1
|
Luo Z, Shangguan Z, Cao L, Zhang Y, Li Q, Shi X, Fu J, Wang C, Dou X, Tan W, Li Q. Cerebrospinal fluid-contacting neurons: a promising source for adult neural stem cell transplantation in spinal cord injury treatment. Front Cell Dev Biol 2025; 13:1549194. [PMID: 40143967 PMCID: PMC11936957 DOI: 10.3389/fcell.2025.1549194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Transplantation of adult neural stem cells (NSCs) is regarded as one of the most promising approaches for treating spinal cord injury (SCI). However, securing a sufficient and reliable source of adult NSCs remains one of the primary challenges in applying this method for SCI treatment. Cerebrospinal fluid-contacting neurons (CSF-cNs) act as adult NSCs and can be substantially expanded in vitro while maintaining their NSC characteristics even after 60 passages. When CSF-cNs are transplanted into the injury sites of SCI mice, they demonstrate high survival rates along with the ability to proliferate and differentiate into neurons, astrocytes, and oligodendrocytes. Additionally, significant improvements in motor function have been observed in SCI mice following the transplantation of CSF-cNs. These results suggest that CSF-cNs may represent a promising source of adult NSCs for transplantation therapy in SCI.
Collapse
Affiliation(s)
- Zhangrong Luo
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Traumatic Orthopedics, The Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zeyu Shangguan
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Liang Cao
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yi Zhang
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Qizhe Li
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xuexing Shi
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Jiangquan Fu
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Chunqing Wang
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaowei Dou
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Tan
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Qing Li
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Iyer M, Das D, Baugh AG, Shah P, Nakamura B, Sedighi S, Reed M, Jang J, Chow F, Torres ER, Neman J. Targeting MDSC-HTR2B to Improve Immune Checkpoint Inhibitors in Breast to Brain Metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599939. [PMID: 38979224 PMCID: PMC11230248 DOI: 10.1101/2024.06.20.599939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Myeloid Derived Suppressor Cells (MDSCs) support breast cancer growth via immune suppression and non-immunological mechanisms. Although 15% of patients with breast cancer will develop brain metastasis, there is scant understanding of MDSCs' contribution within the breast-to-brain metastatic microenvironment. Utilizing co-culture models mimicking a tumor-neuron-immune microenvironment and patient tissue arrays, we identified serotonergic receptor, HTR2B, on MDSCs to upregulate pNF-κB and suppress T cell proliferation, resulting in enhanced tumor growth. In vivo murine models of metastatic and intracranial breast tumors treated with FDA-approved, anti-psychotic HTR2B antagonist, clozapine, combined with immunotherapy anti-PD-1 demonstrated a significant increase in survival and increased T cell infiltration. Collectively, these findings reveal a previously unknown role of MDSC-HTR2B in breast-to-brain metastasis, suggesting a novel and immediate therapeutic approach using neurological drugs to treat patients with metastatic breast cancer.
Collapse
|
3
|
Deshpande K, Martirosian V, Nakamura BN, Das D, Iyer M, Reed M, Shao L, Bamshad D, Buckley NJ, Neman J. SRRM4-mediated REST to REST4 dysregulation promotes tumor growth and neural adaptation in breast cancer leading to brain metastasis. Neuro Oncol 2024; 26:309-322. [PMID: 37716001 PMCID: PMC10836770 DOI: 10.1093/neuonc/noad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Effective control of brain metastasis remains an urgent clinical need due a limited understanding of the mechanisms driving it. Although the gain of neuro-adaptive attributes in breast-to-brain metastases (BBMs) has been described, the mechanisms that govern this neural acclimation and the resulting brain metastasis competency are poorly understood. Herein, we define the role of neural-specific splicing factor Serine/Arginine Repetitive Matrix Protein 4 (SRRM4) in regulating microenvironmental adaptation and brain metastasis colonization in breast cancer cells. METHODS Utilizing pure neuronal cultures and brain-naive and patient-derived BM tumor cells, along with in vivo tumor modeling, we surveyed the early induction of mediators of neural acclimation in tumor cells. RESULTS When SRRM4 is overexpressed in systemic breast cancer cells, there is enhanced BBM leading to poorer overall survival in vivo. Concomitantly, SRRM4 knockdown expression does not provide any advantage in central nervous system metastasis. In addition, reducing SRRM4 expression in breast cancer cells slows down proliferation and increases resistance to chemotherapy. Conversely, when SRRM4/REST4 levels are elevated, tumor cell growth is maintained even in nutrient-deprived conditions. In neuronal coculture, decreasing SRRM4 expression in breast cancer cells impairs their ability to adapt to the brain microenvironment, while increasing SRRM4/RE-1 Silencing Transcription Factor (REST4) levels leads to greater expression of neurotransmitter and synaptic signaling mediators and a significant colonization advantage. CONCLUSIONS Collectively, our findings identify SRRM4 as a regulator of brain metastasis colonization, and a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Krutika Deshpande
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA)
| | - Vahan Martirosian
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Brooke N Nakamura
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Diganta Das
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mukund Iyer
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Max Reed
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ling Shao
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Daniella Bamshad
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Josh Neman
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Radoszkiewicz K, Hribljan V, Isakovic J, Mitrecic D, Sarnowska A. Critical points for optimizing long-term culture and neural differentiation capacity of rodent and human neural stem cells to facilitate translation into clinical settings. Exp Neurol 2023; 363:114353. [PMID: 36841464 DOI: 10.1016/j.expneurol.2023.114353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Despite several decades of research on the nature and functional properties of neural stem cells, which brought great advances in regenerative medicine, there is still a plethora of ambiguous protocols and interpretations linked to their applications. Here, we present a whole spectrum of protocol elements that should be standardized in order to obtain viable cell cultures and facilitate their translation into clinical settings. Additionally, this review also presents outstanding limitations and possible problems to be encountered when dealing with protocol optimization. Most importantly, we also outline the critical points that should be considered before starting any experiments utilizing neural stem cells or interpreting their results.
