoblast proliferation, EtOH decreased glycolytic metabolism and increased maximal OCR, suggesting that myoblast metabolic phenotype was dysregulated with EtOH. The EtOH-induced decrease in ECAR was associated with decreased differentiation. These findings suggest that EtOH-mediated shifts in metabolic phenotype may underlie impaired differentiation, which has important clinical implications for myogenesis in those affected by alcoholic myopathy.
Collapse
Affiliation(s)
- Danielle E. Levitt
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Naveena Chalapati
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Matthew J. Prendergast
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Liz Simon
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Patricia E. Molina
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA
| |
Collapse
|