1
|
Giacomini KM. MRI Provides New Insights Into the Pharmacologic Mechanism of Bisacodyl: A Blueprint for Understanding Intestinal Drug Mechanisms. Clin Pharmacol Ther 2025; 117:1159-1161. [PMID: 40220501 DOI: 10.1002/cpt.3646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Affiliation(s)
- Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| |
Collapse
|
2
|
Phoon CK, Aristizábal O, Farhoud M, Turnbull DH, Wadghiri YZ. Mouse Cardiovascular Imaging. Curr Protoc 2024; 4:e1116. [PMID: 39222027 PMCID: PMC11371386 DOI: 10.1002/cpz1.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging, with brief overviews of other imaging modalities. In this update, we also emphasize the importance of rigor and reproducibility in imaging approaches, experimental design, and documentation. Finally, we briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Colin K.L. Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY
| | - Orlando Aristizábal
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| | | | - Daniel H. Turnbull
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Youssef Z. Wadghiri
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
3
|
Sequeira L, Benfeito S, Fernandes C, Lima I, Peixoto J, Alves C, Machado CS, Gaspar A, Borges F, Chavarria D. Drug Development for Alzheimer's and Parkinson's Disease: Where Do We Go Now? Pharmaceutics 2024; 16:708. [PMID: 38931832 PMCID: PMC11206728 DOI: 10.3390/pharmaceutics16060708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a set of progressive, chronic, and incurable diseases characterized by the gradual loss of neurons, culminating in the decline of cognitive and/or motor functions. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs and represent an enormous burden both in terms of human suffering and economic cost. The available therapies for AD and PD only provide symptomatic and palliative relief for a limited period and are unable to modify the diseases' progression. Over the last decades, research efforts have been focused on developing new pharmacological treatments for these NDs. However, to date, no breakthrough treatment has been discovered. Hence, the development of disease-modifying drugs able to halt or reverse the progression of NDs remains an unmet clinical need. This review summarizes the major hallmarks of AD and PD and the drugs available for pharmacological treatment. It also sheds light on potential directions that can be pursued to develop new, disease-modifying drugs to treat AD and PD, describing as representative examples some advances in the development of drug candidates targeting oxidative stress and adenosine A2A receptors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fernanda Borges
- CIQUP-IMS—Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS—Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
4
|
Hurzeler T, Watt J, Logge W, Towers E, Suraev A, Lintzeris N, Haber P, Morley KC. Neuroimaging studies of cannabidiol and potential neurobiological mechanisms relevant for alcohol use disorders: a systematic review. J Cannabis Res 2024; 6:15. [PMID: 38509580 PMCID: PMC10956336 DOI: 10.1186/s42238-024-00224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/03/2024] [Indexed: 03/22/2024] Open
Abstract
The underlying neurobiological mechanisms of cannabidiol's (CBD) management of alcohol use disorder (AUD) remains elusive.Aim We conducted a systematic review of neuroimaging literature investigating the effects of CBD on the brain in healthy participants. We then theorise the potential neurobiological mechanisms by which CBD may ameliorate various symptoms of AUD.Methods This review was conducted according to the PRISMA guidelines. Terms relating to CBD and neuroimaging were used to search original clinical research published in peer-reviewed journals.Results Of 767 studies identified by our search strategy, 16 studies satisfied our eligibility criteria. The results suggest that CBD modulates γ-Aminobutyric acid and glutamate signaling in the basal ganglia and dorso-medial prefrontal cortex. Furthermore, CBD regulates activity in regions associated with mesocorticolimbic reward pathways; salience, limbic and fronto-striatal networks which are implicated in reward anticipation; emotion regulation; salience processing; and executive functioning.Conclusion CBD appears to modulate neurotransmitter systems and functional connections in brain regions implicated in AUD, suggesting CBD may be used to manage AUD symptomatology.
Collapse
Affiliation(s)
- Tristan Hurzeler
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Joshua Watt
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Warren Logge
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Ellen Towers
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Anastasia Suraev
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, NSW, Australia
| | - Nicholas Lintzeris
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Drug and Alcohol Services, South Eastern Sydney Local Health District, Sydney, Australia
| | - Paul Haber
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Kirsten C Morley
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia.
| |
Collapse
|
5
|
English BA, Ereshefsky L. Experimental Medicine Approaches in Early-Phase CNS Drug Development. ADVANCES IN NEUROBIOLOGY 2023; 30:417-455. [PMID: 36928860 DOI: 10.1007/978-3-031-21054-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Traditionally, Phase 1 clinical trials were largely conducted in healthy normal volunteers and focused on collection of safety, tolerability, and pharmacokinetic data. However, in the CNS therapeutic area, with more drugs failing in later phase development, Phase 1 trials have undergone an evolution that includes incorporation of novel approaches involving novel study designs, inclusion of biomarkers, and early inclusion of patients to improve the pharmacologic understanding of novel CNS-active compounds early in clinical development with the hope of improving success in later phase pivotal trials. In this chapter, the authors will discuss the changing landscape of Phase 1 clinical trials in CNS, including novel trial methodology, inclusion of pharmacodynamic biomarkers, and experimental medicine approaches to inform early decision-making in clinical development.