Collapse
Affiliation(s)
- Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, 02-106 Warsaw, Poland
| | - Valentina Hribljan
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, Croatia
| | - Jasmina Isakovic
- Omnion Research International Ltd, Heinzelova 4, 10000 Zagreb, Croatia
| | - Dinko Mitrecic
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, Croatia
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, 02-106 Warsaw, Poland.
| |
Collapse
|
5
|
Otte K, Zhao K, Braun M, Neubauer A, Raifer H, Helmprobst F, Barrera FO, Nimsky C, Bartsch JW, Rusch T. Eltanexor Effectively Reduces Viability of Glioblastoma and Glioblastoma Stem-Like Cells at Nano-Molar Concentrations and Sensitizes to Radiotherapy and Temozolomide. Biomedicines 2022; 10:biomedicines10092145. [PMID: 36140245 PMCID: PMC9496210 DOI: 10.3390/biomedicines10092145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Current standard adjuvant therapy of glioblastoma multiforme (GBM) using temozolomide (TMZ) frequently fails due to therapy resistance. Thus, novel therapeutic approaches are highly demanded. We tested the therapeutic efficacy of the second-generation XPO1 inhibitor Eltanexor using assays for cell viability and apoptosis in GBM cell lines and GBM stem-like cells. For most GBM-derived cells, IC50 concentrations for Eltanexor were below 100 nM. In correlation with reduced cell viability, apoptosis rates were significantly increased. GBM stem-like cells presented a combinatorial effect of Eltanexor with TMZ on cell viability. Furthermore, pretreatment of GBM cell lines with Eltanexor significantly enhanced radiosensitivity in vitro. To explore the mechanism of apoptosis induction by Eltanexor, TP53-dependent genes were analyzed at the mRNA and protein level. Eltanexor caused induction of TP53-related genes, TP53i3, PUMA, CDKN1A, and PML on both mRNA and protein level. Immunofluorescence of GBM cell lines treated with Eltanexor revealed a strong accumulation of CDKN1A, and, to a lesser extent, of p53 and Tp53i3 in cell nuclei as a plausible mechanism for Eltanexor-induced apoptosis. From these data, we conclude that monotherapy with Eltanexor effectively induces apoptosis in GBM cells and can be combined with current adjuvant therapies to provide a more effective therapy of GBM.
Collapse
Affiliation(s)
- Katharina Otte
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Madita Braun
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Hartmann Raifer
- FACS Core Facility, Philipps University Marburg, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Frederik Helmprobst
- Department of Neuropathology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Felipe Ovalle Barrera
- Department of Neuropathology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Tillmann Rusch
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
- Correspondence: ; Tel.: +49-6421-58-65625
| |
Collapse
|
6
|
Sababathy M, Ramanathan G, Tan SC. Targeted delivery of gold nanoparticles by neural stem cells to glioblastoma for enhanced radiation therapy: a review. AIMS Neurosci 2022; 9:303-319. [PMID: 36329899 PMCID: PMC9581732 DOI: 10.3934/neuroscience.2022017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GB) is the most malignant subtype of brain cancer derived from astrocytes in the brain. Radiotherapy is one of the standard treatments for GB patients, but its effectiveness is often limited by the radioresistance of aggressive GB cells. Higher dose of radiation needs to be applied to GB patients to eliminate these stubborn cells, but this also means more side effects on the adjacent healthy cells because the radiation beam could indistinguishably harm all cells exposed to it. In order to address this problem, various strategies have been studied to enhance the radiosensitivity among the radioresistant cell populations for targeted eradication of GB without harming other surrounding healthy cells. One of the promising strategies for radiosensitization is to use gold nanoparticles (AuNPs) which can enhance photoelectric effects within the radioresistant cells for higher killing efficiency even at low doses of radiation. Nonetheless, there is no evidence showing the capability of these nanoparticles to travel to brain tumor cells, therefore, the application of this nanotechnology is very much dependent on the development of a suitable carrier to deliver the AuNPs to the GB tumor sites specifically. In this review article, we discussed the potentials of neural stem cells (NSCs) as biological carriers to carry AuNPs to targeted GB tumor sites and provided new insights into the potential of NSC-based targeted delivery system for GB treatment. The information reported here may pave a new direction for clinical transformation of next-generation nanoparticle-assisted radiotherapy to optimize the efficacy of radiotherapy for GB treatment.
Collapse
Affiliation(s)
- Mogesh Sababathy
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ghayathri Ramanathan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Suat Cheng Tan
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
7
|
Deshpande K, Martirosian V, Nakamura BN, Iyer M, Julian A, Eisenbarth R, Shao L, Attenello F, Neman J. Neuronal exposure induces neurotransmitter signaling and synaptic mediators in tumors early in brain metastasis. Neuro Oncol 2021; 24:914-924. [PMID: 34932815 DOI: 10.1093/neuonc/noab290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Brain metastases (BM) are responsible for neurological decline and poor overall survival. Although the pro-metastatic roles of glial cells, and the acquisition of neuronal attributes in established BM tumors have been described, there are no studies that investigate the initial interplay between neurons and brain-seeking tumor cells. The aim of this study was to characterize early tumor-neuron interactions and the induced CNS-adaptive changes in tumor cells prior to macro-colonization. METHODS Utilizing pure neuronal cultures and brain-naïve and patient-derived BM tumor cells, we surveyed the early induction of mediators of neurotransmitter (NT) and synaptic signaling in breast and lung tumor cells. Reliance on microenvironmental GABA in breast-to-brain metastatic cells (BBMs) was assessed in vitro and in vivo. RESULTS Co-culture with neurons induces early expression of classical NT receptor genes (HTR4, GRIA2, GRIN2B, GRM4, GRM8, DRD1) and neuronal synaptic mediators (CNR1, EGR2, ARC, NGFR, NRXN1) in breast and lung cancer cells. NT-dependent classification of tumor cells within the neuronal niche shows breast cancer cells become GABAergic responsive brain metastases (GRBMs) and transition from relying on autocrine GABA, to paracrine GABA from adjacent neurons; while autocrine Dopaminergic breast and lung tumor cells persist. In vivo studies confirm reliance on paracrine GABA is an early CNS-acclimation strategy in breast cancer. Moreover, neuronal contact induces early resurgence in Reelin expression in tumor cells through epigenetic activation, facilitating CNS adaptation. CONCLUSION Tumor-neuron interactions allow for CNS-adaptation early in the course of brain metastasis.
Collapse
Affiliation(s)
- Krutika Deshpande
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA.,USC Brain Tumor Center, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Vahan Martirosian
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA.,USC Brain Tumor Center, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brooke Naomi Nakamura
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, University of Southern California, Los Angeles, CA, USA.,USC Brain Tumor Center, University of Southern California, Los Angeles, CA, USA
| | - Mukund Iyer
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA.,USC Brain Tumor Center, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alex Julian
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA.,USC Brain Tumor Center, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rachel Eisenbarth
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA.,USC Brain Tumor Center, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ling Shao
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frank Attenello
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA.,USC Brain Tumor Center, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Josh Neman
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA.,USC Brain Tumor Center, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Čater M, Majdič G. In Vitro Culturing of Adult Stem Cells: The Importance of Serum and Atmospheric Oxygen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:101-118. [PMID: 34426961 DOI: 10.1007/5584_2021_656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adult stem cells are undifferentiated cells found in many different tissues in the adult human and animal body and are thought to be important for replacing damaged and dead cells during life. Due to their differentiation abilities, they have significant potential for regeneration and consequently therapeutic potential in various medical conditions. Studies on in vitro cultivation of different types of adult stem cells have shown that they have specific requirements for optimal proliferation and stemness maintenance as well as induced differentiation. The main factors affecting the success of stem cell cultivation are the composition of the growth medium, including the presence of serum, temperature, humidity, and contact with other cells and the composition of the atmosphere in which the cells grow. In this chapter, we review the literature and describe our own experience regarding the influence of the presence of fetal bovine serum in the medium and the oxygen concentration in the atmosphere on the stemness maintenance and survival of adult stem cells from various tissue sources such as adipose tissue, muscle, brain, and testicular tissue.