Collapse
|
6
|
Carmichael O. The Role of fMRI in Drug Development: An Update. ADVANCES IN NEUROBIOLOGY 2023; 30:299-333. [PMID: 36928856 DOI: 10.1007/978-3-031-21054-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Functional magnetic resonance imaging (fMRI) of the brain is a technology that holds great potential for increasing the efficiency of drug development for the central nervous system (CNS). In preclinical studies and both early- and late-phase human trials, fMRI has the potential to improve cross-species translation of drug effects, help to de-risk compounds early in development, and contribute to the portfolio of evidence for a compound's efficacy and mechanism of action. However, to date, the utilization of fMRI in the CNS drug development process has been limited. The purpose of this chapter is to explore this mismatch between potential and utilization. This chapter provides introductory material related to fMRI and drug development, describes what is required of fMRI measurements for them to be useful in a drug development setting, lists current capabilities of fMRI in this setting and challenges faced in its utilization, and ends with directions for future development of capabilities in this arena. This chapter is the 5-year update of material from a previously published workshop summary (Carmichael et al., Drug DiscovToday 23(2):333-348, 2018).
Collapse
Affiliation(s)
- Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
7
|
Ikeda S, Kajita Y, Miyamoto M, Matsumiya K, Ishii T, Nishi T, Gay SC, Lane W, Constantinescu CC, Alagille D, Papin C, Tamagnan G, Kuroita T, Koike T. Design and synthesis of aryl-piperidine derivatives as potent and selective PET tracers for cholesterol 24-hydroxylase (CH24H). Eur J Med Chem 2022; 240:114612. [PMID: 35863274 DOI: 10.1016/j.ejmech.2022.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/03/2022]
Abstract
Cholesterol 24-hydroxylase (CH24H, CYP46A1) is a cytochrome P450 family enzyme that maintains the homeostasis of brain cholesterol. Soticlestat, a potent and selective CH24H inhibitor, is in development as a therapeutic agent for Dravet syndrome and Lennox-Gastaut syndrome. Herein, we report the discovery of aryl-piperidine derivatives as potent and selective CH24H positron emission tomography (PET) tracers which can be used for dose guidance of a clinical CH24H inhibitor and as a diagnostic tool for CH24H-related pathology. Starting from compound 1 (IC50 = 16 nM, logD = 1.7), which was reported as a CH24H inhibitor with lower lipophilicity, a18F-labeling site (3-fluoroazetidine) was incorporated by structure-based drug design (SBDD) utilizing the co-crystal structure of a compound 1 analog. Subsequent optimization to adjust key parameters for PET tracers, such as potency, lipophilicity, brain penetration, and unbound plasma protein binding, enabled compounds 3f (IC50 = 8.8 nM) and 3g (IC50 = 8.7 nM) as PET imaging candidates. Selectivity of these compounds for CH24H was validated by a brain distribution study using CH24H-WT and KO mice. In non-human primate PET imaging, [18F]3f and [18F]3g showed similar regional uptake in the brain, indicating that these tracers were specific to the CH24H-expressed regions and validated the expression of CH24H in the living brain by different tracers.
Collapse
Affiliation(s)
- Shuhei Ikeda
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yuichi Kajita
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Maki Miyamoto
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Kouta Matsumiya
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tsuyoshi Ishii
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Toshiya Nishi
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Sean C Gay
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, CA, 92121, United States
| | - Weston Lane
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, CA, 92121, United States
| | | | - David Alagille
- Invicro, LLC, 60 Temple Street, New Haven, CT, 06510, United States
| | - Caroline Papin
- Invicro, LLC, 60 Temple Street, New Haven, CT, 06510, United States
| | - Gilles Tamagnan
- Invicro, LLC, 60 Temple Street, New Haven, CT, 06510, United States
| | - Takanobu Kuroita
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tatsuki Koike
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
8
|
Patel S, Schmidt KF, Farhoud M, Zi T, Jang SC, Dooley K, Kentala D, Dobson H, Economides K, Williams DE. In vivo tracking of [ 89Zr]Zr-labeled engineered extracellular vesicles by PET reveals organ-specific biodistribution based upon the route of administration. Nucl Med Biol 2022; 112-113:20-30. [PMID: 35763877 DOI: 10.1016/j.nucmedbio.2022.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/16/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Extracellular vesicles (EVs) have garnered increasing interest as delivery vehicles for multiple classes of therapeutics based on their role as mediators in an important, natural intercellular communication system. We recently described a platform to allow the design, production and in vivo study of human EVs with specific properties (drug or tropism modifiers). This article seeks to compare and expand upon historical biodistribution and kinetic data by comparing systemically and compartmentally administered labeled engineered EVs using in vivo and ex vivo techniques. METHODS EVs were surface-labeled to high radiochemical purity and specific activity with 89Zirconium deferoxamine ([89Zr]Zr-DFO) and/or cy7-scrambled antisense oligonucleotide (Cy7-ExoASOscr), or luminally loaded with GFP for in vivo tracking in rodents and non-human primates (NHPs). Positron Emission Tomography (PET) and subsequent immunohistochemistry (IHC) and autoradiography (ARG) cross-validation enabled assessment of the anatomical and cellular distribution of labeled EVs both spatially and temporally. RESULTS Over time, systemic administration of engineered EVs distributed preferentially to the liver and spleen (Intravenous, IV), gastrointestinal tract and lymph nodes (Intraperitoneal, IP) and local/regional lymph nodes (Subcutaneous, SC). Immunostaining of dissected organs displaying PET signal revealed co-localization of an EV marker (PTGFRN) with a subset of macrophage markers (CD206, F4/80, IBA1). Compartmental dosing into NHP cerebrospinal fluid (CSF) resulted in a heterogenous distribution of labeled EVs depending upon whether the route was intrathecal (ITH), intracisterna magna (ICM) or intracerebroventricular (ICV), compared to the homogeneous distribution observed in rodents. Thus anatomically, ITH administration in NHP revealed meningeal distribution along the neuraxis to the base of the skull. In contrast ICM and ICV dosing resulted in meningeal distribution around the skull and to the cervical and thoracic spinal column. Further characterization using IHC shows uptake in a subset of meningeal macrophages. CONCLUSIONS The present studies provide a comprehensive assessment of the fate of robustly and reproducibly labeled engineered EVs across several mammalian species. The in vivo distribution was observed to be both spatially and temporally dependent upon the route of administration providing insight into potential targeting opportunities for engineered EVs carrying a therapeutic payload.
Collapse
Affiliation(s)
- Shil Patel
- Translational Imaging & Pathology, Codiak BioSciences, Cambridge, MA, USA.
| | - Karl F Schmidt
- Pharmacology & Biomarkers, Codiak BioSciences, Cambridge, MA, USA
| | | | - Tong Zi
- Translational Imaging & Pathology, Codiak BioSciences, Cambridge, MA, USA
| | - Su Chul Jang
- Pharmacology & Biomarkers, Codiak BioSciences, Cambridge, MA, USA
| | - Kevin Dooley
- Research Discovery, Codiak BioSciences, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
9
|
Wang J, van Dam RM. Economical Production of Radiopharmaceuticals for Preclinical Imaging Using Microdroplet Radiochemistry. Methods Mol Biol 2022; 2393:813-828. [PMID: 34837213 DOI: 10.1007/978-1-0716-1803-5_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The short-lived radiolabeled "tracers" needed for performing whole body imaging in animals or patients with positron-emission tomography (PET) are generally produced via automated "radiosynthesizers". Most current radiosynthesizers are designed for routine production of relatively large clinical batches and are very wasteful when only a small batch of a tracer is needed, such as is the case for preclinical in vivo PET imaging studies. To overcome the prohibitively high cost of producing small batches of PET tracers, we developed a droplet microreactor system that performs radiochemistry at the 1-10μL scale instead of the milliliter scale of conventional technologies. The overall yield for the droplet-based production of many PET tracers is comparable to conventional approaches, but 10-100× less reagents are consumed, the synthesis can be completed in much less time (<30 min), and only a small laboratory footprint and minimal radiation shielding are needed. By combining these advantages, droplet microreactors enable the economical production of small batches PET tracers on demand. Here, we describe the fabrication method of the droplet microreactor and the droplet-based synthesis of an example radiotracer ([18F]fallypride).
Collapse
Affiliation(s)
- Jia Wang
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - R Michael van Dam
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA.