Collapse
Affiliation(s)
- Maša Čater
- Laboratory for Animal Genomics, Institute for Preclinical Studies, Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Majdič
- Laboratory for Animal Genomics, Institute for Preclinical Studies, Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia. .,Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
9
|
Martirosian V, Deshpande K, Lin M, Jarvis C, Yuan E, Chen TC, Zada G, Giannotta SL, Attenello FJ, Chow F, Neman J. Utilization of Discarded Surgical Tissue from Ultrasonic Aspirators to Establish Patient-Derived Metastatic Brain Tumor Cells: A Guide from the Operating Room to the Research Laboratory. Curr Protoc 2021; 1:e140. [PMID: 34170630 DOI: 10.1002/cpz1.140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Patient-derived cells from surgical resections are of paramount importance to brain tumor research. It is well known that there is cellular and microenvironmental heterogeneity within a single tumor mass. Thus, current established protocols for propagating tumor cells in vitro are limiting because resections obtained from conventional singular samples limit the diversity in cell populations and do not accurately model the heterogeneous tumor. Utilization of discarded tissue obtained from cavitron ultrasonic surgical aspirator (CUSA) of the whole tumor mass allows for establishing novel cell lines in vitro from the entirety of the tumor, thereby creating an accurate representation of the heterogeneous population of cells originally present in the tumor. Furthermore, while others have described protocols for establishing patient tumor lines once tissue has arrived in the research lab, a primer from the operating room (OR) to the research lab has not been described before. This is integral, as basic research scientists need to understand the surgical environment of the OR, including the methods utilized to obtain a patient's tumor resection, in order to more accurately model cancer biology in laboratory. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Establishment of brain tumor cell lines from patient-derived CUSA samples: processing brain tumor sample from the OR to the lab Support Protocol 1: Sterilization of microsurgical tools in preparation for dissection Support Protocol 2: Collagen coating of tissue culture flasks Basic Protocol 2: Selection of tumor cells in vitro Support Protocol 3: FACS sorting tumor sample to isolate cancer cells from heterogeneous cell population.
Collapse
Affiliation(s)
- Vahan Martirosian
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Krutika Deshpande
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California
| | - Michelle Lin
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California
| | - Casey Jarvis
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California
| | - Edith Yuan
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California
| | - Thomas C Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,Norris Comprehensive Cancer Center of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Gabriel Zada
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,Norris Comprehensive Cancer Center of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Steven L Giannotta
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,Norris Comprehensive Cancer Center of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Frank J Attenello
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,Norris Comprehensive Cancer Center of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Frances Chow
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,Norris Comprehensive Cancer Center of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Josh Neman
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| |
Collapse
|
10
|
Martirosian V, Deshpande K, Zhou H, Shen K, Smith K, Northcott P, Lin M, Stepanosyan V, Das D, Remsik J, Isakov D, Boire A, De Feyter H, Hurth K, Li S, Wiemels J, Nakamura B, Shao L, Danilov C, Chen T, Neman J. Medulloblastoma uses GABA transaminase to survive in the cerebrospinal fluid microenvironment and promote leptomeningeal dissemination. Cell Rep 2021; 35:109302. [PMID: 34192534 PMCID: PMC8848833 DOI: 10.1016/j.celrep.2021.109302] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/02/2020] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Medulloblastoma (MB) is a malignant pediatric brain tumor arising in the cerebellum. Although abnormal GABAergic receptor activation has been described in MB, studies have not yet elucidated the contribution of receptor-independent GABA metabolism to MB pathogenesis. We find primary MB tumors globally display decreased expression of GABA transaminase (ABAT), the protein responsible for GABA metabolism, compared with normal cerebellum. However, less aggressive WNT and SHH subtypes express higher ABAT levels compared with metastatic G3 and G4 tumors. We show that elevated ABAT expression results in increased GABA catabolism, decreased tumor cell proliferation, and induction of metabolic and histone characteristics mirroring GABAergic neurons. Our studies suggest ABAT expression fluctuates depending on metabolite changes in the tumor microenvironment, with nutrient-poor conditions upregulating ABAT expression. We find metastatic MB cells require ABAT to maintain viability in the metabolite-scarce cerebrospinal fluid by using GABA as an energy source substitute, thereby facilitating leptomeningeal metastasis formation.
Collapse
Affiliation(s)
- Vahan Martirosian
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Krutika Deshpande
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Hao Zhou
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Keyue Shen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Kyle Smith
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michelle Lin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Vazgen Stepanosyan
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Diganta Das
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jan Remsik
- Human Oncology and Pathogenesis Program, Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danielle Isakov
- Human Oncology and Pathogenesis Program, Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Henk De Feyter
- Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kyle Hurth
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Joseph Wiemels
- Center for Genetic Epidemiology, Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Brooke Nakamura
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Ling Shao
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Camelia Danilov
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Thomas Chen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Josh Neman
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; USC Brain Tumor Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|