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Patel S, Knight A, Krause S, Teceno T, Tresse C, Li S, Cai Z, Gouasmat A, Carroll VM, Barret O, Gottmukkala V, Zhang W, Xiang X, Morley T, Huang Y, Passchier J. Preclinical In Vitro and In Vivo Characterization of Synaptic Vesicle 2A-Targeting Compounds Amenable to F-18 Labeling as Potential PET Radioligands for Imaging of Synapse Integrity. Mol Imaging Biol 2021; 22:832-841. [PMID: 31728839 DOI: 10.1007/s11307-019-01428-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Current synaptic vesicle 2A (SV2A) positron emission tomography (PET) imaging agents include the nanomolar affinity probes [11C]UCB-J and [18F]UCB-H derived from the anti-epileptic drug levitaracetam (Keppra®). An industry-utilized "de-risking" approach was used to carry out initial pharmacological characterization and to assess potential next-generation candidates amenable to F-18 radiolabeling for preliminary evaluation. PROCEDURES Radioligand binding methods were employed in mammalian brain homogenates to determine the SV2A affinity (Kd) and maximal binding capacity (Bmax) of [3H]UCB-J. Novel leads were then screened to identify compounds minimally with comparable binding affinities with UCB-J in order to select a F-18-labeled candidate for subsequent in vivo assessment in rat. In parallel, mammalian brain tissue section autoradiography was performed to assess specific SV2A distribution. RESULTS [3H]UCB-J bound with high affinity to a single population of sites in the rat brain (Kd = 2.6 ± 0.25 nM; Bmax = 810 ± 25 fmol/mg protein) and control human cortex (Kd = 2.9 ± 0.54 nM; Bmax = 10,000 ± 640 fmol/mg protein). Distribution of specific SV2A binding was shown to be homogeneous throughout the rodent brain and primarily in gray matter regions of rodent and human brain sections. Analog screening identified MNI-1038, MNI-1126/SDM-8, and SDM-2 as having comparable binding affinities with the currently available PET ligands. Subsequent [18F]MNI-1126/[18F]SDM-8 dynamic micro-PET imaging in rats revealed in vivo uptake and accumulation in the brain with favorable kinetics. Chase studies using 30 mg/kg levetiracetam confirmed that in vivo brain uptake of [18F]MNI-1126/[18F]SDM-8 was reversible. CONCLUSIONS Taken together, these data suggest [18F]MNI-1126/[18F]SDM-8 (since renamed as [18F]SynVesT-1) characterized via an in vitro screening cascade provided a measurable in vivo SV2A specific signal in the rodent brain. This tracer as well as the close analog [18F]SDM-2 (since renamed as [18F]SynVesT-2) is currently undergoing further evaluation in preclinical and clinical studies.
Collapse
Affiliation(s)
- Shil Patel
- Codiak Biosciences, 500 Technology Square, 9th Floor, Cambridge, MA, 02139, USA.
| | - Ashley Knight
- Centre for Addiction and Mental Health, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Stephen Krause
- Eisai Inc., 100 Tice Blvd, Woodcliff Lake, NJ, 07677, USA
| | - Tyler Teceno
- Eisai Inc., 100 Tice Blvd, Woodcliff Lake, NJ, 07677, USA
| | - Cedric Tresse
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| | - Songye Li
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Avenue, New Haven, CT, 06510, USA
| | - Zhengxin Cai
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Avenue, New Haven, CT, 06510, USA
| | | | - Vincent M Carroll
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| | - Olivier Barret
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| | - Vijay Gottmukkala
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| | - Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianhong Xiang
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, China
| | - Thomas Morley
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Avenue, New Haven, CT, 06510, USA
| | - Jan Passchier
- Invicro, LLC, 27 Drydock Ave. 7th Floor West, Boston, MA, 02210, USA
| |
Collapse
|
11
|
Hou L, Rong J, Haider A, Ogasawara D, Varlow C, Schafroth MA, Mu L, Gan J, Xu H, Fowler CJ, Zhang MR, Vasdev N, Ametamey S, Cravatt BF, Wang L, Liang SH. Positron Emission Tomography Imaging of the Endocannabinoid System: Opportunities and Challenges in Radiotracer Development. J Med Chem 2021; 64:123-149. [PMID: 33379862 PMCID: PMC7877880 DOI: 10.1021/acs.jmedchem.0c01459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (ECS) is involved in a wide range of biological functions and comprises cannabinoid receptors and enzymes responsible for endocannabinoid synthesis and degradation. Over the past 2 decades, significant advances toward developing drugs and positron emission tomography (PET) tracers targeting different components of the ECS have been made. Herein, we summarized the recent development of PET tracers for imaging cannabinoid receptors 1 (CB1R) and 2 (CB2R) as well as the key enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), particularly focusing on PET neuroimaging applications. State-of-the-art PET tracers for the ECS will be reviewed including their chemical design, pharmacological properties, radiolabeling, as well as preclinical and human PET imaging. In addition, this review addresses the current challenges for ECS PET biomarker development and highlights the important role of PET ligands to study disease pathophysiology as well as to facilitate drug discovery.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Michael A. Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jiefeng Gan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Christopher J. Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
12
|
Baart VM, Houvast RD, de Geus-Oei LF, Quax PHA, Kuppen PJK, Vahrmeijer AL, Sier CFM. Molecular imaging of the urokinase plasminogen activator receptor: opportunities beyond cancer. EJNMMI Res 2020; 10:87. [PMID: 32725278 PMCID: PMC7387399 DOI: 10.1186/s13550-020-00673-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The urokinase plasminogen activator receptor (uPAR) plays a multifaceted role in almost any process where migration of cells and tissue-remodeling is involved such as inflammation, but also in diseases as arthritis and cancer. Normally, uPAR is absent in healthy tissues. By its carefully orchestrated interaction with the protease urokinase plasminogen activator and its inhibitor (plasminogen activator inhibitor-1), uPAR localizes a cascade of proteolytic activities, enabling (patho)physiologic cell migration. Moreover, via the interaction with a broad range of cell membrane proteins, like vitronectin and various integrins, uPAR plays a significant, but not yet completely understood, role in differentiation and proliferation of cells, affecting also disease progression. The implications of these processes, either for diagnostics or therapeutics, have received much attention in oncology, but only limited beyond. Nonetheless, the role of uPAR in different diseases provides ample opportunity to exploit new applications for targeting. Especially in the fields of oncology, cardiology, rheumatology, neurology, and infectious diseases, uPAR-targeted molecular imaging could offer insights for new directions in diagnosis, surveillance, or treatment options.
Collapse
Affiliation(s)
- V M Baart
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - R D Houvast
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - L F de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands
| | - P H A Quax
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - P J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - C F M Sier
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands. .,Percuros BV, Leiden, The Netherlands.
| |
Collapse
|
13
|
Nguyen MP, Ramakers RM, Kamphuis C, Koustoulidou S, Goorden MC, Beekman FJ. EXIRAD-3D: Fast automated three-dimensional autoradiography. Nucl Med Biol 2020; 86-87:59-65. [DOI: 10.1016/j.nucmedbio.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
|
14
|
Nguyen MP, Goorden MC, Kamphuis C, Beekman FJ. Evaluation of pinhole collimator materials for micron-resolution ex vivo SPECT. ACTA ACUST UNITED AC 2019; 64:105017. [DOI: 10.1088/1361-6560/ab1618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Schain M, Zanderigo F, Todd Ogden R. Likelihood estimation of drug occupancy for brain PET studies. Neuroimage 2018; 178:255-265. [PMID: 29753104 DOI: 10.1016/j.neuroimage.2018.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/27/2018] [Accepted: 05/05/2018] [Indexed: 11/16/2022] Open
Abstract
Neuroimaging with PET is unique in its capability to measure in vivo the occupancy of a drug. The occupancy is typically obtained by conducting PET measurements before and after administration of the drug. For radioligands for which no reference region exists, however, the only established procedure to estimate the occupancy from these data is via linear regression analysis, forming the basis for the so-called Lassen plot. There are several reasons why simple linear regression analysis is not ideal for analyzing these data, including regression attenuation and correlated errors. Here, we propose the use of Likelihood Estimation of Occupancy (LEO) in such a situation. Similar to the Lassen plot, LEO uses the total distribution volume estimates at baseline and at block condition as input, but estimates the non-displaceable distribution volume (VND) and fractional occupancy (Δ) via direct maximum likelihood estimation (MLE). This study outlines the rationale for using MLE to estimate Δ and VND from PET data, and evaluates its performance in relation to the Lassen Plot via two separate simulation experiments. Finally, LEO and Lassen plot are applied to a PET dataset acquired with [11C]WAY-100635. LEO can exploit the covariance structure of the data to improve the accuracy and precision of the estimates of Δ and VND. Theoretically, the covariance matrix can be extracted from a test-retest dataset for the radioligand at hand. Several procedures to estimate the covariance matrix were considered as part of the simulation experiments, and the effect of the test-retest sample size was also assessed. The results are conclusive in that MLE can be used to estimate Δ and VND from PET data, avoiding the limitations associated with linear regression. The performance of LEO was, naturally, dependent on the procedure used to estimate the covariance matrix, and the test-retest sample size. Given a test-retest sample size of at least 5, but preferably 10 individuals, LEO provides higher accuracy and precision than Lassen plot in the estimation of Δ and VND. We conclude that LEO is valuable in drug occupancy studies.
Collapse
Affiliation(s)
- Martin Schain
- Department of Psychiatry, Columbia University, New York, NY, USA.
| | - Francesca Zanderigo
- Department of Psychiatry, Columbia University, New York, NY, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, USA
| | - R Todd Ogden
- Department of Psychiatry, Columbia University, New York, NY, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, USA; Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Performing radiosynthesis in microvolumes to maximize molar activity of tracers for positron emission tomography. Commun Chem 2018; 1. [PMID: 34291178 DOI: 10.1038/s42004-018-0009-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Positron emission tomography (PET) is a molecular diagnostic imaging technology to quantitatively visualize biological processes in vivo. For many applications, including imaging of low tissue density targets (e.g. neuroreceptors), imaging in small animals, and evaluation of novel tracers, the injected PET tracer must be produced with high molar activity to ensure low occupancy of biological targets and avoid pharmacologic effects. Additionally, high molar activity is essential for tracers with lengthy syntheses or tracers transported to distant imaging sites. We show that radiosynthesis of PET tracers in microliter volumes instead of conventional milliliter volumes results in substantially increased molar activity, and we identify the most relevant variables affecting this parameter. Furthermore, using the PET tracer [18F]fallypride, we illustrate that molar activity can have a significant impact on biodistribution. With full automation, microdroplet platforms could provide a means for radiochemists to routinely, conveniently, and safely produce PET tracers with high molar activity.
Collapse
|
17
|
Patel S, Schmidt K, Hesterman J, Hoppin J. Advancing Drug Discovery and Development Using Molecular Imaging (ADDMI): an Interest Group of the World Molecular Imaging Society and an Inaugural Session on Positron Emission Tomography (PET). Mol Imaging Biol 2018; 19:348-356. [PMID: 28417265 DOI: 10.1007/s11307-017-1085-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multi-modality molecular imaging techniques have expanded the role of imaging biomarkers in the pharmaceutical industry and are beginning to streamline the drug discovery and development process. The World Molecular Imaging Society (WMIS) serves as a forum for discussing innovative and exploratory multi-modal, interdisciplinary molecular imaging research with a mission of bridging the gap between pathology and in vivo imaging. To formalize the role of the WMIS in pharmaceutical research efforts, members of the society have formed an interest group entitled Advancing Drug Discovery and Development using Molecular Imaging (ADDMI). The ADDMI interest group launched their efforts at the 2016 World Molecular Imaging Congress by hosting a session of invited lectures on translational positron emission tomography (PET) imaging in the central nervous system. This article provides a synopsis of those lectures and frames the role of translational imaging biomarker strategies in the drug discovery and development process.
Collapse
Affiliation(s)
- Shil Patel
- Eisai AiM Institute, 4 Corporate Drive, Andover, MA, USA.
| | | | | | | |
Collapse
|
18
|
Carmichael O, Schwarz AJ, Chatham CH, Scott D, Turner JA, Upadhyay J, Coimbra A, Goodman JA, Baumgartner R, English BA, Apolzan JW, Shankapal P, Hawkins KR. The role of fMRI in drug development. Drug Discov Today 2018; 23:333-348. [PMID: 29154758 PMCID: PMC5931333 DOI: 10.1016/j.drudis.2017.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/19/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
Abstract
Functional magnetic resonance imaging (fMRI) has been known for over a decade to have the potential to greatly enhance the process of developing novel therapeutic drugs for prevalent health conditions. However, the use of fMRI in drug development continues to be relatively limited because of a variety of technical, biological, and strategic barriers that continue to limit progress. Here, we briefly review the roles that fMRI can have in the drug development process and the requirements it must meet to be useful in this setting. We then provide an update on our current understanding of the strengths and limitations of fMRI as a tool for drug developers and recommend activities to enhance its utility.
Collapse
Affiliation(s)
- Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| | | | - Christopher H Chatham
- Translational Medicine Neuroscience and Biomarkers, Roche Innovation Center, Basel, Switzerland
| | | | - Jessica A Turner
- Psychology Department & Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | | | | | - Richard Baumgartner
- Biostatistics and Research Decision Sciences (BARDS), Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - John W Apolzan
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | |
Collapse
|
19
|
Affiliation(s)
- F M Mottaghy
- University Hospital RWTH Aachen University, Dept. of Nuclear Medicine, Pauwelsstr. 30, 52057 Aachen, Germany; Dept. of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
20
|
Higgins GA, Silenieks LB, Patrick A, De Lannoy IAM, Fletcher PJ, Parker LA, MacLusky NJ, Sullivan LC, Chavera TA, Berg KA. Studies To Examine Potential Tolerability Differences between the 5-HT 2C Receptor Selective Agonists Lorcaserin and CP-809101. ACS Chem Neurosci 2017; 8:1074-1084. [PMID: 28338324 DOI: 10.1021/acschemneuro.6b00444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lorcaserin (LOR) is a selective 5-HT2C receptor agonist that has been FDA approved as a treatment for obesity. The most frequently reported side-effects of LOR include nausea and headache, which can be dose limiting. We have previously reported that in the rat, while LOR produced unconditioned signs characteristic of nausea/malaise, the highly selective 5-HT2C agonist CP-809101 (CP) produced fewer equivalent signs. Because this may indicate a subclass of 5-HT2C agonists having better tolerability, the present studies were designed to further investigate this apparent difference. In a conditioned gaping model, a rodent test of nausea, LOR produced significantly higher gapes compared to CP consistent with it having higher emetogenic properties. Subsequent studies were designed to identify features of each drug that may account for such differences. In rats trained to discriminate CP-809101 from saline, both CP and LOR produced full generalization suggesting a similar interoceptive cue. In vitro tests of functional selectivity designed to examine signaling pathways activated by both drugs in CHO (Chinese hamster ovary) cells expressing h5-HT2C receptors failed to identify evidence for biased signaling differences between LOR and CP. Thus, both drugs showed similar profiles across PLC, PLA2, and ERK signaling pathways. In studies designed to examine pharmacokinetic differences between LOR and CP, while drug plasma levels correlated with increasing dose, CSF levels did not. CSF levels of LOR increased proportionally with dose; however CSF levels of CP plateaued from 6 to 12 mg/kg. Thus, the apparently improved tolerability of CP likely reflects a limit to CNS levels attained at relatively high doses.
Collapse
Affiliation(s)
- Guy A. Higgins
- InterVivo Solutions Inc., 120 Carlton Street, Toronto, Ontario M5A 4K2, Canada
- Department of Pharmacology & Toxicology, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | - Amy Patrick
- InterVivo Solutions Inc., 120 Carlton Street, Toronto, Ontario M5A 4K2, Canada
| | | | - Paul J. Fletcher
- Centre for Addiction and Mental Health, 250
College St, Toronto, Ontario M5T 1L8, Canada
- Department of Psychology & Psychiatry, University of Toronto, 100 St. George Street, Toronto, Ontario M5S 3G3, Canada
| | - Linda A. Parker
- Department
of Psychology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Neil J. MacLusky
- Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Laura C. Sullivan
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Teresa A. Chavera
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Kelly A. Berg
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| |
Collapse
|
21
|
Chao PH, Collins J, Argus JP, Tseng WY, Lee JT, Michael van Dam R. Automatic concentration and reformulation of PET tracers via microfluidic membrane distillation. LAB ON A CHIP 2017; 17:1802-1816. [PMID: 28443841 PMCID: PMC5497730 DOI: 10.1039/c6lc01569g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Short-lived radiolabeled tracers for positron emission tomography (PET) must be rapidly synthesized, purified, and formulated into injectable solution just prior to imaging. Current radiosynthesizers are generally designed for clinical use, and the HPLC purification and SPE formulation processes often result in a final volume that is too large for preclinical and emerging in vitro applications. Conventional technologies and techniques for reducing this volume tend to be slow, resulting in radioactive decay of the product, and often require manual handling of the radioactive materials. We present a fully-automated microfluidic system based on sweeping gas membrane distillation to rapidly perform the concentration and formulation process. After detailed characterization of the system, we demonstrate fast and efficient concentration and formulation of several PET tracers, evaluate residual solvent content to establish the safety of the formulated tracers for injection, and show that the formulated tracer can be used for in vivo imaging.
Collapse
Affiliation(s)
- Philip H Chao
- Department of Bioengineering, Henry Samueli School of Engineering, UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Woo CW, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci 2017; 20:365-377. [PMID: 28230847 PMCID: PMC5988350 DOI: 10.1038/nn.4478] [Citation(s) in RCA: 659] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 12/11/2016] [Indexed: 02/07/2023]
Abstract
Despite its great promise, neuroimaging has yet to substantially impact clinical practice and public health. However, a developing synergy between emerging analysis techniques and data-sharing initiatives has the potential to transform the role of neuroimaging in clinical applications. We review the state of translational neuroimaging and outline an approach to developing brain signatures that can be shared, tested in multiple contexts and applied in clinical settings. The approach rests on three pillars: (i) the use of multivariate pattern-recognition techniques to develop brain signatures for clinical outcomes and relevant mental processes; (ii) assessment and optimization of their diagnostic value; and (iii) a program of broad exploration followed by increasingly rigorous assessment of generalizability across samples, research contexts and populations. Increasingly sophisticated models based on these principles will help to overcome some of the obstacles on the road from basic neuroscience to better health and will ultimately serve both basic and applied goals.
Collapse
Affiliation(s)
- Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
- Institute of Cognitive Science, University of Colorado, Boulder, Colorado, USA
| | | | | | - Tor D Wager
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
- Institute of Cognitive Science, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
23
|
Abstract
The discovery and development of central nervous system (CNS) drugs is an extremely challenging process requiring large resources, timelines, and associated costs. The high risk of failure leads to high levels of risk. Over the past couple of decades PET imaging has become a central component of the CNS drug-development process, enabling decision-making in phase I studies, where early discharge of risk provides increased confidence to progress a candidate to more costly later phase testing at the right dose level or alternatively to kill a compound through failure to meet key criteria. The so called "3 pillars" of drug survival, namely; tissue exposure, target engagement, and pharmacologic activity, are particularly well suited for evaluation by PET imaging. This review introduces the process of CNS drug development before considering how PET imaging of the "3 pillars" has advanced to provide valuable tools for decision-making on the critical path of CNS drug development. Finally, we review the advances in PET science of biomarker development and analysis that enable sophisticated drug-development studies in man.
Collapse
Affiliation(s)
- Roger N Gunn
- Imanova Ltd, London, United Kingdom; Division of Brain Sciences, Imperial College London, London, United Kingdom; Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.
| | - Eugenii A Rabiner
- Imanova Ltd, London, United Kingdom; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| |
Collapse
|
24
|
Mann A, Han H, Eyal S. Imaging transporters: Transforming diagnostic and therapeutic development. Clin Pharmacol Ther 2016; 100:479-488. [PMID: 27327047 DOI: 10.1002/cpt.416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 01/22/2023]
Abstract
Molecular imaging allows noninvasive assessment of drug distribution across pharmacological barriers. Thus, it plays an increasingly important role in efforts to understand the interactions of molecules with membrane transporters during drug development and in clinical pharmacology. We describe established and emerging imaging modalities utilized for studying transporter expression and function. We further present examples of how molecular imaging could provide insights into the contribution of transporters to drug disposition and effects.
Collapse
Affiliation(s)
- A Mann
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - H Han
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - S Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel. .,The David R. Bloom Centre for Pharmacy and Dr. Adolf and Klara Brettler Centre for Research in Molecular Pharmacology and Therapeutics at The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
25
|
Tibbs GR, Posson DJ, Goldstein PA. Voltage-Gated Ion Channels in the PNS: Novel Therapies for Neuropathic Pain? Trends Pharmacol Sci 2016; 37:522-542. [DOI: 10.1016/j.tips.2016.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/24/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
|
26
|
Burris KD, Dworetzky SI. JBS Special Issue: Innovative Screening Methodologies to Identify New Compounds for the Treatment of Central Nervous System Disorders. ACTA ACUST UNITED AC 2016; 21:425-6. [PMID: 27206854 DOI: 10.1177/1087057116644231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 11/15/2022]
Affiliation(s)
- Kevin D Burris
- Lilly Research Laboratories, Quantitative Biology, Indianapolis, IN, USA
| | | |
Collapse
|
27
|
Wagner JA, Atkinson AJ. Measuring Biomarker Progress. Clin Pharmacol Ther 2015; 98:2-5. [PMID: 25870036 DOI: 10.1002/cpt.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022]
Abstract
A biomarker has been defined as "a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic process, or pharmacologic responses to a therapeutic intervention." This comprehensive definition of biomarkers arose from the April 1999 US Food and Drug Administration (FDA)/National Institutes of Health consensus conference on "Biomarkers and Surrogate Endpoints: Advancing Clinical Research and Applications," and emphasized that biomarkers are medical measurements, including physiological measurements, blood tests, molecular analyses of biopsies, genetic or metabolic data, and measurements from images. Research on biomarkers-organized and propelled by this definition-has skyrocketed, with over 200,000 PubMed citations in the last five years.
Collapse
Affiliation(s)
- J A Wagner
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - A J Atkinson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|